Global Research Trends and Thematic Evolution of Blueberry (Vaccinium spp.) Science: A Bibliometric Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Definition of the Search Equation
- TITLE-ABS-KEY (blueberry OR “Vaccinium corymbosum” OR “Vaccinium spp.”) AND TITLE-ABS-KEY (“protected cultivation” OR “protected agriculture” OR “greenhouse” OR “tunnel” OR “shade net” OR “net house” OR “agribusiness” OR “fair trade” OR “processing”) AND TITLE-ABS-KEY (irrigation OR fertigation OR fertilization OR “nutrient management” OR pruning OR training OR “crop management” OR “harvest” OR “postharvest” OR “storage” OR “shelf life” OR “diseases” OR “pests” OR “crop protection” OR “biological control” OR “Transformation” OR “Commercialization” OR “Marketing” OR “export” OR “markets”).
2.2. Preliminary Results and Database Refinement
2.3. Data Processing and Analysis
2.4. Performance Analysis
2.5. Scientific Mapping
3. Results and Discussion
3.1. Number of Published Documents
3.2. Types of Documents Published
3.3. Knowledge Areas Covered by the Scientific Field According to the Published Documents
3.4. Countries of Origin of the Publications
3.5. Co-Authorship Network by Country
3.6. Bibliographic Coupling Network Among Countries
3.7. Leading Institutions in Scientific Production
3.8. Leading Authors in Academic Production
3.9. Co-Authorship Network Among Authors
3.10. Bibliographic Coupling Network Among Authors
3.11. Main Journals Selected by Authors for Publishing Their Documents
3.12. Bibliographic Coupling Network Among Journals
3.13. Top Ten Most Cited Articles
3.14. Most Frequently Used Keywords
3.15. Keyword Co-Occurrence Network
3.16. Thematic Map Analysis
3.17. Detection of Knowledge Gaps and Future Research Trends Through Multiple Correspondence Analysis
4. Limitations of the Study
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieniasz, M.E.; Konieczny, A.M. Opportunities to Improve Effectiveness of Pollination of Blueberry CV.‘Bluecrop’. Agriculture 2022, 12, 2126. [Google Scholar] [CrossRef]
- Zydlik, Z.; Pacholak, E.; Rutkowski, K.; STYŁA, K.; Zydlik, P. The Influence of a Mycorrhizal Vaccine on the Biochemical Properties of Soil in the Plantation of Blueberry. Zemdirbyste-Agriculture 2016, 103, 61–66. [Google Scholar] [CrossRef][Green Version]
- Prodorutti, D.; Pertot, I.; Giongo, L.; Gessler, C. Highbush Blueberry: Cultivation, Protection, Breeding and Biotechnology. Eur. J. Plant Sci. Biotechnol. 2007, 1, 44–56. [Google Scholar][Green Version]
- Fang, Y.; Nunez, G.H.; Silva, M.N.d.; Phillips, D.A.; Munoz, P.R. A Review for Southern Highbush Blueberry Alternative Production Systems. Agronomy 2020, 10, 1531. [Google Scholar] [CrossRef]
- Bañados, M.P. Expanding Blueberry Production into Non-Traditional Production Areas: Northern Chile and Argentina, Mexico and Spain. In Proceedings of the IX International Vaccinium Symposium 810, Corvallis, OR, USA, 4 March 2009; pp. 439–445. [Google Scholar]
- Finn, C.E.; Olmstead, J.W.; Hancock, J.F.; Brazelton, D.M. Welcome to the Party! Blueberry Breeding Mixes Private and Public with Traditional and Molecular to Create a Vibrant New Cocktail. In Proceedings of the X International Symposium on Vaccinium and Other Superfruits 1017, Maastricht, The Netherlands, 13 January 2014; pp. 51–62. [Google Scholar]
- Retamales, J.B.; Hancock, J.F. Blueberries; Cabi: Wallingford, UK, 2018; Volume 27, ISBN 1780647263. [Google Scholar]
- Porter Starr, K.N.; Connelly, M.A.; Wallis, J.; North, R.; Zhang, Q.; Song, K.; González-Delgado, J.M.; Brochu, H.N.; Icenhour, C.R.; Iyer, L.K. Effects of Blueberry Consumption on Fecal Microbiome Composition and Circulating Metabolites, Lipids, and Lipoproteins in a Randomized Controlled Trial of Older Adults with Overweight or Obesity: The BEACTIVE Trial. Nutrients 2025, 17, 1200. [Google Scholar] [CrossRef] [PubMed]
- Rowland, L.J.; Ogden, E.L.; Vinyard, B.T. Phenotypic Evaluation of a Hybrid Diploid Blueberry Population for Plant Development and Fruit Quality Traits. Agronomy 2020, 10, 1067. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, K.; Chen, C. Artificial Neural Network Assisted Multiobjective Optimization of Postharvest Blanching and Drying of Blueberries. Foods 2022, 11, 3347. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Obedgiu, S. The Role of Biotechnology in Climate Change Adaptation and Postharvest Loss Mitigation in Blueberries. In Handbook of Nature-Based Solutions to Mitigation and Adaptation to Climate Change; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–38. [Google Scholar]
