Comparison of Identification and Determination of Phenolic Compounds and Antioxidant Potential of Selected Red Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Chemicals and Reagents
2.3. Determination of Phenolic Compounds
2.3.1. Spectrophotometric Analysis of Total Phenolics Content (TPC)
2.3.2. Total Flavonoids Content (TFC)
2.3.3. Determination of Total and Monomeric Anthocyanins and the Percentage of Polymeric Color
2.4. Measurement Antioxidant Activity
2.4.1. DPPH Radical Scavenging Activity
2.4.2. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.4.3. Cupric Reducing Antioxidant Capacity (CUPRAC) Assay
2.4.4. Total Reducing Power (TRP) Assay
2.5. High Performance Liquid Chromatography (HPLC-DAD) Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic (TPC) and Total Flavonoid Content (TFC)
3.2. Spectrophotometric Analysis of Anthocyanins
3.3. Antioxidant Activities
3.3.1. Free Radical Scavenging Activity (DPPH) Assay
3.3.2. Ferric-Reducing Antioxidant Power (FRAP) Assay
3.3.3. Cupric Reducing Antioxidant Capacity (CUPRAC) Assay
3.3.4. Total Reducing Power (TRP) Assay
3.4. Correlation
3.5. HPLC Analysis of Phenolic Compounds in Red Wines
3.5.1. Anthocyanins
3.5.2. Hydroxicinnamic Acid and Flavonols
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Organisation of Vine and Wine (OIV). International Code of Oenological Practices. Resolutions Adopted in Jerez (Spain) 21st G.A.—9 June 2023. Legal Basis: Agreement of 3 April 2001, Resolution AG 3/2004, Resolution 16/70. OIV Code Sheet—Issue 2024/01. Dijon, France. 2024, pp. 1–453. Available online: https://www.oiv.int/sites/default/files/publication/2024-03/CPO%202024%20EN%20.pdf (accessed on 25 December 2024).
- Errichiello, F.; Forino, M.; Picariello, L.; Moio, L.; Gambuti, A. Analysis of Polyphenols During Alcoholic Fermentation of Red Grape Aglianico (Vitis vinifera L.): Potential Winemaking Optimization and Pomace Valorization. Molecules 2024, 29, 5962. [Google Scholar] [CrossRef] [PubMed]
- Jordão, A.M.; Correia, A.C.; Martins, B.; Romão, A.; Oliveira, B. General Physicochemical Parameters, Phenolic Composition, and Varietal Aromatic Potential of Three Red Vitis vinifera Varieties (“Merlot”, “Syrah”, and “Saborinho”) Cultivated on Pico Island—Azores Archipelago. Int. J. Plant Biol. 2024, 15, 1369–1390. [Google Scholar] [CrossRef]
- El Rayess, Y.; Nehme, N.; Azzi-Achkouty, S.; Julien, S.G. Wine Phenolic Compounds: Chemistry, Functionality and Health Benefits. Antioxidants 2024, 13, 1312. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Sadeghnezhad, E.; Leng, X.; Pei, D.; Dong, T.; Zhang, P.; Gong, P.; Jia, H.; Fang, J. Assessment of ‘Cabernet Sauvignon’ Grape Quality Half-Véraison to Maturity for Grapevines Grown in Different Regions. Int. J. Mol. Sci. 2023, 24, 4670. [Google Scholar] [CrossRef] [PubMed]
- Chengolova, Z.; Ivanov, Y.; Godjevargova, T. Comparison of Identification and Quantification of Polyphenolic Compounds in Skins and Seeds of Four Grape Varieties. Molecules 2023, 28, 4061. [Google Scholar] [CrossRef] [PubMed]
- Aris, G.; Cuneo, I.F.; Pastenes, C.; Cáceres-Mella, A. Anthocyanin Composition in Cabernet Sauvignon Grape Skins: Effect of Regulated Deficit Irrigation in a Warm Climate. Horticulturae 2022, 8, 96. [Google Scholar] [CrossRef]
- Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yakov, I.; Yashin, Y.Y. Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. Beverages 2022, 8, 1. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, H.; Yang, N.; Cao, J.; Wang, J.; Wang, X.; Xi, Z. Effect of vineyard row orientation on microclimate, phenolic compounds, individual anthocyanins, and free volatile compounds of Cabernet Sauvignon (Vitis vinifera L.) in a high-altitude arid valley. Eur. Food Res. Technol. 2022, 248, 1365–1378. [Google Scholar] [CrossRef]
- Yu, R.; Torres, N.; Kaan Kurtural, S.K. Obtaining Spatial Variations in Cabernet Sauvignon (Vitis vinifera L.) Wine Flavonoid Composition and Aromatic Profiles by Studying Long-Term Plant Water Status in Hyper-Arid Seasons. Horticulturae 2024, 10, 68. [Google Scholar] [CrossRef]
