One-Year Seasonal Variation in the Content of Volatile Compounds in Bay Laurel Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Study Site
2.3. Essential Oil Extraction
2.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analyses and Compounds Identification
2.5. Statistical Analysis
3. Results and Discussion
GC-MS Profile
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tutin, T.G. Laurus L. In Flora Europaea; Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1964; Volume 1, p. 246. [Google Scholar]
- Khela, S.; Wilson, B. Bay Laurel—Laurus nobilis. The IUCN Red List of Threatened Species 2018: E.T203351A119996864. Available online: https://www.iucnredlist.org/species/203351/119996864 (accessed on 11 December 2024).
- POWO (Plants of the World Online). Facilitated by the Royal Botanic Gardens, Kew. 2025. Available online: http://www.plantsoftheworldonline.org/ (accessed on 8 January 2025).
- GBIF (Global Biodiversity Information Facility). 2025. Available online: https://www.gbif.org/species/3034015 (accessed on 8 January 2025).
- Anzano, A.; de Falco, B.; Grauso, L.; Motti, R.; Lanzotti, V. Laurel, Laurus nobilis L.: A review of its botany, traditional uses, phytochemistry and pharmacology. Phytochem. Rev. 2022, 21, 565–615. [Google Scholar] [CrossRef]
- da Silveira, S.M.; Cunha, A., Jr.; Scheuermann, G.N.; Secchi, F.L.; Werneck Vieira, C.R. Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the South of Brazil against food spoilage and foodborne pathogens. Cienc. Rural 2012, 42, 1300–1306. [Google Scholar] [CrossRef]
- Afifi, F.U.; Khalil, E.; Tamimi, S.O.; Disiet, A. Evalution of the gastroprotective effect of Laurus nobilis seeds on ethanol-induced gastric ulcer in rats. J. Ethnopharmacol. 1997, 58, 9–14. [Google Scholar] [CrossRef]
- Di Leo Lira, P.; Retta, D.; Tkacik, E.; Ringuelet, J.; Coussio, J.D.; van Baren, C.; Bandoni, A.L. Essential oil and by-products of distillation of bay leaves (Laurus nobilis L.) from Argentina. Ind. Crops Prod. 2009, 30, 259–264. [Google Scholar] [CrossRef]
- Al-Hussaini, R.; Mahasneh, A.M. Microbial growth and quorum sensing antagonist activities of herbal plants extracts. Molecules 2009, 14, 3425–3435. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Nalabothu, P.; Sandiford, S.; Bhogadi, V.; Adogwa, A. Evaluation of wound healing activity of Allamanda cathartica L. and Laurus nobilis L. extracts on rats. BMC Complement. Altern. Med. 2006, 6, 12. [Google Scholar] [CrossRef]
- Polovka, M.; Suhaj, M. Detection of caraway and bay leaves irradiation based on their extracts’ antioxidant properties evaluation. Food Chem. 2010, 119, 391–401. [Google Scholar] [CrossRef]
- Sayyah, M.; Saroukhani, G.; Peirovi, A.; Kamalinejad, M. Analgesic and antiinflammatory activity of the leaf essential oil of Laurus nobilis Linn. Phytother. Res. 2003, 17, 733–736. [Google Scholar] [CrossRef]
- Liu, C.Y.; Chang, H.S.; Chen, I.S.; Chen, C.J.; Hsu, M.L.; Fu, S.L.; Chen, Y.J. Costunolide causes mitotic arrest and enhances radiosensitivity in human hepatocellular carcinoma cells. Radiat. Oncol. 2011, 6, 56–63. [Google Scholar] [CrossRef]
- Choi, E.J.; Ahn, W.S. Antiproliferative effects of dehydrocostuslactone through cell cycle arrest and apoptosis in human ovarian cancer SK-OV-3 cells. Int. J. Mol. Med. 2009, 23, 211–221. [Google Scholar] [CrossRef]
- Pitchai, D.; Roy, A.; Banu, S. In vitro and in silico evaluation of NF-κB targeted costunolide action on estrogen receptor-negative breast cancer cells-a comparison with normal breast cells. Phytother. Res. 2014, 28, 1499–1505. [Google Scholar] [CrossRef]
- Rasul, A.; Bao, R.; Malhi, M.; Zhao, B.; Tsuji, I.; Li, J.; Li, X. Induction of apoptosis by costunolide in bladder cancer cells is mediated through ROS generation and mitochondrial dysfunction. Molecules 2013, 18, 1418–1433. [Google Scholar] [CrossRef]
- Kim, E.J.; Hong, J.E.; Lim, S.S.; Kwon, G.T.; Kim, J.; Kim, J.S.; Lee, K.W.; Park, J.H. The hexane extract of Saussurea lappa and its active principle, dehydrocostus lactone, inhibit prostate cancer cell migration. J. Med. Food 2012, 15, 24–32. [Google Scholar] [CrossRef]
- Butturini, E.; Cavalieri, E.; de Prati, A.C.; Darra, E.; Rigo, A.; Shoji, K.; Murayama, N.; Yamazaki, H.; Watanabe, Y.; Suzuki, H.; et al. Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation. PLoS ONE 2011, 6, e20174. [Google Scholar] [CrossRef] [PubMed]
- Politeo, O.; Jukić, M.; Miloš, M. Chemical composition and antioxidant activity of free volatile aglycones from laurel (Laurus nobilis L.) compared to its essential oil. Croat. Chem. Acta 2007, 80, 121–126. Available online: https://hrcak.srce.hr/12833 (accessed on 15th December 2024).
