Biochemical and Morphological Traits of Wild Myrtle Populations for Horticultural Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Fruit Collection
2.2. Chemicals and Reagents
2.3. Measurement of Morphological Characteristics
2.3.1. Weight of Flesh, Seeds, and Fruit
2.3.2. Length and Diameter of Fruit and Seeds
2.3.3. Number of Seeds
2.4. Measurement of Biochemical Characteristics
2.4.1. Total Phenol Content (TPC)
2.4.2. Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Capacity Assay
2.4.3. Total Anthocyanin Content
2.4.4. Total Soluble Solids (TSS)
2.4.5. Titratable Acidity (TA)
2.4.6. Total Protein Content
2.5. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of Morphological Characteristics of Myrtle Fruit from Different Populations
3.2. Evaluation of Biochemical Characteristics of Myrtle Fruit from Different Populations in Fars Province
3.3. Correlation Analysis Between Traits
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aslan, D.; Alan, B.; Yay, N.Ö.; Karaoğlu, S.Y.; Ertaş, B.; Şen, A.; Ceylan, C.; Akbay, T.T.; Ercan, F.; Atasoy, B.M. Neuroprotective effect of Myrtus communis against ionizing radiation-induced brain injury: Insights from histopathological and biochemical analysis in rats. J. Radiat. Res. Appl. Sci. 2024, 17, 101082. [Google Scholar] [CrossRef]
- Medda, S.; Fadda, A.; Dessena, L.; Mulas, M. Quantifying total phenols, tannins, anthocyanins content in Myrtus communis L. and antioxidant activity evaluation in function of plant development stages and altitude of origin site. Agronomy 2021, 11, 1059. [Google Scholar] [CrossRef]
- Zilkah, S.; Goldschdmidt, E.E. Myrtle (Myrtus communis L.)—A native Mediterranean and cultured crop species. In Medicinal and Aromatic Plants of the Middle-East; Springer: Dordrecht, The Netherlands, 2014; pp. 253–267. [Google Scholar]
- Giampieri, F.; Cianciosi, D.; Forbes-Hernández, T.Y. Myrtle (Myrtus communis L.) berries, seeds, leaves, and essential oils: New undiscovered sources of natural compounds with promising health benefits. Food Front. 2020, 1, 276–295. [Google Scholar] [CrossRef]
- Gorjian, H.; Khaligh, N.G. Myrtle: A versatile medicinal plant. Nutrire 2023, 48, 10. [Google Scholar] [CrossRef] [PubMed]
- Sumbul, S.; Ahmad, M.A.; Asif, M.; Akhtar, M. Myrtus communis Linn.—A review. Indian J. Nat. Prod. Resour. 2011, 2, 395–402. [Google Scholar]
- Cruciani, S.; Garroni, G.; Ginesu, G.C.; Fadda, A.; Ventura, C.; Maioli, M. Unravelling cellular mechanisms of stem cell senescence: An aid from natural bioactive molecules. Biology 2020, 9, 57. [Google Scholar] [CrossRef]
- AlJuhaimi, F.; Kulluk, D.A.; Ahmed IA, M.; Özcan, M.M.; Karrar, E. Investigation of accumulation of element contents in some wild and cultivated dried fruits. Biol. Trace Elem. Res. 2024, 203, 544–548. [Google Scholar] [CrossRef]
- Medda, S.; Fadda, A.; Mulas, M. Climate variables of the sites of origin and genotype influence on phenolic compounds accumulation in cultivars of Myrtus communis L. Horticulturae 2022, 8, 928. [Google Scholar] [CrossRef]
- Çakmak, M.; Bakar, B.; Özer, D.; Geckil, H.; Karatas, F.; Saydam, S. Investigation of some biochemical parameters of wild and cultured Myrtus communis L. fruits subjected to different conservation methods. J. Food Meas. Charact. 2021, 15, 983–993. [Google Scholar] [CrossRef]
- Tuberoso CI, G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Dessì, M.A. Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chem. 2010, 123, 1242–1251. [Google Scholar] [CrossRef]