- Lopes, S.; Santos, R.; Wessel, D.; Brás, I.; Silva, M.E.; Ferreira, T.; Pereira, C. Mathematical Modeling of a Sustainable Dewatering Process for Blueberries and Raspberries Preservation. In International Conference on Energy and Environment Research; Springer: Berlin/Heidelberg, Germany, 2023; pp. 139–151. [Google Scholar]
- Snyder, H. Literature Review as a Research Methodology: An Overview and Guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Ozturk, O. Bibliometric Review of Resource Dependence Theory Literature: An Overview. Manag. Rev. Q. 2021, 71, 525–552. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting Systematic Literature Reviews and Bibliometric Analyses. Aust. J. Manag. 2020, 45, 175–194. [Google Scholar] [CrossRef]
- Montalván-Burbano, N.; Pérez-Valls, M.; Plaza-Úbeda, J. Analysis of Scientific Production on Organizational Innovation. Cogent Bus. Manag. 2020, 7, 1745043. [Google Scholar] [CrossRef]
- Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [Google Scholar] [CrossRef]
- Villagrán, E.; Romero-Perdomo, F.; Numa-Vergel, S.; Galindo-Pacheco, J.R.; Salinas-Velandia, D.A. Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next? Horticulturae 2023, 10, 15. [Google Scholar] [CrossRef]
- Yuan, B.-Z.; Sun, J. Bibliometric Analysis of Blueberry (Vaccinium corymbosum L.) Research Publications Based on Web of Science. Food Sci. Technol. 2021, 42, e96321. [Google Scholar] [CrossRef]
- Zakaria, R.; Vit, P.; Wijaya, A.; Ahmad, A.H.; Othman, Z.; Mezzetti, B. Evolution of Blueberry (Vaccinium corymbosum L.), Raspberry (Rubus idaeus L.) and Strawberry (Fragaria x Ananassa Duch.) Research: 2012–2021. J. Berry Res. 2022, 12, 365–381. [Google Scholar] [CrossRef]
- Haruna, E.U.; Asiedu, W.K.; Bello, L.O. Mapping the Knowledge Domain of Natural Capital and Sustainability: A Bibliometric Analysis Using the Scopus Database for Future Research Direction. Dev. Sustain. Econ. Financ. 2025, 5, 100035. [Google Scholar] [CrossRef]
- Santillan-Angeles, A.; Mendoza-Perez, C.; Villagrán, E.; Garcia, F.; Flores-Velazquez, J. Bibliometric Analysis of Hydrothermal Wastewater Treatment in the Last Two Decades. Water 2025, 17, 746. [Google Scholar] [CrossRef]
- Manley, K.; Nyelele, C.; Egoh, B.N. A Review of Machine Learning and Big Data Applications in Addressing Ecosystem Service Research Gaps. Ecosyst. Serv. 2022, 57, 101478. [Google Scholar] [CrossRef]
- Villagran, E.; Espitia, J.J.; Velázquez, F.A.; Rodriguez, J. Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies. AgriEngineering 2024, 6, 4041–4063. [Google Scholar] [CrossRef]
- Espitia, J.J.; Velázquez, F.A.; Rodriguez, J.; Gomez, L.; Baeza, E.; Aguilar-Rodríguez, C.E.; Flores-Velazquez, J.; Villagran, E. Solar Energy Applications in Protected Agriculture: A Technical and Bibliometric Review of Greenhouse Systems and Solar Technologies. Agronomy 2024, 14, 2791. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Nickerson, N.L.; MacNeill, B.H. Studies on the Spread of Red Leaf Disease, Caused by Exobasidium Vaccinii, in Lowbush Blueberries. Can. J. Plant Pathol. 1987, 9, 307–310. [Google Scholar] [CrossRef]
- Tamada, T. Blueberry Culture and Research in Japan. J. Small Fruit Vitic. 1996, 3, 227–241. [Google Scholar] [CrossRef]
- Stretch, A.W.; Ehlenfeldt, M.K.; Brewster, V.; Vorsa, N.; Polashock, J. Resistance of Diploid Vaccinium Spp. to the Fruit Rot Stage of Mummy Berry Disease. Plant Dis. 2001, 85, 27–30. [Google Scholar] [CrossRef]
- Starrett, M.C. Initial Shoot Growth and Development of Micropropagated Blueberry Plants Following Inoculation with an Ericoid Mycorrhizal Isolate. In Proceedings of the XXVI International Horticultural Congress: Berry Crop Breeding, Production and Utilization for a New Century 626, Toronto, ON, Canada, 1 November 2003; pp. 191–197. [Google Scholar]