- Ivanović, J.; Mišić, D.; Ristić, M.; Pesic, O.; Žižović, I. Supercritical CO2 extract and essential oil of bay (Laurus nobilis L.): Chemical composition and antibacterial activity. J. Serbian Chem. Soc. 2010, 75, 395–404. [Google Scholar] [CrossRef]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of essential oil and its biological activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef]
- Fantasma, F.; Samukha, V.; Aliberti, M.; Colarusso, E.; Chini, M.G.; Saviano, G.; De Felice, V.; Lauro, G.; Casapullo, A.; Bifulco, G.; et al. Essential oils of Laurus nobilis L.: From chemical analysis to in silico investigation of anti-inflammatory activity by soluble epoxide hydrolase (sEH) inhibition. Foods 2024, 13, 2282. [Google Scholar] [CrossRef]
- Ramos, C.; Teixeira, B.; Batista, I.; Matos, O.; Serrano, C.; Neng, N.R.; Nogueira, J.M.F.; Nunes, M.L.; Marques, A. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Nat. Prod. Res. 2012, 26, 518–529. [Google Scholar] [CrossRef]
- Jaradat, N.; Hawash, M.; Qaoud, M.T.; Al-Maharik, N.; Qadi, M.; Hussein, F.; Issa, L.; Saleh, A.; Saleh, L.; Jadallah, A. Biological, phytochemical and molecular docking characteristics of Laurus nobilis L. fresh leaves essential oil from Palestine. BMC Complement. Med. Ther. 2024, 24, 223. [Google Scholar] [CrossRef]
- Kilic, A.; Hafizoglu, H.; Kollmannsberger, H.; Nitz, S. Volatile constituents and key odorants in leaves, buds, flowers, and fruits of Laurus nobilis L. J. Agric. Food Chem. 2004, 52, 1601–1606. [Google Scholar] [CrossRef]
- Amin, G.; Salehi Sourmaghi, M.H.; Jaafari, S.; Hadjagaee, R.; Yazdinezhad, A. Influence of phonological stages and methods of distillation on Iranian cultivated bay laurel volatile oil. Pak. J. Biol. Sci. 2007, 10, 2895–2899. [Google Scholar] [CrossRef] [PubMed]
- Verdian-rizi, M.; Hadjiakhoondi, A. Essential oil composition of Laurus nobilis L. of different growth stages growing in Iran. Z Naturforsch C. J. Biosci. 2008, 63, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Marzouki, H.; Elaissi, A.; Khaldi, A.; Bouzid, S.; Falconieri, D.; Marongiu, B.; Piras, A.; Porcedda, S. Seasonal and geographical variation of Laurus nobilis L. essential oil from Tunisia. Nat. Prod. J. 2009, 2, 86–91. [Google Scholar] [CrossRef]
- Riaz, M.; Ashraf, C.M.; Chaudhary, F.M. Studies of the essential oil of the Pakistani Laurus nobilis Linn in different seasons. Pak. J. Sci. Indust. Res. 1989, 32, 33–35. [Google Scholar]
- Roque, O.R. Seasonal variation in oil composition of Laurus nobilis grown in Portugal. J. Essent. Oil Res. 1989, 1, 199–200. [Google Scholar] [CrossRef]
- Müller-Riebau, F.J.; Berger, B.M.; Yegen, O.; Cakir, C. Seasonal variations in the chemical compositions of essential oils of selected aromatic plants growing wild in Turkey. J. Agric. Food Chem. 1997, 45, 4821–4825. [Google Scholar] [CrossRef]