- Medina-Plaza, C.; Meade, H.; Dokoozlian, N.; Ponangi, R.; Blair, T.; Block, D.E.; Oberholster, A. Investigating the Relation between Skin Cell Wall Composition and Phenolic Extractability in Cabernet Sauvignon Wines. Fermentation 2022, 8, 401. [Google Scholar] [CrossRef]
- Di Stefano, V.; Buzzanca, C.; Melilli, M.G.; Indelicato, S.; Mauro, M.; Vazzana, M.; Arizza, V.; Lucarini, M.; Durazzo, A.; Bongiorno, D. Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability 2022, 14, 702. [Google Scholar] [CrossRef]
- Markovic, N.; Przic, Z. Serbian viticulture from the 19th century to the present day. Ann. Univ. Craiova-Agric. Mont. Cadastre Ser. 2022, 52, 261–269. [Google Scholar] [CrossRef]
- Przic, Z.; Markovic, N. Agrobiological and technological characteristics of some grapevine varieties and clones grown in Serbia. Ann. Univ. Craiova-Agric. Mont. Cadastre Ser. 2019, 49, 229–237. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Jia, Z.S.; Tang, M.C.; Wu, J.M. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV visible spectroscopy. In Current Protocols in Food Analytical Chemistry, 1st ed.; John Wiley & Sons: New York, NY, USA, 2001; pp. F1.2.1.–F1.2.13. [Google Scholar] [CrossRef]
- Hou, X.; Chen, S.; Pu, Y.; Wang, T.; Xu, H.; Li, H.; Ma, P.; Hou, X. Effect of Winemaking on Phenolic Compounds and Antioxidant Activities of Msalais Wine. Molecules 2023, 28, 1250. [Google Scholar] [CrossRef]
- Benzie, F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘Antioxidant Power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Apak, R. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E.; Erçağ, E. The cupric ion reducing antioxidant capacity (CUPRAC) and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Katalinic, V.; Milos, M.; Modun, D.; Music, I.; Boban, M. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem. 2004, 86, 593–600. [Google Scholar] [CrossRef]
- Arnous, A.; Makris, D.P.; Kefalas, A. Effect of Principal Polyphenolic Components in Relation to Antioxidant Characteristics of Aged red Wines. J. Agric. Food Chem. 2001, 49, 5736–5742. [Google Scholar] [CrossRef]
- Cimino, F.; Sulfaro, V.; Trombetta, D.; Saija, A.; Tomaino, A. Radical-scavenging capacity of several Italian red wines. Food Chem. 2007, 103, 73–81. [Google Scholar] [CrossRef]
- Fernandez-Pachon, S.M.; Villano, D.; Garcia-Parrilla, M.C.; Troncoso, A.M. Antioxidant activity of wines and relation with their poliphenolic composition. Anal. Chim. Acta 2004, 513, 113–118. [Google Scholar] [CrossRef]
- Anli, E.; Vural, N. Antioxidant Phenolic Substance of Turkish Red Wines from Different Wine Region. Molecules 2009, 14, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Radovanović, A.; Radovanović, B.; Jovančičević, B. Free radical scavenging and antibacterial activities of southern Serbian red wines. Food Chem. 2008, 117, 326–333. [Google Scholar] [CrossRef]
- Munoz-Espada, A.C.; Wood, K.V.; Bordelon, B.; Watkins, B.A. Anthocyanin Quantification and radical scavenging capacity of Concord, Norton and Marechal Foch grapes and wines. J. Agric. Food Chem. 2004, 52, 6779–6786. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, A.; Knapp, H.; Winterhalter, P. Separation and purification of anthocyanins by highspeed counter current chromatography and screening for antioxidant activity. J. Agric. Food Chem. 2000, 48, 1063–1072. [Google Scholar] [CrossRef]
- Lapidot, T.; Harel, S.; Akiri, B.; Granit, R.; Kanner, J. pH-dependent forms of red wine anthocyanins as antioxidants. J. Agric. Food Chem. 1999, 47, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Vivar-Quintana, A.M.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Anthocyanin-derived pigments and colour of red wines. Anal. Chim. Acta 2002, 458, 147–155. [Google Scholar] [CrossRef]
- Cecarini, V.; Gee, J.; Fioretti, E.; Amici, M.; Angeletti, M.; Eleuteri, A.M.; Keller, J.N. Protein oxidation and cellular homeostasis: Emphasis on metabolism. Biochim. Biophys. Acta Mol. Cell Res. 2007, 1773, 93–104. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- De Beer, D.; Joubert, E.; Gelderblom, W.C.A.; Manley, M. Antioxidant Activity of South African Red and White Cultivar Wines: Free Radical Scavenging. J. Agric. Food Chem. 2003, 51, 902–909. [Google Scholar] [CrossRef]