- Mounika, A.; Ilangovan, B.; Mandal, S.; Yashwant, W.S.; Gali, S.P.; Shanmugam, A. Prospects of Ultrasonically Extracted Food Bioactives in the Field of Non-Invasive Biomedical Applications—A Review. Ultrason. Sonochem 2022, 89, 106121. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, R.; Willows, N.; Johnson, S.; Salmon Reintroduction Initiatives, O.N.; Batal, M. Traditional Food, Health, and Diet Quality in Syilx Okanagan Adults in British Columbia, Canada. Nutrients 2020, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Zaman, Q.U.; Schumann, A.W.; Percival, D.C.; Gordon, R.J. Estimation of Wild Blueberry Fruit Yield Using Digital Color Photography. Trans. ASABE 2008, 51, 1539–1544. [Google Scholar] [CrossRef]
- Mari, A.; Kekes, T.; Boukouvalas, C.; Krokida, M. Integrating Life Cycle Assessment in Innovative Berry Processing with Edible Coating and Osmotic Dehydration. Foods 2025, 14, 1167. [Google Scholar] [CrossRef]
- Allan-Wojtas, P.; Goff, H.D.; Stark, R.; Carbyn, S. The Effect of Freezing Method and Frozen Storage Conditions on the Microstructure of Wild Blueberries as Observed by Cold-stage Scanning Electron Microscopy. Scanning 1999, 21, 334–347. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Osman, A.I.; Karim, N.; Mo, J.; Chen, W. Unveiling the Mechanisms of the Development of Blueberries-Based Functional Foods: An Updated and Comprehensive Review. Food Rev. Int. 2024, 40, 1913–1940. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, L.; Zhang, Q.; Yang, W.; Zhang, C.; Wang, H.; Xiao, H. Eco-Friendly Coating Engineered with Antimicrobial Lipopeptides Maintains Freshness and Induces Genes Expression in Anthocyanin Biosynthesis of Blueberry. Int. J. Biol. Macromol. 2025, 306, 141590. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.A.O.; Medina, A.N.C.; Arias, L.G.; Caita, J.F.A.; Villagran, E. Análisis Sobre La Actividad Científica Referente a Las Estrategias de Climatización Pasiva Usada En Invernaderos: Parte 1: Análisis Bibliométrico. Cienc. Lat. Rev. Científica Multidiscip. 2022, 6, 4596–4623. [Google Scholar]
- Villagran, E.; Espitia, J.J.; Rodriguez, J.; Gomez, L.; Amado, G.; Baeza, E.; Aguilar-Rodríguez, C.E.; Flores-Velazquez, J.; Akrami, M.; Gil, R. Use of Lighting Technology in Controlled and Semi-Controlled Agriculture in Greenhouses and Protected Agriculture Systems—Part 1: Scientific and Bibliometric Analysis. Sustainability 2025, 17, 1712. [Google Scholar] [CrossRef]
- Rocha, G.A.O.; Medina, A.N.C.; Arias, L.G.; Caita, J.F.A.; Villagran, E. Análisis Sobre La Actividad Científica Referente a Las Estrategias de Climatización Pasiva Usada En Invernaderos: Parte 2: Análisis Técnico. Cienc. Lat. Rev. Científica Multidiscip. 2022, 6, 2220–2245. [Google Scholar]
- da Costa, N.L.; de Lima, M.D. A Methodological Framework for Wine and Grape Authenticity: Combining Bibliometrics and Text Mining. Qual. Quant. 2025, 1–26. [Google Scholar] [CrossRef]
- dos Santos, U.J.; Rocha, A.; dos Santos, A.E.O.; Guimarães, G.H.C.; Florêncio, R.R. Post-Harvest Fruit Quality: A Bibliometric Analysis. Res. Soc. Dev. 2025, 14, e1314348405. [Google Scholar] [CrossRef]
- Couture, A.; Gaudreau, L.; Van Sterthem, A.; Gosselin, A.; Dubé, Y.; Nguyen, T.T.A.; Brégard, A.; Dorais, M. How Can High Tunnel Coverings and an Insect-Proof Barrier Improve Productivity and Pest Management in Berry Crops? In Proceedings of the IV International Symposium on Organic Greenhouse Horticulture 1428, Cancun, Mexico, 16 May 2025; pp. 101–108. [Google Scholar]
- Song, Z.; Xu, B.; Kang, S.; Dai, H.; Zhou, X.; Li, M.; Luo, M.; Ji, S.; Zhou, Q. Calcium Chloride Treatment Delayed the Softening of Postharvest Blueberries by Regulating ABA Biosynthesis and Signal Transduction. Sci. Hortic. 2025, 339, 113879. [Google Scholar] [CrossRef]
- Ngoc, N.P.; Thao, P.T.P. Yield-Limiting Nutrient Response of Lowbush Blueberry Grown in Recent and Ancient Alluvial Soils of the Mekong Delta. PeerJ 2024, 12, e17992. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Mujumdar, A.S.; Yu, D. Advanced Detection Techniques Using Artificial Intelligence in Processing of Berries. Food Eng. Rev. 2022, 14, 176–199. [Google Scholar] [CrossRef]