- Wannes, W.A.; Marzouk, B. Characterization of myrtle seed (Myrtus communis var. baetica) as a source of lipids, phenolics, and antioxidant activities. J. Food Drug Anal. 2016, 24, 316–323. [Google Scholar] [PubMed]
- Messaoud, C.; Boussaid, M. Myrtus communis berry color morphs: A comparative analysis of essential oils, fatty acids, phenolic compounds, and antioxidant activities. Chem. Biodivers. 2011, 8, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Shahbazian, D.; Karami, A.; Raouf Fard, F.; Eshghi, S.; Maggi, F. Essential Oil Variability of Superior Myrtle (Myrtus communis L.) Accessions Grown Under the Same Conditions. Plants 2022, 11, 3156. [Google Scholar] [CrossRef] [PubMed]
- Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 2000, 14, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.B.; Niakousari, M.; Saharkhiz, M.J. Antioxidant activity of Satureja bachtiarica Bunge essential oil in rapeseed oil irradiated with UV rays. Eur. J. Lipid Sci. Technol. 2011, 113, 1132–1137. [Google Scholar] [CrossRef]
- Maatallah, S.; Guizani, M.; Lahbib, K.; Montevecchi, G.; Santunione, G.; Hessini, K.; Dabbou, S. Physiological traits, fruit morphology and biochemical performance of six old fig genotypes grown in warm climates “Gafsa oasis” in Tunisia. J. Agric. Food Res. 2024, 17, 101253. [Google Scholar] [CrossRef]
- Fadda, A.; Mulas, M. Chemical changes during myrtle (Myrtus communis L.) fruit development and ripening. Sci. Hortic. 2010, 125, 477–485. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Franco, A.M.; Tocci, N.; Guella, G.; Dell’Agli, M.; Sangiovanni, E.; Perenzoni, D.; Vrhovsek, U.; Mattivi, F.; Manca, G. Myrtle seeds (Myrtus communis L.) as a rich source of the bioactive ellagitannins oenothein B and eugeniflorin D2. ACS Omega 2019, 4, 15966–15974. [Google Scholar] [CrossRef]
- Wahid, N.; Chkichekh, A.; Bakry, M. Morphological traits and essential oil yield variation of three Myrus communis L. populations: Implication for domestication. Direct Res. J. Agric. Food Sci. 2016, 4, 199–207. [Google Scholar]
- Mulas, M.; Francesconi AH, D.; Perinu, B.; Fadda, A. ‘Barbara’ and ‘Daniela’: Two cultivars for myrtle berries production. Acta Hortic. 2001, 576, 169–175. [Google Scholar] [CrossRef]
- Melito, S.; La Bella, S.; Martinelli, F.; Cammalleri, I.; Tuttolomondo, T.; Leto, C.; Mulas, M. Morphological, chemical, and genetic diversity of wild myrtle (Myrtus communis L.) populations in Sicily. Turk. J. Agric. For. 2016, 40, 249–261. [Google Scholar] [CrossRef]
- Gao, S.; Ren, Y.; Masabni, J.; Zou, F.; Xiong, H.; Zhu, J. Influence of geographical and climatic factors on Quercus variabilis Blume fruit phenotypic diversity. Diversity 2021, 13, 329. [Google Scholar] [CrossRef]
- Anwar, S.; Ahmed, N.; Al Awwad, N.; Ansari, S.Y.; Wagih, M.E. Myrtle (Myrtus communis L.) oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 581–592. [Google Scholar]
- Wannes, W.A.; Mhamdi, B.; Kchouk, M.E.; Marzouk, B. Composition of fruit volatiles and annual changes in the leaf volatiles of Myrtus communis var. baetica in Tunisia. Riv. Ital. Sostanze Grasse 2011, 88, 128–134. [Google Scholar]
- Aidi Wannes, W.; Saidani Tounsi, M.; Marzouk, B. Morphological and chemical characterization of two wild Tunisian myrtle (Myrtus communis L.) populations. Trends Phytochem. Res. 2019, 3, 231–242. [Google Scholar]
- Şan, B.; Yildirim, A.N.; Polat, M.; Yildirim, F. Chemical Compositions of Myrtle (Myrtus communis L.) Genotypes Having Bluish-Black and Yellowish-White Fruits. Erwerbsobstbau 2015, 57, 203–210. [Google Scholar] [CrossRef]