- Bahmanzadegan, A.; Rowshan, V.; Zareian, F.; Alizadeh, R.; Bahmanzadegan, M. Seasonal variation in volatile oil, polyphenol content and antioxidant activity in extract of Laurus nobilis grown in Iran. J. Pharm. Pharmacol. 2015, 3, 223–231. [Google Scholar] [CrossRef]
- Putievsky, E.; Ravid, U.; Snir, N.; Sanderovich, D. The essential oils from cultivated bay laurel. Isr. J. Bot. 1984, 33, 47–52. [Google Scholar] [CrossRef]
- Shokoohinia, Y.; Yegdaneh, A.; Amin, G.; Ghannadi, A. Seasonal variations of Laurus nobilis L. leaves volatile oil components in Isfahan, Iran. J. Pharm. Pharmacogn. Res. 2014, 1, 1–6. [Google Scholar]
- Marzouki, H.; Khaldi, A.; Chamli, R.; Bouzid, S.; Piras, A.; Falconieri, D.; Marongiu, B. Biological activity evaluation of the oils from Laurus nobilis of Tunisia and Algeria extracted by supercritical carbon dioxide. Nat. Prod. Res. 2009, 23, 230–237. [Google Scholar] [CrossRef]
- Sangun, M.K.; Aydin, E.; Timur, M.; Karadeniz, H.; Caliskan, M.; Ozkan, A. Comparison of chemical composition of the essential oil of Laurus nobilis L. leaves and fruits from different regions of Hatay, Turkey. J. Environ. Biol. 2007, 28, 731–733. [Google Scholar] [PubMed]
- Ozcan, M.; Chalchat, J.-C. Effect of different locations on the chemical composition of essential oils of laurel (Laurus nobilis L.) leaves growing wild in Turkey. J. Med. Food 2005, 8, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Taban, A.; Saharkhiz, M.J.; Niakousari, M. Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustain. Chem. Pharm. 2018, 9, 12–18. [Google Scholar] [CrossRef]
- Millezi, A.F.; Caixeta, D.S.; Rossoni, D.F.; Cardoso, M.G.; Piccoli, R.H. In vitro antimicrobial properties of plant essential oils Thymus vulgaris, Cymbopogon citratus and Laurus nobilis against five important foodborne pathogens. Food Sci. Technol. 2012, 32, 167–172. [Google Scholar] [CrossRef]
- Gušić, I.; Velić, I.; Sokač, B. Geološka građa otoka Mljeta. Ekološke Monogr. 1995, 6, 35–54. [Google Scholar]
- Nodilo, M. Zanimljivosti Prirodne Baštine Otoka Mljeta; Vlastita Naklada: Zagreb, Croatia, 2008; pp. 5–6. [Google Scholar]
- Španjol, Ž.; Rosavec, R.; Vučetić, M.; Nodilo, J.; Gašparović, I. Contribution to the natural regeneration of forests in the Mljet National Park after the fire. Vatrogastvo i Upravljanje Požarima 2016, 6, 6–58. Available online: https://hrcak.srce.hr/172402 (accessed on 19th January 2025).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2017. [Google Scholar]
- El-Sawi, S.; Ibrahim, M.; Ali, A. In vitro cytotoxic, antioxidant and antimicrobial activities of essential oil of leaves of Laurus nobilis L. grown in Egypt and its chemical composition. Med. Aromatic. Plant Sci. Biotechnol. 2009, 3, 16–23. [Google Scholar]