- Bracamonte, D.; Chang, A.; Vinces, L.; Oliden, J. A Blueberry Classification Algorithm Using Convolutional Neural Networks Developed in Python and a Raspberry Pi 4. In Proceedings of the 2022 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), Bogota, Colombia, 5–7 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Tianyi, Z.; Fengzhi, D. A Review of Machine Vision Based Fruit Recognition Applications. In Proceedings of the International Conference on Artificial Life Science and Technology, Oita, Japan, 20–23 January 2022; Volume 27, pp. 827–830. [Google Scholar]
- Majid, A.; Khan, M.A.; Alhaisoni, M.; Tariq, U.; Hussain, N.; Nam, Y.; Kadry, S. An Integrated Deep Learning Framework for Fruits Diseases Classification. Comput. Mater. Contin. 2022, 71, 1387–1402. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, D.; Liu, Y.; Zhou, H.; Sun, Y. Measurement of Early Disease Blueberries Based on Vis/Nir Hyperspectral Imaging System. Sensors 2020, 20, 5783. [Google Scholar] [CrossRef]
- Sheikh, M.H.; Mim, T.T.; Reza, M.S.; Hena, M.H. Leaf Diseases Detection for Commercial Cultivation of Obsolete Fruit in Bangladesh Using Image Processing System. In Proceedings of the 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART), Moradabad, India, 22–23 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 271–275. [Google Scholar]
- Zhai, Y.; Liang, Z.; Zhang, L.; Xu, S.; Huang, C.; Zhou, X.; Li, M.; Huang, Y. Machine Learning Based Blueberry Detection Method by CIE-YOLOv5. In Proceedings of the International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2023), Qingdao, China, 1–3 December 2023; SPIE: Bellingham, WA, USA, 2024; Volume 13105, pp. 462–467. [Google Scholar]
- Pérez, R.; Laca, A.; Laca, A.; Díaz, M. Environmental Behaviour of Blueberry Production at Small-Scale in Northern Spain and Improvement Opportunities. J. Clean. Prod. 2022, 339, 130594. [Google Scholar] [CrossRef]
- Waterhouse, G.I.N.; Sun-Waterhouse, D.; Su, G.; Zhao, H.; Zhao, M. Spray-Drying of Antioxidant-Rich Blueberry Waste Extracts; Interplay between Waste Pretreatments and Spray-Drying Process. Food Bioprocess Technol. 2017, 10, 1074–1092. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W.; Li, L.; Deng, W.; Liu, M.; Hu, J. Biodegradable Starch-Based Packaging Films Incorporated with Polyurethane-Encapsulated Essential-Oil Microcapsules for Sustained Food Preservation. Int. J. Biol. Macromol. 2023, 235, 123889. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, J.; Tian, W.; Zhang, C.; An, Z. Finite Element Analysis of Blueberry Stack Damage. J. Food Process Eng. 2021, 44, e13840. [Google Scholar] [CrossRef]
- Kaushalya, K.G.D.; Rupasinghe, H.P.V. Microencapsulation of Fermented Wild Blueberry to Improve the Stability of (Poly) Phenols. Appl. Food Res. 2025, 5, 100764. [Google Scholar] [CrossRef]
- Cassi, L.; Champeimont, R.; Mescheba, W.; De Turckheim, E. Analysing Institutions Interdisciplinarity by Extensive Use of Rao-Stirling Diversity Index. PLoS ONE 2017, 12, e0170296. [Google Scholar] [CrossRef] [PubMed]
- Heller, C.R.; Nunez, G.H. Preplant Fertilization Increases Substrate Microbial Respiration but Does Not Affect Southern Highbush Blueberry Establishment in a Coconut Coir-Based Substrate. HortScience 2022, 57, 17–21. [Google Scholar] [CrossRef]
- Lehman, J.S.; Oudemans, P. V Phenology of Apothecium Production in Populations of Monilinia Vaccinii-Corymbosi from Early-and Late-Maturing Blueberry Cultivars. Phytopathology 1997, 87, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Renquist, S. An Evaluation of Blueberry Cultivars Grown in Plastic Tunnels in Douglas County, Oregon. Int. J. Fruit Sci. 2005, 5, 31–38. [Google Scholar] [CrossRef]
- Chang, Y.K.; Zaman, Q.; Farooque, A.A.; Schumann, A.W.; Percival, D.C. An Automated Yield Monitoring System II for Commercial Wild Blueberry Double-Head Harvester. Comput. Electron. Agric. 2012, 81, 97–103. [Google Scholar] [CrossRef]
- Shen, X.; Sheng, L.; Benedict, C.; Kruger, C.E.; Su, Y.; Schacht, E.; Zhang, Y.; Zhu, M.-J. Evaluation of Pre-Harvest Microbiological Safety of Blueberry Production with or without Manure-Derived Fertilizer. Front. Microbiol. 2020, 10, 3130. [Google Scholar] [CrossRef]