- Zeng, Q.; Dong, G.; Tian, L.; Wu, H.; Ren, Y.; Tamir, G.; Yu, H. High altitude is beneficial for antioxidant components and sweetness accumulation of rabbiteye blueberry. Front. Plant Sci. 2020, 11, 573531. [Google Scholar] [CrossRef]
- Aydın, C.; Özcan, M.M. Determination of nutritional and physical properties of myrtle (Myrtus communis L.) fruits growing wild in Turkey. J. Food Eng. 2007, 79, 453–458. [Google Scholar] [CrossRef]
- Guo, J.; Yuan, Y.; Dou, P.; Yue, T. Multivariate statistical analysis of the polyphenolic constituents in kiwifruit juices to trace fruit varieties and geographical origins. Food Chem. 2017, 232, 552–559. [Google Scholar] [CrossRef]
- Crespo, P.; Bordonaba, J.G.; Terry, L.A.; Carlen, C. Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chem. 2010, 122, 16–24. [Google Scholar] [CrossRef]
- Guerrero-Chavez, G.; Scampicchio, M.; Andreotti, C. Influence of the site altitude on strawberry phenolic composition and quality. Sci. Hortic. 2015, 192, 21–28. [Google Scholar] [CrossRef]
- Akyüz, M.; Güzel, A.; Elmastas, M. Fatty acid composition and antioxidant capacity of Myrtus (Myrtus communis L.). Malays. Appl. Biol. 2019, 48, 101–112. [Google Scholar]
- Pizano, G.S.; Pacheco, C.H.; Salmerón, J.H.; León, R.H. The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review. Span. J. Agric. Res. 2017, 15, 13. [Google Scholar]
- Nirala, V.K.; Srivastava, A.; Chaudhary, M.K.; Srivastava, S. Effect of edaphic factors on phenolic contents in the natural population of Ichnocarpus frutescens (L.) R. Br. collected from Central India and Eastern Ghats. Biochem. Syst. Ecol. 2024, 112, 104759. [Google Scholar] [CrossRef]
- Ogundola, A.F.; Bvenura, C.; Ehigie, A.F.; Afolayan, A.J. Effects of soil types on phytochemical constituents and antioxidant properties of Solanum nigrum. S. Afr. J. Bot. 2022, 151, 325–333. [Google Scholar] [CrossRef]
- Shahbazian, D.; Karami, A.; Eshghi, S.; Maggi, F. Variation in the essential oil (EO) contents and compositions of Myrtle (Myrtus communis L.) populations collected from natural habitats in the different geographical regions of southern Iran. J. Essent. Oil Res. 2018, 30, 369–378. [Google Scholar] [CrossRef]
NO. | Accession Name | Collection Site | Latitude | Longitude | Altitude (m) | Clay | Silt | Sand | Organic Matter (%) | pH | EC |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ZF | Zanjyran, Firozabad, Fars, Iran | 29°03′38″ N | 52°38′33″ E | 1697 | 5.4 | 64.6 | 30 | 2.18 | 7.43 | 1.059 |
2 | JF | Juddehkuhmareh, Firozabad, Fars, Iran | 29°06′37″ N | 52°33′29″ E | 1570 | 7.4 | 38 | 54.6 | 2.31 | 7.11 | 0.71 |
3 | KH | Khergheh, Firozabad, Fars, Iran | 28°54′22″ N | 52°22′22″ E | 1497 | 11.96 | 8 | 90.4 | 1.15 | 7.62 | 1.1 |
4 | KA | Kavar, Fars, Iran | 29°07′42″ N | 53°35′31″ E | 1525 | 7.95 | 28 | 64.04 | 2.62 | 7.35 | 1.14 |
5 | SM | Simakan, Jahrom, Fars, Iran | 28°41′32″ N | 52°57′42″ E | 1344 | 13.4 | 2.6 | 64.06 | 2.45 | 7.12 | 1.05 |
6 | AT | Atashkadeh, Fars, Iran | 28°53′23″ N | 52°32′31″ E | 1478 | 1.96 | 10 | 88.04 | 1.14 | 7.42 | 1.5 |
7 | SF | Sarvegarm, Fasa, Fars, Iran | 29°18′05″ N | 53°23′09″ E | 1743 | 5.96 | 30 | 64.04 | 1.67 | 7.28 | 1.5 |
8 | BN | Baghnari, Noorabad mamasani, Fars, Iran | 30°11′10″ N | 51°47′58″ E | 1293 | 7.96 | 20 | 72.04 | 2.05 | 7.34 | 0.97 |
Region | Fruit Length (mm) | Fruit Diameter (mm) | Length/ Diameter Ratio | Seed Length (mm) | Seed Diameter (mm) | Fruit Weight (g) | Pulp Weight (g) | Seed Weight (g) | NO. Seeds |