- Derwich, E.; Benziane, Z.; Boukir, A.; Mohamed, S.; Abdellah, B. Chemical composition and antibacterial activity of leaves essential oil of Laurus nobilis from Morocco. Aust. J. Basic Appl. Sci. 2009, 3, 3818–3824. [Google Scholar]
- Yahyaa, M.; Matsuba, Y.; Brandt, W.; Doron-Faigenboim, A.; Bar, E.; McClain, A.; Davidovich-Rikanati, R.; Lewinsohn, E.; Pichersky, E.; Ibdah, M. Identification, functional characterization, and evolution of terpene synthases from a basal dicot. Plant Physiol. 2015, 169, 1683–1697. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; El Ghouizi, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical composition, antioxidant activity, and antifungal effects of essential oil from Laurus nobilis L. flowers growing in Morocco. J. Food Qual. 2020, 2020, 8819311. [Google Scholar] [CrossRef]
- Marzouki, H.; Piras, A.; Marongiu, B.; Rosa, A.; Dessì, M.A. Extraction and separation of volatile and fixed oils from berries of Laurus nobilis L. by supercritical CO2. Molecules 2008, 13, 1702–1711. [Google Scholar] [CrossRef]
- Rodilla, J.M.; Tinoco, M.T.; Morais, J.C.; Gimenez, C.; Cabrera, R.; Martín-Benito, D.; Castillo, L.; Gonzalez-Coloma, A. Laurus novocanariensis essential oil: Seasonal variation and valorization. Biochem. Syst. Ecol. 2007, 36, 167–176. [Google Scholar] [CrossRef]
- Southwell, I.A.; Russell, M.F.; Maddox, C.D.; Wheeler, G.S. Differential metabolism of 1,8-cineole in insects. J. Chem. Ecol. 2003, 29, 83–94. [Google Scholar] [CrossRef]
- Franks, S.J.; Wheeler, G.S.; Goodnight, C. Genetic variation and evolution of secondary compounds in native and introduced populations of the invasive plant Melaleuca quinquenervia. Evol. Int. J. Org. Evol. 2012, 66, 1398–1412. [Google Scholar] [CrossRef] [PubMed]
- Jemâa, J.M.B.; Tersim, N.; Toudert, K.T.; Khouja, M.L. Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J. Stored Prod. Res. 2012, 48, 97–104. [Google Scholar] [CrossRef]
- Tan, K.H.; Nishida, R. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect Sci. 2012, 12, 56. [Google Scholar] [CrossRef]
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average monthly air temperature (°C) | Mean | |||||||||||
8.9 | 10.6 | 10.1 | 14.3 | 20.9 | 26.6 | 27.8 | 27.3 | 22.5 | 19.6 | 15.2 | 13.2 | 18.1 |
Number of hot days (Tmax ≥ 30 °C) | Sum | |||||||||||
0 | 0 | 0 | 0 | 8 | 29 | 30 | 29 | 7 | 0 | 0 | 0 | 103 |
Average monthly precipitation (mm) | Sum | |||||||||||
3.3 | 11.7 | 10.5 | 37.6 | 11.3 | 61.7 | 5.1 | 3.5 | 43.1 | 8.2 | 131.5 | 76.7 | 404.2 |
Average monthly relative humidity (%) | Mean | |||||||||||
56 | 64 | 54 | 65 | 61 | 57 | 52 | 56 | 64 | 69 | 72 | 83 | 63 |
I | II | III | IV | V | VI | |||
Essential oil content (%) ± SD | ||||||||
0.50 ± 0.01 | 0.47 ± 0.01 | 0.85 ± 0.01 | 0.80 ± 0.01 | 0.90 ± 0.01 | 0.80 ± 0.01 | |||
Compound | RT (min) | RI | Compound content (%) ± SD | |||||