- Bin, L.I.; Yiwen, B.A.O.; Jiaxin, L.I.; Wanqi, H.; Yahua, X.; Xu, S.I.; Liang, W.; Ying, H.E. Comprehensive Utilization of Blueberry Processing By-Product Resources and Development Trend of New Business Forms. J. Food Sci. Technol. 2024, 42, 1–10. [Google Scholar]
- Hicklenton, P.; Forney, C.; Domytrak, C. Use of Row Covers and Post Harvest Storage Techniques to Alter Maturity and Marketing Period for Highbush Blueberries. In Proceedings of the XXVI International Horticultural Congress: Berry Crop Breeding, Production and Utilization for a New Century 626, Toronto, ON, Canada, 1 November 2003; pp. 287–295. [Google Scholar]
- Butot, S.; Cantergiani, F.; Moser, M.; Jean, J.; Lima, A.; Michot, L.; Putallaz, T.; Stroheker, T.; Zuber, S. UV-C Inactivation of Foodborne Bacterial and Viral Pathogens and Surrogates on Fresh and Frozen Berries. Int. J. Food Microbiol. 2018, 275, 8–16. [Google Scholar] [CrossRef]
- Retamal-Salgado, J.; Bastías, R.M.; Wilckens, R.; Paulino, L. Influence of Microclimatic Conditions under High Tunnels on the Physiological and Productive Responses in Blueberry’O’Neal’. Chil. J. Agric. Res. 2015, 75, 291–297. [Google Scholar] [CrossRef]
- Max, J.F.J.; Horst, W.J.; Mutwiwa, U.N.; Tantau, H.J. Effects of Greenhouse Cooling Method on Growth, Fruit Yield and Quality of Tomato (Solanum lycopersicum L.) in a Tropical Climate. Sci. Hortic. 2009, 122, 179–186. [Google Scholar] [CrossRef]
- Stückrath, R.; Quevedo, R.; de la Fuente, L.; Hernández, A.; Sepúlveda, V. Effect of Foliar Application of Calcium on the Quality of Blueberry Fruits. J. Plant Nutr. 2008, 31, 1299–1312. [Google Scholar] [CrossRef]
- Calderón-Orellana, A.; Hermosilla, N.; Bastías, R.M. Impact of the Covering Material on Drought Tolerance Responses and Soil Water Content in Two Cultivars of Young Blueberry Plants under Protected Cultivation. Water 2023, 15, 2326. [Google Scholar] [CrossRef]
- Viencz, T.; Santana, K.; Ayub, R.A.; Botelho, R.V. Development, Photosynthesis and Yield of Blueberry Cultivar ‘Climax’Growth with Different Substrates and Nitrogen Fertilization under Protected Cultivation. Cienc. Rural 2021, 51, e20190367. [Google Scholar] [CrossRef]
- Marucci, R.C.; Ruber, S.E.; Pec, M.; Liburd, O.E. Are Predatory Mites Effective as Biological Control Agents to Suppress Oligonychus Ilicis (Acari: Tetranychidae) in Blueberry Plantings? J. Econ. Entomol. 2024, 117, 834–842. [Google Scholar] [CrossRef]
- Obregón Domínguez, J.A.; Medina, C.A.M.; Barraza, G. Artificial Neural Networks in the Retention of Anthocyanins and Total Phenolics in the Osmotic Pre-Treatment of Biloxi Variety Blueberry (Vaccinium corymbosum L.) Jam. Rev. Fac. Nac. Agron. Medellín 2024, 77, 10877–10885. [Google Scholar] [CrossRef]
- Sullca, C.; Molina, C.; Rodríguez, C.; Fernández, T. Diseases Detection in Blueberry Leaves Using Computer Vision and Machine Learning Techniques. Int. J. Mach. Learn. Comput. 2019, 9, 656–661. [Google Scholar] [CrossRef]
- Cerrato, A.; Piovesana, S.; Aita, S.E.; Cavaliere, C.; Felletti, S.; Laganà, A.; Montone, C.M.; Vargas-de-la-Cruz, C.; Capriotti, A.L. Detailed Investigation of the Composition and Transformations of Phenolic Compounds in Fresh and Fermented Vaccinium Floribundum Berry Extracts by High-resolution Mass Spectrometry and Bioinformatics. Phytochem. Anal. 2022, 33, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Calabuig-Jiménez, L.; Hinestroza-Córdoba, L.I.; Barrera, C.; Seguí, L.; Betoret, N. Effects of Processing and Storage Conditions on Functional Properties of Powdered Blueberry Pomace. Sustainability 2022, 14, 1839. [Google Scholar] [CrossRef]
- Cardeñosa, V.; Girones-Vilaplana, A.; Muriel, J.L.; Moreno, D.A.; Moreno-Rojas, J.M. Influence of Genotype, Cultivation System and Irrigation Regime on Antioxidant Capacity and Selected Phenolics of Blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 202, 276–283. [Google Scholar] [CrossRef]
- Girgenti, V.; Peano, C.; Bounous, M.; Baudino, C. A Life Cycle Assessment of Non-Renewable Energy Use and Greenhouse Gas Emissions Associated with Blueberry and Raspberry Production in Northern Italy. Sci. Total Environ. 2013, 458, 414–418. [Google Scholar] [CrossRef]
- Barba, F.J.; Jäger, H.; Meneses, N.; Esteve, M.J.; Frígola, A.; Knorr, D. Evaluation of Quality Changes of Blueberry Juice during Refrigerated Storage after High-Pressure and Pulsed Electric Fields Processing. Innov. Food Sci. Emerg. Technol. 2012, 14, 18–24. [Google Scholar] [CrossRef]