---|---|---|---|---|---|---|---|---|---|
BN | 5.85 g | 5.12 d | 1.13 e | 3.22 a | 1.11 a | 1.72 g | 1.51 f | 0.81 h | 1.67 f |
KA | 7.47 c | 5.80 bcd | 1.28 a | 2.47 e | 0.82 e | 2.17 b | 1.66 c | 1.07 b | 3.66 d |
SM | 6.68 e | 5.76 bcd | 1.16 c | 2.21 f | 0.81 e | 1.93 e | 1.54 f | 1.05 c | 3.32 e |
JF | 6.49 f | 5.72 bcd | 1.13 e | 2.53 d | 0.91 bc | 2.08 c | 1.77 b | 0.93 f | 3.61 d |
ZF | 6.79 b | 6.34 ab | 1.06 f | 2.71 c | 0.85 d | 1.78 f | 1.61 d | 0.95 e | 5.1 a |
KH | 8.29 a | 6.83 a | 1.23 b | 2.23 f | 0.90 c | 2.35 a | 1.58 e | 1.19 a | 5.06 a |
AT | 6.66 e | 5.52 cd | 1.21 b | 2.45 e | 0.92 bc | 1.93 d | 1.42 g | 1.01 d | 4.64 b |
SF | 7.67 b | 6.05 bc | 1.28 a | 2.93 b | 0.93 b | 2.08 c | 1.82 a | 0.91 g | 4.32 c |
Region | IC50 (mg dw/mL) | TPC (mg/100 gfw) | Anthocyanin (mg/100 gfw) | TSS (%) | TA (%) | TSS/TA Ratio | Protein (mg/g FW) |
---|---|---|---|---|---|---|---|
JF | 0.87 a | 820 de | 102.2 d | 2.4 a | 0.1 cd | 24 a | 1.33 ab |
ZF | 0.84 a | 1002 cd | 218.3 c | 1.87 bc | 0.13 bc | 15 bc | 1.70 a |
AT | 0.88 a | 1212 c | 200.8 c | 2.15 ab | 0.17 a | 13 cd | 0.60 de |
KH | 0.87 a | 706 d | 121.3 d | 1.033 d | 0.16 ab | 10 f | 0.74 cd |
KA | 0.13 c | 851 de | 122 d | 1.83 c | 0.12 c | 16 b | 1.08 bc |
SM | 0.25 b | 1218 c | 53.1 e | 0.8 d | 0.07 d | 12 de | 1.022 bc |
SF | 0.018 d | 1600 b | 311 a | 1.04 d | 0.12 c | 9 ef | 0.32 ef |
BN | 0.11 c | 1832 a | 271.5 b | 1.84 c | 0.18 a | 10 de | 0.027 f |
Altitude (m) | 1 | |||||||||||||
Clay (Soil) | 0.378 | 1 | ||||||||||||
Silt (Soil) | 0.641 ** | 0.19 | 1 | |||||||||||
Sand (Soil) | −0.545 | −0.393 | −0.97 ** | 1 | ||||||||||
Organic Matter % (Soil) | 0.026 | 0.45 * | 0.398 | 0.248 | 1 | |||||||||
pH | −0.105 | −0.103 | −0.174 | 0.185 | −0.171 | 1 | ||||||||
EC (Soil) | 0.273 | −0.375 | 0.236 | 0.261 | −0.058 | 0.212 | 1 | |||||||
TPC | 0.435 * | −0.036 | −0.104 | 0.106 | 0.023 | 0.05 | −0.435 * | 1 | ||||||
TSS | 0.396 | −0.429 | 0.331 | −0.206 | 0.382 | −0.348 | −0.132 | 0.136 | 1 | |||||
Protein | 0.751 ** | 0.161 | 0.7 ** | −0.724 ** | 0.247 | −0.259 | 0.073 | 0.441 * | 0.106 | 1 | ||||
IC50 | −0.227 | −0.544 * | 0.118 | −0.02 | −0.042 | −0.09 | 0.335 | −0.367 | 0.275 | 0.369 | 1 | |||
TA | −0.069 | −0.708 ** | −0.353 | 0.511 * | −0.451 * | 0.219 | 0.194 | 0.243 | 0.26 | −0.486 * | 0.175 | 1 | ||
TSS/TA | 0.431 | −0.071 | 0.507 * | 0.501 * | 0.541 * | 0.527 * | −0.329 | −0.087 | 0.732 ** | 0.445 * | 0.152 | −0.418 | 1 | |
Anthocyanin | −0.024 | 0.482 * | 0.15 | 0.019 | −0.092 | 0.291 | −0.02 | 0.297 | 0.412 | −0.339 | 0.002 | 0.69 ** | −0.173 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbazian, D.; Karami, A.; Gruda, N.S. Biochemical and Morphological Traits of Wild Myrtle Populations for Horticultural Use. Horticulturae 2025, 11, 233. https://doi.org/10.3390/horticulturae11030233
Shahbazian D, Karami A, Gruda NS. Biochemical and Morphological Traits of Wild Myrtle Populations for Horticultural Use. Horticulturae. 2025; 11(3):233. https://doi.org/10.3390/horticulturae11030233
Chicago/Turabian StyleShahbazian, Donya, Akbar Karami, and Nazim S. Gruda. 2025. "Biochemical and Morphological Traits of Wild Myrtle Populations for Horticultural Use" Horticulturae 11, no. 3: 233. https://doi.org/10.3390/horticulturae11030233
APA StyleShahbazian, D., Karami, A., & Gruda, N. S. (2025). Biochemical and Morphological Traits of Wild Myrtle Populations for Horticultural Use. Horticulturae, 11(3), 233. https://doi.org/10.3390/horticulturae11030233