3-Heksen-1-ol | 7.49 | 852 | – | – | – | tr | 0.08 ± 0.01 | tr |
Isobutyl isobutanoate | 8.57 | 915 | tr | – | 0.05 ± 0.01 a | – | tr | 0.07 ± 0.01 b |
α-Thujene | 8.72 | 931 | 0.24 ± 0.01 a | 0.16 ± 0.01 b | 0.11 ± 0.01 c | 0.17 ± 0.01 bd | 0.30 ± 0.01 e | 0.21 ± 0.01 f |
α-Pinene | 8.94 | 940 | 3.73 ± 0.11 a | 3.13 ± 0.09 b | 2.29 ± 0.07 c | 3.81 ± 0.11 ad | 3.38 ± 0.10 be | 4.19 ± 0.13 f |
Camphene | 9.35 | 956 | 0.05 ± 0.01 a | 0.18 ± 0.01 b | – | 0.05 ± 0.01 a | 0.10 ± 0.01 c | 0.42 ± 0.01 d |
Sabinene | 9.95 | 978 | 7.62 ± 0.23 a | 6.62 ± 0.20 b | 7.65 ± 0.23 ac | 9.01 ± 0.27 d | 8.03 ± 0.24 ae | 8.08 ± 0.24 aef |
β-Pinene | 10.15 | 983 | 3.16 ± 0.09 a | 2.81 ± 0.08 b | 2.32 ± 0.07 c | 3.29 ± 0.10 ad | 2.92 ± 0.09 abe | 3.44 ± 0.10 df |
Myrcene | 10.38 | 991 | 0.22 ± 0.01 a | 0.40 ± 0.01 b | 0.42 ± 0.01 bc | 0.41 ± 0.01 bcd | 0.71 ± 0.02 e | 0.76 ± 0.02 f |
2,3-Dehidro-1,8-cineole | 11.59 | 996 | 0.05 ± 0.01 a | tr | – | – | 0.05 ± 0.01 a | tr |
2-Methylbutyl isobutanoat | 10.49 | 1002 | – | – | 0.05 ± 0.01 a | – | 0.06 ± 0.01 ab | 0.07 ± 0.01 b |
β-Phellandrene | 10.56 | 1008 | 0.07 ± 0.01 a | tr | tr | – | 0.05 ± 0.01 a | tr |
Δ-3-Carene | 10.63 | 1015 | tr | tr | tr | 0.06 ± 0.01 a | 0.12 ± 0.01 a | 0.33 ± 0.01 ab |
α-Terpinene | 11.17 | 1021 | 0.13 ± 0.01 a | 0.09 ± 0.01 b | tr | tr | 0.22 ± 0.01 c | 0.15 ± 0.01 ad |
o-Cymene | 11.41 | 1026 | – | – | – | – | tr | 0.05 ± 0.01 a |
p-Cymene | 11.65 | 1029 | 0.20 ± 0.01 a | 0.20 ± 0.01 a | 0.07 ± 0.01 b | 0.14 ± 0.01 c | 0.16 ± 0.01 cd | 0.08 ± 0.01 be |
Limonene | 11.82 | 1034 | 1.89 ± 0.06 a | 1.35 ± 0.04 b | 1.35 ± 0.04 bc | 1.39 ± 0.04 bcd | 1.64 ± 0.05 e | 1.93 ± 0.06 af |
1,8-Cineole | 11.94 | 1038 | 60.41 ± 1.81 a | 63.74 ± 1.91 ab | 64.14 ± 1.92 abc | 62.61 ± 1.88 abd | 55.61 ± 1.67 ae | 54.01 ± 1.62 ef |
γ-Terpinen | 12.22 | 1063 | 0.44 ± 0.01 a | 0.26 ± 0.01 b | 0.15 ± 0.01 c | 0.14 ± 0.01 cd | 0.50 ± 0.01 e | 0.43 ± 0.01 af |
cis-Sabinene hydrate | 12.64 | 1072 | 0.30± 0.01 a | 0.22 ± 0.01 b | 0.19 ± 0.01 c | 0.09 ± 0.01 cd | 0.39 ± 0.01 e | 0.37 ± 0.01 ef |
Terpinolene | 12.84 | 1092 | 0.05 ± 0.01 a | tr | tr | tr | 0.14 ± 0.01 b | 0.07 ± 0.01 ac |
Linalool | 13.52 | 1099 | 2.08 ± 0.06 a | 6.56 ± 0.20 b | 1.77 ± 0.05 ac | 3.80 ± 0.11 d | 5.66 ± 0.17 e | 5.67 ± 0.17 f |
trans-Sabinene hydrate | 13.65 | 1101 | 0.32 ± 0.01 a | 0.22 ± 0.01 b | 0.21 ± 0.01 bc | 0.12 ± 0.01 d | 0.24 ± 0.01 be | 0.37 ± 0.01 f |
1-Octen-3-ol acetate | 15.52 | 1127 | tr | – | – | – | 0.05 ± 0.01 a | – |
Un | 16.80 | 1145 | – | – | – | – | – | tr |
d-Terpineol + borneol | 16.48 | 1173 | 0.17 ± 0.01 a | 0.24 ± 0.01 b | 0.18 ± 0.01 ac | 0.06 ± 0.01 d | 0.32 ± 0.01 e | 0.32 ± 0.01 ef |
Terpinen-4-ol | 16.84 | 1183 | 2.44 ± 0.07 a | 1.81 ± 0.05 b | 1.64 ± 0.05 bc | 1.20 ± 0.04 d | 2.41 ± 0.07 ae | 1.89 ± 0.06 bf |