- Vilela, A.; Gonçalves, B.; Ribeiro, C.; Fonseca, A.T.; Correia, S.; Fernandes, H.; Ferreira, S.; Bacelar, E.; Silva, A.P. Study of Textural, Chemical, Color and Sensory Properties of Organic Blueberries Harvested in Two Distinct Years: A Chemometric Approach. J. Texture Stud. 2016, 47, 199–207. [Google Scholar] [CrossRef]
- Ozeki, M.; Tamada, T. The Potentials of Forcing Culture of Southern Highbush Blueberry in Japan. In Proceedings of the VIII International Symposium on Vaccinium Culture 715, Sevilla, Spain, 31 August 2006; pp. 241–246. [Google Scholar]
- Takahashi, S.; Che, J.; Horiuchi, N.; Cho, H.Y.; Onwona-Agyeman, S.; Kojima, K.; Yamada, M.; Ogiwara, I. Production of Low-Potassium Fruit of Potted and Fertigated Southern Highbush Blueberry (Vaccinium corymbosum L. Interspecific Hybrid). Hortic. J. 2021, 90, 161–171. [Google Scholar] [CrossRef]
- Song, H.-N.; Ji, S.-A.; Park, H.-R.; Kim, H.-H.; Hogstrand, C. Impact of Various Factors on Color Stability of Fresh Blueberry Juice during Storage. Prev. Nutr. Food Sci. 2018, 23, 46. [Google Scholar] [CrossRef] [PubMed]
- Ayyadurai, P.; Ragavendran, C.; Sillanpää, M. Transforming Blueberries into a Nexus of Sustainability and Health Benefits: A Review. S. Afr. J. Bot. 2025, 184, 862–879. [Google Scholar] [CrossRef]
- Park, B.; Shin, T.-S.; Cho, J.-S.; Lim, J.-H.; Park, K.-J. Characterizing Hyperspectral Microscope Imagery for Classification of Blueberry Firmness with Deep Learning Methods. Agronomy 2021, 12, 85. [Google Scholar] [CrossRef]
- Bernal-Roa, L.J.; Díaz-Moreno, C. Antioxidant Capacity Analysis of Red Fruits during the Pulp Process. In Proceedings of the II International Conference on Postharvest Quality Management of Horticultural Products of Interest for Tropical Regions, Bogotá, Colombia, 8 January 2014. [Google Scholar]
- Espitia, J.J.; Amado, G.; Rodriguez, J.; Gomez, L.; Gil, R.; Flores-Velasquez, J.; Baeza, E.; Aguilar, C.E.; Akrami, M.; Arias, L.A. CO2 Enrichment in Protected Agriculture: A Bibliometric Review on Greenhouses, Controlled Environment Systems, and Vertical Farms—Part 1. Horticulturae 2025, 11, 476. [Google Scholar] [CrossRef]
- Batagelj, V. On Fractional Approach to Analysis of Linked Networks. Scientometrics 2020, 123, 621–633. [Google Scholar] [CrossRef]
- Copes, W.E.; Scherm, H.; Ware, G.O. Sequential Sampling to Assess the Incidence of Infection by Monilinia Vaccinii-Corymbosi in Mechanically Harvested Rabbiteye Blueberry Fruit. Phytopathology 2001, 91, 348–353. [Google Scholar] [CrossRef]
- Brownmiller, C.; Howard, L.R.; Prior, R.L. Processing and Storage Effects on Blueberry (Vaccinium corymbosum L.) Polyphenolics. Acta Hort. 2009, 84, 347–354. [Google Scholar] [CrossRef]
- Yeo, J.R.; Weiland, J.E.; Sullivan, D.M.; Bryla, D.R. Susceptibility of Highbush Blueberry Cultivars to Phytophthora Root Rot. HortScience 2016, 51, 74–78. [Google Scholar] [CrossRef]
- Percival, D.; MacKenzie, J.L. Use of Plant Growth Regulators to Increase Polyphenolic Compounds in the Wild Blueberry. Can. J. Plant Sci. 2007, 87, 333–336. [Google Scholar] [CrossRef]
- Forney, C.F.; Eaton, L.J.; Gao, L. Development of a New Harvest Container for Wild Blueberries. HortTechnology 2006, 16, 33. [Google Scholar] [CrossRef]
- Schumann, A.W.; Mood, N.S.; Mungofa, P.D.K.; MacEachern, C.; Zaman, Q.; Esau, T. Detection of Three Fruit Maturity Stages in Wild Blueberry Fields Using Deep Learning Artificial Neural Networks. In 2019 ASABE Annual International Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; p. 1. [Google Scholar]
- Chang, Y.K.; Zaman, Q.U.; Chattha, H.; Read, S.; Schumann, A.W. Sensing System Using Digital Cameras for Spot-Application of Fertilizer in Wild Blueberry Fields. In 2014 Montreal, Quebec Canada July 13–July 16, 2014; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2014; p. 1. [Google Scholar]
- Takeda, F.; Krewer, G.; Li, C.; MacLean, D.; Olmstead, J.W. Techniques for Increasing Machine Harvest Efficiency in Highbush Blueberry. Horttechnology 2013, 23, 430–436. [Google Scholar] [CrossRef]