- Nixdorf, S.L.; Hermosin-Gutierrez, I. Brazilian Red Wines Made from the Hybrid Grape Cultivar Isabel: Phenolic Composition and Antioxidant Capacity. Anal. Chim. Acta 2010, 659, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Stasko, A.; Brezova, V.; Mazur, M.; Certik, M.; Kalinak, M.; Gescheidt, G. A Comparative Study on the Antioxidant Properties of Slovakian and Austrian Wines. LWT—Food Sci. Technol. 2008, 41, 2126–2135. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.Y.; Li, Y.; Li, P.H.; Wang, H. Polyphenolic Compounds and Antioxidant Properties of Selected China Wines. Food Chem. 2009, 112, 454–460. [Google Scholar] [CrossRef]
- Seruga, M.; Novak, I.; Jakobek, L. Determination of Polyphenols Content and Antioxidant Activity of Some Red Wines by Differential Pulse Voltammetry, HPLC and Spectrophotometric Methods. Food Chem. 2011, 124, 1208–1216. [Google Scholar] [CrossRef]
- Mitrevska, K.; Grigorakis, S.; Loupassaki, S.; Calokerinos, A. Antioxidant Activity and Polyphenolic Content of North Macedonian Wines. Appl. Sci. 2020, 10, 2010. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z.W. Comparison on Phenolic Compounds and Antioxidant Properties of Cabernet Sauvignon and Merlot Wines from Four Wine Grape-Growing Regions in China. Molecules 2012, 17, 8804–8821. [Google Scholar] [CrossRef] [PubMed]
- Büyüktuncel, E.; Porgalı, E.; Çolak, C. Comparison of Total Phenolic Content and Total Antioxidant Activity in Local Red Wines Determined by Spectrophotometric Methods. Food Nutr. Sci. 2014, 5, 1660–1667. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid Antioxidants: Chemistry, Metabolism and Structure-activity Relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Giovanelli, G. Evaluation of the antioxidant activity of red wines in relationship to their phenolic content. Ital. J. Food Sci. 2005, 17, 381–393. [Google Scholar]
- Zafrilla, P.; Morillas, J.; Mulero, J.; Cayuela, J.M.; Martínez-Cachá, A.; Pardo, F.; Lopes Nicolas, J.M. Changes during storage in conventional and ecological wine: Phenolic content and antioxidant activity. J. Agric. Food Chem. 2003, 51, 4694–4700. [Google Scholar] [CrossRef]
- Alén-Ruiz, F.; García-Falcón, M.S.; Pérez-Lamela, M.C.; Martínez-Carballo, E.; Simal-Gándara, J. Influence of major polyphenols on antioxidant activity in Mencía and Brancellao red wines. Food Chem. 2009, 113, 53–60. [Google Scholar] [CrossRef]
- Roussis, I.G.; Lambropoulos, I.; Tzimas, P.; Gkoulioti, A.; Marinos, V.; Tsoupeis, D.; Boutaris, I. Antioxidant activities of some Greek wines and wine phenolic extracts. J. Food Compos. Anal. 2008, 21, 614–621. [Google Scholar] [CrossRef]
- Ivanova-Petroleus, V.; Ricci, A.; Nedelkovski, D.; Dimovska, V.; Parpinello, G.P.; Versari, A. Targeted analysis of bioactive phenolic compounds and antioxidant activity of Macedonian red wines. Food Chem. 2015, 44, 2851–2860. [Google Scholar] [CrossRef]
- Mattivi, F.; Nicolini, G. Analysis of polyphenols and resveratrol in Italian wines. Bio Factors 1997, 6, 445–448. [Google Scholar] [CrossRef]
- Kallithraka, S.; Mohdaly, A.; Makris, D.P.; Kefalas, P. Determination of major anthocyanin pigments in Hellenic native grape varieties (Vitis vinifera sp.): Association with antiradical efficiency. J. Food Compos. Anal. 2005, 18, 375–386. [Google Scholar] [CrossRef]
- Dimitrovska, M.; Tomovska, E.; Bocevska, M. Characterisation of Vranec, Cabernet Sauvignon and Merlot wines based on their chromatic and anthocyanin profiles. J. Serb. Chem. Soc. 2013, 78, 1269–1460. [Google Scholar] [CrossRef]
- Revilla, E.; García-Beneytez, E.; Cabello, F. Anthocyanin fingerprint of clones of Tempranillo grapes and wines made with them. Aust. J. Grape Wine Res. 2009, 15, 70–78. [Google Scholar] [CrossRef]