α-Terpineol | 17.32 | 1195 | 2.46 ± 0.07 a | 3.86 ± 0.12 b | 2.87 ± 0.09 c | 3.07 ± 0.09 cd | 2.52 ± 0.08 ae | 2.79 ± 0.08 cef |
Nerol | 18.25 | 1231 | tr | – | tr | – | 0.16 ± 0.01 a | 0.07 ± 0.01 b |
Linalyl acetate | 20.72 | 1259 | – | – | – | tr | 0.12 ± 0.01 a | 0.16 ± 0.01 a |
Bornyl acetate | 21.57 | 1291 | – | 0.12 ± 0.01 a | 2.76 ± 0.08 b | – | 0.05 ± 0.01 c | 0.38 ± 0.01 d |
Terpinen-4-ol acetate | 21.61 | 1293 | – | – | – | – | 0.08 ± 0.01 | – |
Acetate | 22.09 | 1322 | 0.24 ± 0.01 a | 0.05 ± 0.01 b | 0.14 ± 0.01 c | 0.06 ± 0.01 bd | 0.48 ± 0.01 e | 0.33 ± 0.01 f |
α-Terpinyl acetate | 22.65 | 1355 | 11.96 ± 0.36 a | 7.26 ± 0.22 b | 10.99 ± 0.33 c | 8.63 ± 0.26 d | 10.90 ± 0.33 ce | 10.61 ± 0.32 cef |
Eugenol | 22.77 | 1362 | 0.32 ±0.01 a | 0.44 ± 0.01 b | 0.59 ± 0.02 c | 1.83 ± 0.05 d | 0.56 ± 0.02 ce | 0.97 ± 0.03 f |
β-Elemene | 24.21 | 1401 | – | tr | – | – | – | tr |
Methyl eugenol | 24.42 | 1404 | 1.46 ± 0.04 a | 0.07 ± 0.01 b | 0.05 ± 0.01 c | 0.06 ± 0.01 cd | 2.00 ± 0.06 e | 1.67 ± 0.05 f |
β-Caryophyllene | 25.38 | 1434 | – | – | tr | – | – | – |
Methyl isoeugenol | 26.72 | 1498 | – | – | tr | – | – | – |
Sq | 27.62 | 1510 | – | 0.23 ± 0.01 | – | – | – | – |
Elemicin | 29.14 | 1559 | – | – | – | – | – | – |
Spathulenol | 30.44 | 1591 | – | tr | tr | – | tr | – |
Caryophyllene oxide | 30.69 | 1598 | – | – | – | tr | tr | – |
Sqol 1 | 31.89 | 1666 | – | – | – | – | tr | 0.12 ± 0.01 a |
Sqol 2 | 32.07 | 1670 | – | tr | tr | – | – | – |
Total identified | 99.76 | 99.72 | 99.86 | 99.94 | 99.52 | 99.55 | ||
Monoterpene | 17.79 | 15.20 | 14.36 | 18.47 | 18.27 | 20.14 | ||
Monoterpene alcohols | 7.77 | 12.89 | 6.86 | 8.34 | 11.69 | 11.47 | ||
Monoterpene oxides | 60.46 | 63.81 | 64.14 | 62.67 | 55.66 | 54.01 | ||
Monoterpene esters | 11.96 | 7.38 | 13.75 | 8.63 | 11.15 | 11.15 | ||
Total monoterpene | 97.98 | 99.28 | 99.12 | 98.11 | 96.77 | 96.77 | ||
Phenylpropanoids | 1.78 | 0.44 | 0.64 | 1.83 | 2.56 | 2.64 | ||
Total sesquiterpene | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Other compounds | 0.00 | 0.00 | 0.10 | 0.00 | 0.19 | 0.14 | ||
VII | VIII | IX | X | XI | XII | |||
Essential oil content (%) ± SD | ||||||||
0.85 ± 0.01 | 0.82 ± 0.02 | 0.80 ± 0.01 | 0.70 ± 0.01 | 0.70 ± 0.01 | 0.6 ± 0.01 | |||
Compound | RT (min) | RI | Compound content (%) ± SD | |||||
3-Heksen-1-ol | 7.49 | 852 | – | tr | – | – | – | 0.05 ± 0.01 b |
Isobutyl isobutanoate | 8.57 | 915 | tr | 0.08 ± 0.01 b | – | 0.05 ± 0.01 a | – | – |
α-Thujene | 8.72 | 931 | 0.19 ± 0.01 dfg | 0.24 ± 0.01 ah | 0.05 ± 0.01 i | 0.41 ± 0.01 j | 0.16 ± 0.01 bdk | 0.21 ± 0.01 mfg |
α-Pinene | 8.94 | 940 | 3.34 ± 0.10 beg | 4.49 ± 0.15 h | 1.46 ± 0.04 i | 4.22 ± 0.13 fhj | 2.80 ± 0.08 k | 2.35 ± 0.07 cm |
Camphene | 9.35 | 956 | tr | 0.49 ± 0.01 e | tr | 0.15 ± 0.01 bf | 0.14 ± 0.01 cf | 0.23 ± 0.01 g |