- Kuzy, J.D.; Li, C. Blueberry Bruise Detection by Pulse-Phase Thermography and Neural Network. In 2015 ASABE Annual International Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2015; p. 1. [Google Scholar]
- Ogden, A.B.; van Iersel, M.W. Southern Highbush Blueberry Production in High Tunnels: Temperatures, Development, Yield, and Fruit Quality during the Establishment Years. HortScience 2009, 44, 1850–1856. [Google Scholar] [CrossRef]
- Khanal, R.C.; Howard, L.R.; Brownmiller, C.R.; Prior, R.L. Influence of Extrusion Processing on Procyanidin Composition and Total Anthocyanin Contents of Blueberry Pomace. J. Food Sci. 2009, 74, H52–H58. [Google Scholar] [CrossRef] [PubMed]
- Percival, D.; Dias, G. Energy Consumption and Greenhouse Gas Production in Wild Blueberry Production. In Proceedings of the X International Symposium on Vaccinium and Other Superfruits 1017, Maastricht, The Netherlands, 13 January 2014; pp. 163–168. [Google Scholar]
- Esau, T.; Zaman, Q.; Groulx, D.; Corscadden, K.; Chang, Y.; Schumann, A.; Havard, P. Economic Analysis for Smart Sprayer Application in Wild Blueberry Fields. In 2015 ASABE Annual International Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2015; p. 1. [Google Scholar]
- Esau, T.; Zaman, Q.; Groulx, D.; Chang, Y.; Schumann, A.; Havard, P. Smart Sprayer for Spot-Application of Agrochemicals in Wild Blueberry Fields. In 2014 Montreal, Quebec Canada July 13–July 16, 2014; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2014; p. 1. [Google Scholar]
- Carrión-Mero, P.; Montalván-Burbano, N.; Paz-Salas, N.; Morante-Carballo, F. Volcanic Geomorphology: A Review of Worldwide Research. Geosciences 2020, 10, 347. [Google Scholar] [CrossRef]
- Villagran, E.; Rocha, G.A.O.; Mojica, L.; Florez-Velazquez, J.; Aguilar, C.E.; Gomez, L.; Gomez, D.; Antolinez, E.; Numa, S. Scientific Analysis of Cut Flowers: A Review of the Main Technical Issues Developed. Ornam. Hortic. 2024, 30, e242699. [Google Scholar] [CrossRef]
- Boudreau-Forgues, Ã.-M.; Gaudreau, L.; Nguyen, T.T.A.; Gosselin, A.; Thériault, L.; Brégard, A.; Dorais, M. Impact of Silicon Applications on the Agronomic and Nutritional Performance of Container-Grown Organic Highbush Blueberries. In Proceedings of the IV International Symposium on Organic Greenhouse Horticulture 1428, Cancun, Mexico, 16 May 2025; pp. 55–62. [Google Scholar]
- Smith, B.J.; Miller-Butler, M.A.; Curry, K.J.; Sakhanokho, H.F. Effect of Phytophthora Cinnamomi Isolate, Inoculum Delivery Method, and Flood and Drought Conditions on Vigor, Disease Severity Scores, and Survival of Blueberry Plants. In Proceedings of the XI International Vaccinium Symposium 1180, Orlando, FL, USA, 25 November 2017; pp. 93–104. [Google Scholar]
- Smith, B.J.; Miller-Butler, M.A. Effect of Nitrogen Fertilization and Fungicides on Botryosphaeria Stem Blight Lesion Development on Detached Blueberry Stems. In Proceedings of the XI International Vaccinium Symposium 1180, Orlando, FL, USA, 25 November 2017; pp. 61–70. [Google Scholar]
- Jin, Z.; Huang, H.; Huang, H.; Li, L.; Zeng, Y.; Cheng, X.; Pathier, D.; Gan, L.; Shen, W. The Delayed Senescence in Harvested Blueberry by Hydrogen-Based Irrigation Is Functionally Linked to Metabolic Reprogramming and Antioxidant Machinery. Food Chem. 2024, 453, 139563. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Typek, R. Transformation of 5-O-Caffeoylquinic Acid in Blueberries during High-Temperature Processing. J. Agric. Food Chem. 2014, 62, 10889–10895. [Google Scholar] [CrossRef]
- Shantharaj, D.; Román-Écija, M.; Velasco-Amo, M.P.; Navas-Cortés, J.A.; Landa, B.B.; De La Fuente, L. European Xylella Fastidiosa Strains Can Cause Symptoms in Blueberry. Plant Dis. 2024, 108, 2658–2662. [Google Scholar] [CrossRef]
- Lan, C.Z.; Ruan, H.C.; Yao, J.A. First Report of Phytophthora Cinnamomi Causing Root and Stem Rot of Blueberry (Vaccinium corymbosum) in China. Plant Dis. 2016, 100, 2537. [Google Scholar] [CrossRef]