- Esteban, M.A.; Villanueva, M.J.; Lissarrague, J.R. Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L.) grape berries during ripening. J. Sci. Food Agric. 2001, 81, 4. [Google Scholar] [CrossRef]
- Casavecchia, C.; Magnisi, R.; La Pera, L.; Maisano, R.; Dugo, G. Classification of Sicilian Red Wines from Autochthonous and Allochthonous Cultivars According to Anthocyanin Pattern. Am. J. Enol. Vitic. 2007, 58, 286–290. [Google Scholar] [CrossRef]
- Singleton, V.L.; Zaya, J.; Trousdale, E.K. Caftaric and coutaric acids in fruit of Vitis. Phytochemistry 1986, 25, 2127–2133. [Google Scholar] [CrossRef]
- Pajović, R.; Wendelin, S.; Forneck, A.; Eder, R. Varietal differentiation of grapes cv. ‘Vranac’, ‘Kratošija’ and ‘Cabernet Sauvignon’ from Montenegro according to their polyphenolic composition. Mitt. Klosterneubg. 2014, 64, 9–19. [Google Scholar]
- Pajović-Šćepanović, R.; Wendelin, S.; Eder, R. Phenolic composition and varietal discrimination of Montenegrin red wines (Vitis vinifera var. Vranac, Kratošija, and Cabernet Sauvignon). Eur. Food Res. Technol. 2018, 244, 2243–2254. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Bueno Ottoboni, A.M.M.; Fiorini, A.M.R.; Guiguer, É.L.; Nicolau, C.C.T.; Goulart, R.A.; Flato, U.A.P. Grape juice or wine: Which is the best option? Crit. Rev. Food Sci. Nutr. 2020, 60, 3876–3889. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Munoz, N.; Gomez-Alonso, S.; Garcıa-Romero, E.; Hermosın-Gutierrez, I. Flavonol profiles of vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef]
- Tsanova-Savova, S.; Ribarova, F. Free and Conjugated Myricetin, Quercetin, and Kaempferol in Bulgarian Red Wines. J. Food Compos. Anal. 2002, 15, 639–645. [Google Scholar] [CrossRef]
- Mc Donald, M.S.; Hunhes, M.; Burns, J.; Lean, M.; Matthews, D.; Crozier, A. Survey of the free and conjugated myricetin, and quercetin content of red wines of different geographical origins. J. Agric. Food Chem. 1998, 46, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Boccardi, V.; Tagliafico, L.; Persia, A.; Page, E.; Ottaviani, S.; Cremonini, A.L.; Borgarelli, C.; Pisciotta, L.; Mecocci, P.; Nencioni, A.; et al. The Potential Effects of Red Wine and Its Components on Neurocognitive Disorders: A Narrative Review. Nutrients 2024, 16, 3431. [Google Scholar] [CrossRef]
No | Wine | Species and Cultivar and Origin and Crossing Parents | Vintage |
---|---|---|---|
1. | ‘Shiroka Melnik’ | Vitis vinifera L., 1963, Melnik, Bulgaria (crossing Shiroka Melnishka × Valdiguié) | 2019 |
2. | ‘Melnik 55’ | Vitis vinifera L., 1963, Melnik, Bulgaria (crossing Shiroka Melnishka × Valdiguié) | 2019 |
3. | ‘Melnik 82’ | Vitis vinifera L., 1963, Melnik, Bulgaria (crossing Shiroka Melnishka × Valdiguié) | 2019 |
4. | ‘Melnik Jubilee 1300’ | Vitis vinifera L., 1963, Melnik, Bulgaria (crossing Shiroka Melnishka × Valdiguié) | 2019 |
5. | ‘Ruen’ | Vitis vinifera L. 1951, Pleven, Bulgaria (crossing Melnik × Cabernet Sauvignon) | 2019 |
6. | ‘Cabernet Sauvignon’ | Vitis vinifera L., France | 2022 |
7. | ‘Cabernet Sauvignon’ | Vitis vinifera L., France | 2021 |
8. | ‘Merlot’ | Vitis vinifera L., France | 2019 |
9. | ‘Evita’ | Vitis vinifera L. interspecies, 1991, Belgrade, Serbia (crossing Clinton (V. labrusca × V. riparia) × Black hambourg × Prokupac) | 2021 |
10. | ‘Evita’ | Vitis vinifera L. interspecies, 1991, Belgrade, Serbia (crossing Clinton (V. labrusca × V. riparia) × Black hambourg × Prokupac) | 2019 |
11. | ‘Prokupac’ | Vitis vinifera L., autochthonous cultivar, Serbia | 2021 |
12. | ‘Prokupac’ | Vitis vinifera L., autochthonous cultivar, Serbia | 2019 |
13. | ‘Blaufraenkisch’ | Vitis vinifera L., Slovenia (crossing Zimmettraube Blau × Heunisch Weiss) | 2019 |
14. | ‘Seibel’ | Hybrid, France | 2022 |
Compound | Calibration Curve | (R2) | Range (mg/L) | LOD * (mg/L) | LOQ ** (mg/L) | A (nm) |
---|---|---|---|---|---|---|
Caffeic acid | y = 33.621 x + 0.43 | 0.9998 | 0.50–20.00 | 0.08 | 0.26 | 320 |
p-Coumaric acid | y = 32.964 x − 0.19 | 0.9997 | 0.50–20.00 | 0.07 | 0.23 | 320 |
Ferulic acid | y = 18.346 x + 0.38 | 0.9998 | 0.50–20.00 | 0.08 | 0.26 | 320 |