Sabinene | 9.95 | 978 | 8.50 ± 0.25 defg | 8.55 ± 0.26 defgh | 3.16 ± 0.09 i | 8.22 ± 0.25 abefghj | 5.23 ± 0.16 k | 6.10 ± 0.18 cm |
β-Pinene | 10.15 | 983 | 3.04 ± 0.09 abeg | 3.69 ± 0.11 h | 1.55 ± 0.05 i | 3.53 ± 0.11 dhj | 2.68 ± 0.08 bek | 2.17 ± 0.06 cm |
Myrcene | 10.38 | 991 | 0.27 ± 0.01 ag | 0.82 ± 0.02 h | 0.10 ± 0.01 i | 0.75 ± 0.02 efj | 0.49 ± 0.01 k | 0.31 ± 0.01 gm |
2,3-Dehidro-1,8-cineole | 11.59 | 996 | – | tr | – | 0.07 ± 0.01 a | – | – |
2-Methylbutyl isobutanoat | 10.49 | 1002 | 0.06 ± 0.01 ab | 0.07 ± 0.01 bc | – | 0.08 ± 0.01 c | – | – |
β-Phellandrene | 10.56 | 1008 | tr | tr | – | 0.07 ± 0.01 a | tr | tr |
Δ-3-Carene | 10.63 | 1015 | tr | 0.39 ± 0.01 b | tr | 0.06 ± 0.01 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a |
α-Terpinene | 11.17 | 1021 | 0.10 ± 0.01 abe | 0.18 ± 0.01 f | tr | 0.38 ± 0.01 g | 0.25 ± 0.01 h | 0.08 ± 0.01 bei |
o-Cymene | 11.41 | 1026 | – | 0.05 ± 0.01 a | tr | – | tr | – |
p-Cymene | 11.65 | 1029 | 0.13 ± 0.01 cf | 0.09 ± 0.01 beg | 0.44 ± 0.01 h | 0.26 ± 0.01 i | 0.16 ± 0.01 cdj | 0.41 ± 0.01 k |
Limonene | 11.82 | 1034 | 1.87 ± 0.06 afg | 1.94 ± 0.06 afgh | 0.73 ± 0.02 i | 2.07 ± 0.06 fhj | 1.54 ± 0.05 dek | 1.15 ± 0.03 m |
1,8-Cineole | 11.94 | 1038 | 64.94 ± 1.95 abdg | 53.87 ± 1.62 efh | 63.03 ± 1.89 abdgi | 49.79 ± 1.49 fhj | 58.36 ± 1.75 adefhik | 56.98 ± 1.71 aefhkm |
γ-Terpinen | 12.22 | 1063 | 0.35 ± 0.01 g | 0.48 ± 0.01 eh | tr | 0.79 ± 0.02 i | 0.58± 0.02 j | 0.17 ± 0.01 cdk |
cis-Sabinene hydrate | 12.64 | 1072 | 0.31 ± 0.01 ag | 0.43 ± 0.01 h | tr | 0.48 ± 0.01 i | 0.26 ± 0.01 j | 0.40 ± 0.01 ek |
Terpinolene | 12.84 | 1092 | tr | 0.08 ± 0.01 ac | tr | 0.19 ± 0.01 c | 0.08 ± 0.01 ac | 0.05 ± 0.01 ac |
Linalool | 13.52 | 1099 | 2.47 ± 0.07 ag | 5.88 ± 0.18 h | 7.82 ± 0.23 i | 4.82 ± 0.14 j | 7.67 ± 0.23 k | 8.03 ± 0.24 l |
trans-Sabinene hydrate | 13.65 | 1101 | 0.33 ± 0.01 ag | 0.39 ± 0.01 fh | 0.13 ± 0.01 id | 0.35 ± 0.01 fgj | 0.26 ± 0.01 ek | 0.24 ± 0.01 bekm |
1-Octen-3-ol acetate | 15.52 | 1127 | tr | 0.05 ± 0.01 a | – | 0.08 ± 0.01 b | tr | – |
Un | 16.80 | 1145 | tr | – | – | 0.05 ± 0.01 | tr | – |
d-Terpineol + borneol | 16.48 | 1173 | 0.22 ± 0.01 bg | 0.39 ± 0.01 h | tr | 0.50 ± 0.02 i | 0.31 ± 0.01 efj | 0.67 ± 0.02 k |
Terpinen-4-ol | 16.84 | 1183 | 2.14 ± 0.06 g | 2.02 ± 0.06 fgh | 2.05 ± 0.06 fgi | 3.04 ± 0.09 ij | 2.82 ± 0.08 k | 2.50 ± 0.08 aem |
α-terpineol | 17.32 | 1195 | 2.62 ± 0.08 acefg | 2.89 ± 0.09 cdfgh | 0.99 ± 0.03 i | 3.45 ± 0.01 j | 4.43 ± 0.13 k | 4.77 ± 0.14 m |
Nerol | 18.25 | 1231 | tr | 0.09 ± 0.01 b | – | 0.20 ± 0.01 a | – | 0.06 ± 0.01 b |
Linalyl acetate | 20.72 | 1259 | – | – | tr | – | – | tr |
Bornyl acetate | 21.57 | 1291 | – | 0.43 ± 0.01 de | 8.50 ± 0.25 f | 0.09 ± 0.01 acg | 0.18 ± 0.01 acdg | 0.32 ± 0.01 adeg |
Terpinen-4-ol acetate | 21.61 | 1293 | – | – | – | tr | – | tr |