Quertcetin-3-O-glucoside | y = 5.224 x − 0.62 | 0.9995 | 0.10–20.00 | 0.03 | 0.10 | 360 |
Myricetin | y = 8.358 x + 0.78 | 0.9998 | 0.10–20.00 | 0.03 | 0.10 | 360 |
Quercetin | y = 10.336 x − 0.98 | 0.9996 | 0.10–20.00 | 0.03 | 0.10 | 360 |
Kampferol | y = 13.636 x + 1.05 | 0.9999 | 0.10–20.00 | 0.04 | 0.13 | 360 |
Cyanidin-3-O-glucoside | y = 5.725 x + 0.20 | 0.9998 | 0.50–20.00 | 0.02 | 0.07 | 520 |
Delphinidin-3-O-glucoside | y = 3.628 x − 0.18 | 0.9997 | 0.50–20.00 | 0.03 | 0.10 | 520 |
Peonidin-3-O-glucoside | y = 4.080 x + 0.62 | 0.9996 | 0.50–20.00 | 0.02 | 0.07 | 520 |
Malvidin-3-O-glucoside | y = 5.022 x + 0.55 | 0.9998 | 2.00–50.00 | 0.11 | 0.36 | 520 |
Wine | Vintage | TPC (mg GAE/L) | TFC (mg CAE/L) | TFC/TPC |
---|---|---|---|---|
‘Shiroka Melnik’ | 2019 | 2961 ± 4 ab | 1970 ± 34 a | 0.67 |
‘Melnik 55’ | 2019 | 2624 ± 52 b | 1782 ± 44 a | 0.68 |
‘Melnik 82’ | 2019 | 3434 ± 52 a | 2139 ± 31 a | 0.62 |
‘Melnik Jub. 1300’ | 2019 | 2780 ± 37 b | 1799 ± 8 a | 0.65 |
‘Ruen’ | 2019 | 4115 ± 68 a | 2890 ± 34 a | 0.70 |
‘Cabernet Sauvignon’ | 2022 | 2043 ± 58 c | 870 ± 2 c | 0.43 |
‘Cabernet Sauvignon’ | 2021 | 1735 ± 546 c | 767 ± 2 c | 0.44 |
‘Merlot’ | 2019 | 2307 ± 48 c | 1340 ± 12 b | 0.58 |
‘Evita’ | 2021 | 1814 ± 15 c | 656 ± 10 c | 0.36 |
‘Evita’ | 2019 | 3215 ± 22 a | 1210 ± 10 c | 0.38 |
‘Prokupac’ | 2021 | 1016 ± 39 c | 438 ± 4 c | 0.43 |
‘Prokupac’ | 2019 | 1089 ± 15 c | 532 ± 3 c | 0.49 |
‘Blaufraenkisch’ | 2019 | 1477 ± 22 c | 602 ± 9 c | 0.41 |
‘Seibel’ | 2022 | 1286 ± 7 c | 642 ± 8 c | 0.50 |
Wine | Vintage | Total Anthocyanins (mg/L) | Monomeric Antocyanins (mg/L) | PPC (%) |
---|---|---|---|---|
‘Shiroka Melnik’ | 2019 | 75.0 ± 1.5 c | 30.3 ± 1.5 c | 54.6 |
‘Melnik 55’ | 2019 | 122.4 ± 2.1 b | 66.8 ± 1.6 c | 42.4 |
‘Melnik 82’ | 2019 | 175.5 ± 2.3 a | 83.4 ± 2.1 b | 48.2 |
‘Melnik Jubilee 1300’ | 2019 | 140.8 ± 2.0 ab | 57.8 ± 0.8 b | 58.9 |
‘Ruen’ | 2019 | 144.8 ± 1.7 ab | 61.4 ± 3.4 c | 60.6 |
‘Cabernet Sauvignon’ | 2022 | 239.4 ± 2.8 a | 178.5 ± 2.2 a | 26.8 |
‘Cabernet Sauvignon’ | 2021 | 137.7 ± 1.2 b | 42.1 ± 0.6 c | 65.5 |
‘Merlot’ | 2019 | 167.3 ± 1.1 a | 103.9 ± 2.3 a | 36.2 |
‘Evita’ | 2021 | 142.5 ± 1.0 b | 76.9 ± 0.6 b | 40.9 |
‘Evita’ | 2019 | 170.9 ± 1.0 b | 72.8 ± 0.9 b | 59.3 |
‘Prokupac’ | 2021 | 61.3 ± 0.7 c | 37.7 ± 0.4 c | 38.8 |
‘Prokupac’ | 2019 | 71.2 ± 0.7 c | 38.6 ± 0.4 c | 38.6 |
‘Blaufraenkisch’ | 2019 | 98.6 ± 1.0 c | 36.8 ± 0.5 c | 26.2 |
‘Seibel’ | 2022 | 286.4 ± 3.0 a | 207.4 ± 2.0 a | 18.8 |
Wine | Vintage | DPPH mmol TE/L | FRAP mmol Fe (II)/L | CPRAC mmol TE/L | TRP mmol TE/L |
---|---|---|---|---|---|
‘Shiroka Melnik’ | 2019 | 7.0 ± 0.3 b | 26.8 ± 0.5 c | 35.3 ± 0.2 a | 12.7 ± 0.3 c |
‘Melnik 55’ | 2019 | 5.8 ± 0.3 b | 22.2 ± 0.5 c | 30.1 ± 0.32 a | 11.6 ± 0.3 c |
‘Melnik 82’ | 2019 | 8.4 ± 0.2 c | 27.6 ± 0.4c | 42.3 ± 0.23 a | 15.0 ± 0.6 c |
‘Melnik Jubilee 1300’ | 2019 | 7.5 ± 0.2 b | 23.8 ± 0.108 c | 32.7 ± 0.1a | 12.6 ± 0.2 c |
‘Ruen’ | 2019 | 8.8 ± 0.1 c | 32.7 ± 0.1 c | 50.7 ± 0.11 a | 19.4 ± 0.2 c |
‘Cabernet Sauvignon’ | 2022 | 6.8 ± 0.1 b | 17.7 ± 0.4 b | 25.8 ± 0.3 a | 10.5 ± 0.2 c |
‘Cabernet Sauvignon’ | 2021 | 5.0 ± 0.1 a,b | 15.9 ± 0.4 b | 23.4 ± 0.1 a | 8.3 ± 0.2 a |
‘Merlot’ | 2019 | 5.2 ± 0.1 b | 20.5 ± 0.4 c | 23.8 ± 0.1 a | 10.7 ± 0.2 c |
‘Evita’ | 2021 | 5.1 ± 0.1 b | 15.2 ± 0.1 b | 18.4 ± 0.2 b | 8.0 ± 0.1 a |
‘Evita’ | 2019 | 7.8 ± 0.2 c | 25.8 ± 0.9 c | 30.0 ± 0.1 a | 13.0 ± 0.1c |
‘Prokupac’ | 2021 | 3.4 ± 0.3 a | 8.4 ± 0.3 a | 13.4 ± 0.3 b | 5.6 ± 0.2 a |
‘Prokupac’ | 2019 | 4.5 ± 0.2 a | 9.2 ± 0.4 a | 15.0 ± 0.1 b | 6.0 ± 0.1 a |
‘Blaufraenkisch’ | 2019 | 5.5 ± 0.2 b | 8.5 ± 0.20 a | 13.9 ± 0.2 b | 5.8 ± 0.33 a |
‘Seibel’ | 2022 | 5.7 ± 0.2 b | 9.2 ± 0.33 a | 14.7 ± 0.2 b | 5.8 ± 0.4 a |
DPPH | FRAP | CUPRAC | TRP | |
---|---|---|---|---|
TPC | 0.9081 | 0.9818 | 0.9640 | 0.9817 |
TFC | 0.8123 | 0.9255 | 0.9620 | 0.9480 |
TA | 0.3301 | 0.0690 | 0.0667 | 0.0987 |
MA | 0.1109 | −0.1291 | −0.1248 | −0.0898 |
DPPH | FRAP | CUPRAC | TRP | |
---|---|---|---|---|
DPPH | 1 | |||
FRAP | 0.8576 | 1 | ||
CUPRAC | 0.8800 | 0.9610 | 1 | |
TRP | 0.8826 | 0.9753 | 0.9844 | 1 |
Anthocyanin/Wines | ‘Shiroka Melnik’ | ‘Melnik 55’ | ‘Melnik 82’ | ‘Melnik Jubilee 1300’ | ‘Ruen’ | p Level |
---|---|---|---|---|---|---|
Delphinidin-3-O-glucoside | 2.42 ± 0.03 b | 6.09 ± 0.04 a | 4.68 ± 0.02 ab | 4.14 ± 0.03 b | 2.81 ± 0.01 b | *** |
Cyanidin-3-O-glucoside | 1.75 ± 0.02 b | 0.87 ± 0.01 b | 0.56 ± 0.17 b | 3.52 ± 0.02 a | 2.53 ± 0.02 ab | *** |
Petunidin-3-O-glucoside | 3.20 ± 0.03 b | 8.54 ± 0.03 a | 2.21 ± 0.02 b | 6.05 ± 0.03 ab | 1.94 ± 0.02 b | *** |
Peonidin-3-O-glucoside | 1.22 ± 0.01 c | 3.64 ± 0.02 b | 8.09 ± 0.03 a | 1.52 ± 0.02 c | 1.34 ± 0.02 c | *** |
Malvidin-3-O-glucoside | 15.67 ± 0.13 b | 46.57 ± 0.20 a | 46.52 ± 0.22 a | 24.62 ± 0.18 b | 26.92 ± 0.26 b | *** |
Σ(monoglucoside anthocyanins) | 23.99 | 65.72 | 62.06 | 39.87 | 35.56 | |
Delphinidin-3-O-acetylglucoside | 0.20 ± 0.01 a | 0.22 ± 0.01 a | - | 0.19 ± 0.01 b | 0.83 ± 0.01 a | *** |
Cyanidin-3-O-acetylglucoside | 0.39 ± 0.01 b | 0.65 ± 0.02 b | - | 0.81 ± 0.03 ab | 1.22 ± 0.02 a | *** |
Petunidin-3-O-acetylglucoside | 0.48 ± 0.02 c | 0.73 ± 0.02 | 1.72 ± 0.02 a | 0.78 ± 0.01 b | 0.74 ± 0.01 b | *** |
Peonidin-3-O-acetylglucoside | 0.56 ± 0.01 c | 0.88 ± 0.02 b | 0.98 ± 0.02 a | 0.86 ± 0.01 b | 1.22 ± 0.02 b | *** |
Malvidin-3-O-acetylglucoside | 1.59 ± 0.02 b | 8.72 ± 0.03 ab | 8.91 ± 0.02 ab | 1.23 ± 0.02 b | 10.29 ± 0.04 a | *** |
Σ(acetylated anthocyanins) | 3.23 | 11.20 | 11.60 | 3.88 | 14.30 | |
Delphinidin-3-O-p-coum-glucoside | - | - | - | - | - | |
Cyanidin-3-O-p-coum-glucoside | - | - | - | - | - | |
Petunidin-3-O-p-coum-glucoside | - | - | - | - | 0.44 ± 0.02 | |
Peonidin-3-O-p-coum-glucoside | 0.49 ± 0.01 b | 1.72 ± 0.02 a | 1.35 ± 0.01 b | 0.61 ± 0.01 b | 0.32 ± 0.02 c | *** |
Malvidin-3-O-p-coum-glucoside | 0.60 ± 0.02 c | 1.79 ± 0.02 b | 1.78 ± 0.01 b | 1.78 ± 0.02 b | 2.99 ± 0.02 a | *** |
Σ(coumaroylated anthocyanins) | 1.09 | 3.507 | 3.13 | 2.39 | 3.74 | |
Σ(acylated anthocyanins) | 4.32 | 14.71 | 14.73 | 6.27 | 18.04 | |
Vitisin A | 2.55 ± 0.02 c | 3.77 ± 0.03 b | 3.76 ± 0.02 b | 3.83 ± 0.02 a | 3.28 ± 0.03 b | *** |
Σ(anthocyanins) | 30.86 | 84.20 | 80.56 | 49.98 | 56.89 | |
ΣMv/ΣPn | 7.84 | 9.16 | 5.49 | 9.25 | 13.90 | |
ΣDe/ΣPn | 1.15 | 1.01 | 0.16 | 1.46 | 1.26 | |
ΣPt/ΣPn | 1.62 | 1.49 | 0.38 | 2.29 | 1.08 | |
Σgluc/Σacet | 7.43 | 5.87 | 5.35 | 10.28 | 2.48 | |
Σgluc/Σcoum | 22.07 | 18.74 | 19.82 | 16.67 | 9.49 | |
Σcoum/Σacet | 0.34 | 0.31 | 0.27 | 0.62 | 0.26 |
Anthocyanin/Wines | ‘C. Sauvignon’ 2022 | ‘C. Sauvignon’ 2021 | ‘Merlot’ 2019 | ‘Evita’ 2021 | ‘Evita’ 2019 | ‘Prokupac’ 2021 | ‘Prokupac’ 2019 | ‘Blaufraenkisch’ 2019 | ‘Seibel’ 2022 | p Level |
---|---|---|---|---|---|---|---|---|---|---|
Delphinidin-3-O-glucoside | 3.58 ± 0.03 b | 1.46 ± 0.02 c | 4.18 ± 0.02 b | 2.63 ± 0.02 b | 1.97 ± 0.02 c | 0.81 ± 0.01 c | 0.61 ± 0.02 c | 1.26 ± 0.03 c | 8.36 ± 0.05 a | *** |
Cyanidin-3-O-glucoside | 2.13 ± 0.02 a | 0.62 ± 0.01 b | 0.74 ± 0.01 b | - | - | - | - | 0.62 ± 0.01 b | - | *** |
Petunidin-3-O-glucoside | 5.36 ± 0.04 a | 1.59 ± 0.02 b | 4.46 ± 0.03 b | - | - | 0.86 ± 0.01 b | 0.78 ± 0.01 c | 1.55 ± 0.01 b | - | *** |
Peonidin-3-O-glucoside | 7.52 ± 0.04 b | 2.52 ± 0.02 b | 5.64 ± 0.02 b | 3.93 ± 0.02 b | 3.78 ± 0.04 b | 1.45 ± 0.01 bc | 1.42 ± 0.02 | 4.45 ± 0.03 | 11.24 ± 0.09 a | *** |
Malvidin-3-O-glucoside | 123.72 ± 0.56 ab | 26.15 ± 0.11 b | 46.48 ± 0.18 b | 39.73 ± 0.22 b | 41.22 ± 0.30 b | 26.08 ± 0.12 b | 27.60 ± 0.14 b | 21.06 ± 0.28c | 145.62 ± 0.56 a | *** |
Σ(monoglucosides anthocyanins) | 142.31 | 32.34 | 61.51 | 46.28 | 46.96 | 29.20 | 30.42 | 28.94 | 165.21 | |
Delphinidin-3-O-acetylglucoside | 0.52 ± 0.01 b | 0.50 ± 0.01 b | 2.72 ± 0.01 a | 1.50 ± 0.01 b | 1.42 ± 0.01 b | 0.28 ± 0.01 bc | 0.22 ± 0.01 c | 0.23 ± 0.01 c | 1.30 ± 0.02 b | *** |
Cyanidin-3-O-acetylglucoside | - | - | - | - | - | - | - | - | - | |
Petunidin-3-O-acetylglucoside | 2.16 ± 0.03 a | 0.56 ± 0.01 b | 1.92 ± 0.02 b | - | - | 0.11 ± 0.01 b | 0.12 ± 0.01 b | 0.11 ± 0.01 b | - | *** |
Peonidin-3-O-acetylglucoside | 3.35 ± 0.02 b | 0.23 ± 0.01 b | 2.85 ± 0.02 b | 1.23 ± 0.01 b | 1.05 ± 0.02 b | 0.32 ± 0.01 b | 0.23 ± 0.01 b | 0.98 ± 0.01 b | 5.96 ± 0.03 a | *** |