Acetate | 22.09 | 1322 | 0.24 ± 0.01 ag | 0.24 ± 0.11 agh | 0.11 ± 0.01 i | 0.45 ± 0.01 j | 0.11 ± 0.01 ik | 0.16 ± 0.01 cm |
α-Terpinyl acetate | 22.65 | 1355 | 7.14 ± 0.21 bg | 9.10 ± 0.27 dh | 8.50 ± 0.26 dhi | 11.63 ± 0.35 caej | 9.92 ± 0.30 fhk | 9.02 ± 0.27 him |
Eugenol | 22.77 | 1362 | 0.34 ± 0.01 ag | 0.71 ± 0.02 h | 0.05 ± 0.01 i | 0.94 ± 0.03 fj | 0.83 ± 0.02 k | 1.78 ± 0.05 dm |
β-Elemene | 24.21 | 1401 | tr | tr | – | 0.10 ± 0.01 a | – | 0.09 ± 0.01 a |
Methyl eugenol | 24.42 | 1404 | 1.39 ± 0.04 ag | 1.67 ± 0.05 fh | 1.32 ± 0.04 agi | 2.59 ± 0.08 j | 0.42 ± 0.01 k | 0.55 ± 0.02 bm |
β-Caryophyllene | 25.38 | 1434 | – | – | – | tr | – | – |
Methyl isoeugenol | 26.72 | 1498 | – | – | – | – | – | 0.16 ± 0.01 |
Sq | 27.62 | 1510 | – | – | tr | – | – | – |
Elemicin | 29.14 | 1559 | – | 0.05 ± 0.01 | – | tr | – | – |
Spathulenol | 30.44 | 1591 | – | – | tr | – | tr | 0.24 ± 0.01 |
Caryophyllene oxide | 30.69 | 1598 | tr | – | – | 0.05 ± 0.01 a | tr | 0.47 ± 0.01 b |
Sqol 1 | 31.89 | 1666 | – | 0.14 ± 0.01 a | tr | 0.05 ± 0.01 b | 0.17 ± 0.01 c | 0.27 ± 0.01 d |
Sqol 2 | 32.07 | 1670 | tr | – | – | – | 0.13 ± 0.01 | – |
Total identified | 99.76 | 99.62 | 99.89 | 99.44 | 99.60 | 99.57 | ||
Monoterpene | 17.79 | 21.50 | 7.50 | 21.11 | 14.15 | 13.26 | ||
Monoterpene alcohols | 8.09 | 12.08 | 10.99 | 12.85 | 15.75 | 16.66 | ||
Monoterpene oxides | 64.94 | 53.87 | 63.03 | 49.86 | 58.36 | 56.98 | ||
Monoterpene esters | 7,14 | 9.53 | 17.01 | 11.72 | 10.10 | 9.33 | ||
Total monoterpene | 97.97 | 96.99 | 98.52 | 95.56 | 98.35 | 96.23 | ||
Phenylpropanoids | 1.73 | 2.43 | 1.37 | 3.52 | 1.25 | 2.49 | ||
Total sesquiterpene | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | 0.80 | ||
Other compounds | 0.06 | 0.20 | 0.00 | 0.21 | 0.00 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kremer, D.; Dunkić, V.; Milovac, S.; Inić, S.; Juretić, L.; Dika, I.R.; Petrović, M. One-Year Seasonal Variation in the Content of Volatile Compounds in Bay Laurel Leaves. Horticulturae 2025, 11, 241. https://doi.org/10.3390/horticulturae11030241
Kremer D, Dunkić V, Milovac S, Inić S, Juretić L, Dika IR, Petrović M. One-Year Seasonal Variation in the Content of Volatile Compounds in Bay Laurel Leaves. Horticulturae. 2025; 11(3):241. https://doi.org/10.3390/horticulturae11030241
Chicago/Turabian StyleKremer, Dario, Valerija Dunkić, Srđan Milovac, Suzana Inić, Lea Juretić, Iva Rechner Dika, and Marinko Petrović. 2025. "One-Year Seasonal Variation in the Content of Volatile Compounds in Bay Laurel Leaves" Horticulturae 11, no. 3: 241. https://doi.org/10.3390/horticulturae11030241
APA StyleKremer, D., Dunkić, V., Milovac, S., Inić, S., Juretić, L., Dika, I. R., & Petrović, M. (2025). One-Year Seasonal Variation in the Content of Volatile Compounds in Bay Laurel Leaves. Horticulturae, 11(3), 241. https://doi.org/10.3390/horticulturae11030241