Malvidin-3-O-acetylglucoside | 12.35 ± 0.11 b | 2.53 ± 0.03 c | 16.70 ± 0.14 b | 10.09 ± 0.17 b | 11.38 ± 0.12 b | 3.85 ± 0.02 b | 3.91 ± 0.02 b | 2.59 ± 0.02 b | 14.32 ± 0.11 b | *** |
Σ(acetylated anthocyanins) | 18.38 | 3.82 | 24.19 | 12.82 | 13.85 | 4.56 | 4.48 | 3.92 | 21.59 | |
Delphinidin-3-O-p-coumaroylglucoside | - | - | 0.90 ± 0.01 b | 1.04 ± 0.01 b | 0.55 ± 0.01 b | 0.16 ± 0.01 b | 0.11 ± 0.01 b | - | 1.59 ± 0.04 a | *** |
Cyanidin-3-O-p-coumaroylglucoside | - | - | - | - | - | - | - | - | - | |
Petunidin-3-O-p-coumaroylglucoside | 1.56 ± 0.02 a | 0.23 ± 0.01 b | 1.48 ± 0.01 b | - | - | 0.12 ± 0.01 c | - | 0.23 ± 0.01 c | - | *** |
Peonidin-3-O-p-coumaroylglucoside | 1.91 ± 0.01 b | 0.32 ± 0.01 b | 1.93 ± 0.01 b | 0.65 ± 0.01 b | 0.94 ± 0.01 bc | 0.24 ± 0.01 b | 0.12 ± 0.01 c | 0.24 ± 0.01 b | 3.19 ± 0.03 b | *** |
Malvidin-3-O-p-coumaroylglucoside | 2.65 ± 0.02 b | 1.02 ± 0.01 b | 6.96 ± 0.03 a | 6.00 ± 0.04 b | 5.06 ± 0.03 b | 1.74 ± 0.01 b | 1.71 ± 0.02 b | 0.90 ± 0.01 b | 10.05 ± 0.04 a | *** |
Σ(coumaroylated anthocyanins) | 6.82 | 1.57 | 11.27 | 7.70 | 6.56 | 2.26 | 1.94 | 1.37 | 14.82 | |
Σ(acylated anthocyanins) | 35.46 | 20.51 | 20.41 | 36.41 | ||||||
Vitisin A | 2.32 ± 0.02 b | 1.32 ± 0.01 b | 3.55 ± 0.02 a | 1.94 ± 0.01 b | 2.92 ± 0.03 b | 0.85 ± 0.01 b | 0.79 ± 0.01 c | 1.65 ± 0.01 b | 2.32 ± 0.02 b | *** |
Σ(anthocyanins) | 169.13 | 39.05 | 100.52 | 68.74 | 70.30 | 36.88 | 37.62 | 35.87 | 203.94 | |
ΣMv/ΣPn | 10.86 | 9.68 | 6.72 | 9.60 | 9.99 | 15.73 | 18.76 | 4.33 | 8.34 | |
ΣDe/ΣPn | 0.32 | 0.63 | 0.75 | 0.89 | 0.68 | 0.62 | 0.53 | 0.26 | 0.55 | |
ΣPt/ΣPn | 0.71 | 0.78 | 0.75 | - | - | 0.54 | 0.48 | 0.33 | - | |
Σgluc/Σacet | 7.74 | 8.46 | 2.54 | 1.61 | 3.39 | 6.37 | 6.79 | 7.39 | 7.65 | |
Σgluc/Σcoum | 20.88 | 20.62 | 5.46 | 6.01 | 7.16 | 12.90 | 15.69 | 21.14 | 11.14 | |
Σcoum/Σacet | 0.37 | 0.41 | 0.46 | 0.60 | 0.47 | 0.49 | 0.43 | 0.35 | 0.67 |
Compounds/Wines | ‘Shiroka Melnik’ | ‘Melnik 55’ | ‘Melnik 82’ | ‘Melnik Jubilee 1300’ | ‘Ruen’ | p Level |
---|---|---|---|---|---|---|
trans-Caftaric acid | 106.25 ± 0.66 a | 73.00 ± 0.54 b | 25.49 ± 0.32 c | 81.96 ± 0.67 b | 63.52 ± 0.38 b | *** |
trans-Coutaric acid | 12.28 ± 0.02 b | 9.14 ± 0.04 b | 2.21 ± 0.01 b | 13.70 ± 0.12 ab | 14.31 ± 0.16 a | *** |
Caffeic acid | 22.41 ± 0.13 a | 7.14 ± 0.03 b | 6.25 ± 0.04 b | 8.18 ± 0.10 b | 5.62 ± 0.06 b | *** |
trans-Fertaric acid | 4.51 ± 0.05 c | 5.92 ± 0.01 b | - | 3.29 ± 0.03 b | 10.48 ± 0.11 a | *** |
p-Coumaric acid | 4.10 ± 0.05 b | 2.72 ± 0.01 b | 2.11 ± 0.01 b | 2.51 ± 0.01 b | 9.13 ± 0.09 a | *** |
Ferulic acid | 6.60 ± 0.06 a | 1.77 ± 0.10 c | 6.60 ± 0.01 a | - | 3.65 ± 0.05 b | *** |
t-coutaric/t-caftaric | 0.12 | 0.12 | 0.09 | 0.17 | 0.22 | |
Total hydroxycinnamic acid | 156.15 | 99.67 | 42.66 | 109.63 | 106.71 | |
Myricetin-glucoside | 0.57 ± 0.01 c | 5.32 ± 0.03 b | 10.06 ± 0.11 a | 5.75 ± 0.02 b | 4.87 ± 0.02 b | *** |
Myricetin | 6.71 ± 0.03 b | 5.51 ± 0.03 b | 11.38 ± 0.12 b | 7.19 ± 0.10 b | 7.20 ± 0.02 b | *** |
Quercetin-glucuronide | 4.35 ± 0.30 c | 20.20 ± 0.19 b | 23.42 ± 0.20 a | 16.64 ± 0.17 b | 14.34 ± 0.15 b | *** |
Quercetin-glucoside | 5.80 ± 0.02 a | 4.00 ± 0.02 b | 4.25 ± 0.02 b | 4.62 ± 0.03 b | 3.26 ± 0.01 c | *** |
Quercetin | 3.73 ± 0.01 b | 8.52 ± 0.03 bc | 2.84 ± 0.01 c | 17.74 ± 0.11 b | 21.09 ± 0.20 c | *** |
Kampferol-glucoside | 0.86 ± 0.01 b | 1.49 ± 0.02 a | 0.88 ± 0.01 b | 1.10 ± 0.01 b | 0.91 ± 0.02 b | *** |
Kampferol | 3.67 ± 0.02 a | 0.81 ± 0.01 b | 1.54 ± 0.01 b | 1.36 ± 0.01 b | 0.92 ± 0.01 b | *** |
Total aglycon type flavonols | ||||||
Myricetin-type | 7.27 | 10.83 | 21.43 | 12.94 | 12.07 | |
Quercetin-type | 13.89 | 32.72 | 30.52 | 39.00 | 38.69 | |
Kampferol-type | 4.54 | 2.30 | 2.42 | 2.46 | 1.84 | |
Total flavonols | 25.70 | 45.86 | 54.37 | 54.40 | 52.60 |
Compounds/Wines | ‘C.Sauvignon’ 2021 | ‘C.Sauvignon’ 2022 | ‘Merlot’ 2019 | ‘Evita’ 2021 | ‘Evita’ 2019 | ‘Prokupac’ 2021 | ‘Prokupac’ 2019 | ‘Blaufraenkisch’ 2019 | ‘Seibel’ 2022 | p Level |
---|---|---|---|---|---|---|---|---|---|---|
trans-Caftaric acid | 52.32 ± 0.48 b | 60.54 ± 0.36 a | 60.32 ± 0.40 a | 22.08 ± 0.22 b | 26.26 ± 0.22 b | 28.92 ± 0.02 b | 32.24 ± 0.03 b | 51.13 ± 0.04 b | 34.14 ± 0.03 b | *** |
trans-Coutaric acid | 6.35 ± 0.06 b | 8.85 ± 0.10 b | 9.47 ± 0.01 a | 4.44 ± 0.03 b | 4.24 ± 0.02 b | 2.32 ± 0.02 c | 5.24 ± 0.03 b | 3.67 ± 0.02 b | 6.98 ± 0.02 b | *** |
Caffeic acid | 7.12 ± 0.09 b | 6.72 ± 0.07 b | 9.14 ± 0.10 b | 3.71 ± 0.02 b | 4.19 ± 0.02 b | 2.15 ± 0.02 c | 3.52 ± 0.02 b | 3.57 ± 0.02 b | 2.86 ± 0.02 b | *** |
trans-Fertaric acid | 6.18 ± 0.05 a | 3.62 ± 0.04 b | 3.62 ± 0.02 a | 1.80 ± 0.02 b | 5.93 ± 0.06 ab | 0.89 ± 0.01 c | 1.82 ± 0.02 b | 3.18 ± 0.02 b | 1.94 ± 0.01 b | *** |
p-Coumaric acid | 3.85 ± 0.03 b | 4.32 ± 0.02 b | 3.30 ± 0.01 bc | 6.77 ± 0.03 a | 6.54 ± 0.07 b | 2.94 ± 0.02 b | 2.32 ± 0.02 b | 3.55 ± 0.02 b | 2.78 ± 0.02 b | *** |
Ferulic acid | 4.82 ± 0.03 b | 5.72 ± 0.03 b | 2.32 ± 0.01 b | 5.98 ± 0.04 a | 4.32 ± 0.04 bc | 3.28 ± 0.01 b | 2.54 ± 0.02 b | 3.82 ± 0.02 b | 5.20 ± 0.02 b | *** |
t-coutaric/t-caftaric | 0.12 | 0.15 | 0.16 | 0.20 | 0.16 | 0.08 | 0.16 | 0.07 | 0.20 | |
Total hydroxycinnamic acids | 80.65 | 89.75 | 88.17 | 44.68 | 51.49 | 40.50 | 47.67 | 68.91 | 53.90 | |
Myricetin-glucoside | 13.23 ± 0.12 b | 15.96 ± 0.13 b | 8.53 ± 0.02 b | 5.69 ± 0.01 b | 2.64 ± 0.01 b | 0.63 ± 0.01 c | 0.99 ± 0.01 b | 0.98 ± 0.01 b | 18.01 ± 0.19 a | *** |
Myricetin | 3.24 ± 0.01 b | 4.52 ± 0.01 b | 4.06 ± 0.01 b | 9.74 ± 0.02 a | 5.03 ± 0.01 b | 2.13 ± 0.02 b | 2.06 ± 0.02 b | 1.97 ± 0.01 c | 2.15 ± 0.01 b | *** |
Quercetin-glucuronide | 12.23 ± 0.14 b | 16.06 ± 0.15 a | 14.22 ± 0.14 b | 3.52 ± 0.01 b | 7.51 ± 0.02 b | 5.74 ± 0.06 b | 6.34 ± 0.04 b | 2.95 ± 0.02 b | 8.26 ± 0.06 b | *** |
Quercetin-glucoside | 2.65 ± 0.01 b | 1.99 ± 0.01 b | 5.04 ± 0.01 b | 12.13 ± 0.12 ab | 12.29 ± 0.13 ab | 12.47 ± 0.1 ab | 14.77 ± 0.12 a | 2.71 ± 0.01 c | 11.32 ± 0.12 b | *** |
Quercetin | 5.02 ± 0.02 b | 4.56 ± 0.02 b | 1.23 ± 0.01 b | 9.29 ± 0.03 a | 5.50 ± 0.02 b | 2.06 ± 0.02 c | 2.46 ± 0.01 b | 5.15 ± 0.04 b | 4.04 ± 0.02 b | *** |
Kampferol-glucoside | 1.06 ± 0.01 b | 0.99 ± 0.01 c | 1.53 ± 0.01 b | 2.22 ± 0.01 b | 4.40 ± 0.02 a | 1.99 ± 0.01 b | 2.58 ± 0.02 b | 0.73 ± 0.01 b | 1.37 ± 0.01 b | *** |
Kampferol | 0.23 ± 0.01 c | 0.35 ± 0.01 b | 0.43 ± 0.01 b | 1.47 ± 0.01 b | 1.69 ± 0.01 b | 2.49 ± 0.06 b | 3.02 ± 0.01 a | 1.26 ± 0.01 b | 1.54 ± 0.01 b | *** |
Total aglycon type flavonols | ||||||||||
Myricetin-type | 16.47 | 20.49 | 12.59 | 15.43 | 7.67 | 2.76 | 3.04 | 2.95 | 20.16 | |
Quercetin-type | 19.91 | 22.62 | 20.50 | 24.94 | 25.30 | 20.28 | 23.57 | 10.82 | 23.61 | |
Kampferol-type | 1.29 | 1.34 | 1.96 | 3.68 | 6.09 | 4.48 | 5.60 | 1.99 | 2.90 | |
Total flavonols | 37.67 | 44.44 | 35.06 | 44.05 | 39.06 | 27.52 | 32.21 | 15.76 | 46.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pržić, Z.; Marković, N.; Tasić, A.; Nikolić, J.; Stankov-Jovanović, V.; Mitić, M. Comparison of Identification and Determination of Phenolic Compounds and Antioxidant Potential of Selected Red Wines. Horticulturae 2025, 11, 231. https://doi.org/10.3390/horticulturae11030231
Pržić Z, Marković N, Tasić A, Nikolić J, Stankov-Jovanović V, Mitić M. Comparison of Identification and Determination of Phenolic Compounds and Antioxidant Potential of Selected Red Wines. Horticulturae. 2025; 11(3):231. https://doi.org/10.3390/horticulturae11030231
Chicago/Turabian StylePržić, Zoran, Nebojša Marković, Aleksandra Tasić, Jelena Nikolić, Vesna Stankov-Jovanović, and Milan Mitić. 2025. "Comparison of Identification and Determination of Phenolic Compounds and Antioxidant Potential of Selected Red Wines" Horticulturae 11, no. 3: 231. https://doi.org/10.3390/horticulturae11030231
APA StylePržić, Z., Marković, N., Tasić, A., Nikolić, J., Stankov-Jovanović, V., & Mitić, M. (2025). Comparison of Identification and Determination of Phenolic Compounds and Antioxidant Potential of Selected Red Wines. Horticulturae, 11(3), 231. https://doi.org/10.3390/horticulturae11030231