- Correia, R.; Grace, M.H.; Esposito, D.; Lila, M.A. Wild Blueberry Polyphenol-Protein Food Ingredients Produced by Three Drying Methods: Comparative Physico-Chemical Properties, Phytochemical Content, and Stability during Storage. Food Chem. 2017, 235, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.R.; Castrodale, C.; Brownmiller, C.; Mauromoustakos, A. Jam Processing and Storage Effects on Blueberry Polyphenolics and Antioxidant Capacity. J. Agric. Food Chem. 2010, 58, 4022–4029. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B. Suitability of Sphagnum Moss, Coir, and Douglas Fir Bark as Soilless Substrates for Container Production of Highbush Blueberry. HortScience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- Qiu, D.; Wei, X.; Fan, S.; Jian, D.; Chen, J. Regeneration of Blueberry Cultivars through Indirect Shoot Organogenesis. HortScience 2018, 53, 1045–1049. [Google Scholar] [CrossRef]
- Clifford, M.N. Chlorogenic Acids and Other Cinnamates–Nature, Occurrence and Dietary Burden. J. Sci. Food Agric. 1999, 79, 362–372. [Google Scholar] [CrossRef]
- Bohn, T. Dietary Factors Affecting Polyphenol Bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.E. Flavonoids, Cognition, and Dementia: Actions, Mechanisms, and Potential Therapeutic Utility for Alzheimer Disease. Free Radic. Biol. Med. 2012, 52, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric Cold Plasma Inactivation of Aerobic Microorganisms on Blueberries and Effects on Quality Attributes. Food Microbiol. 2015, 46, 479–484. [Google Scholar] [CrossRef]
- Brownmiller, C.; Howard, L.R.; Prior, R.L. Processing and Storage Effects on Monomeric Anthocyanins, Percent Polymeric Color, and Antioxidant Capacity of Processed Blueberry Products. J. Food Sci. 2008, 73, H72–H79. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Luo, M.; Huang, S.-Y.; Saimaiti, A.; Shang, A.; Gan, R.-Y.; Li, H.-B. Effects and Mechanisms of Resveratrol on Aging and Age-related Diseases. Oxid. Med. Cell. Longev. 2021, 2021, 9932218. [Google Scholar] [CrossRef] [PubMed]
- Manganaris, G.A.; Goulas, V.; Vicente, A.R.; Terry, L.A. Berry Antioxidants: Small Fruits Providing Large Benefits. J. Sci. Food Agric. 2014, 94, 825–833. [Google Scholar] [CrossRef]
- Szakiel, A.; Pączkowski, C.; Pensec, F.; Bertsch, C. Fruit Cuticular Waxes as a Source of Biologically Active Triterpenoids. Phytochem. Rev. 2012, 11, 263–284. [Google Scholar] [CrossRef]
- Kalt, W.; McDonald, J.E.; Donner, H. Anthocyanins, Phenolics, and Antioxidant Capacity of Processed Lowbush Blueberry Products. J. Food Sci. 2000, 65, 390–393. [Google Scholar] [CrossRef]
- Fenniri, M.Z.; Pico, J.; Cohen, T.R.; Castellarin, S.D.; Rosado, A. Postharvest Evolution of Physical and Taste-Related Parameters, Antioxidant Capacity, and Phenolic Composition of Berry Crop Wild Relatives in the Pacific Northwest. Postharvest Biol. Technol. 2025, 227, 113603. [Google Scholar] [CrossRef]
- Wu, Y.; Han, T.; Yang, H.; Lyu, L.; Li, W.; Wu, W. Known and Potential Health Benefits and Mechanisms of Blueberry Anthocyanins: A Review. Food Biosci. 2023, 55, 103050. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L.; Liu, X.; Hasan, K.M.F.; Li, H.; Zhou, S.; Zhang, Q.; Zhou, Y. Effect of Thermosonication Treatment on Blueberry Juice Quality: Total Phenolics, Flavonoids, Anthocyanin, and Antioxidant Activity. Lwt 2021, 150, 112021. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, F.; Zhao, D.; Zhu, D.; Li, J. Effects of Freezing Conditions on Quality Changes in Blueberries. J. Sci. Food Agric. 2018, 98, 4673–4679. [Google Scholar] [CrossRef]
- Hien, N.T.; Tojo, S.; Chosa, T.; Ban, T. Effects of Prior Freezing Conditions on the Performance of the Freeze Drying Process of Blueberry. In Proceedings of the XI International Vaccinium Symposium 1180, Orlando, FL, USA, 25 November 2017; pp. 77–84. [Google Scholar]
- Zhang, Q.-G.; Tao, L.-R.; Cai, M.-Y. Process and Storage Quality of Quick Freezing Blueberries in LN_2-Spraying Fluidized Bed. Adv. J. Food Sci. Technol. 2014, 6, 852–866. [Google Scholar]
- Cao, X.; Zhang, F.; Zhu, D.; Zhao, D.; Zhao, Y.; Li, J. Evaluation of the Effects of Immersion Thawing Methods on Quality of Blueberries. J. Food Process Eng. 2020, 43, e13538. [Google Scholar] [CrossRef]
- Buckow, R.; Kastell, A.; Terefe, N.S.; Versteeg, C. Pressure and Temperature Effects on Degradation Kinetics and Storage Stability of Total Anthocyanins in Blueberry Juice. J. Agric. Food Chem. 2010, 58, 10076–10084. [Google Scholar] [CrossRef]
- Giuggioli, N.R.; Geobaldo, F.; Ceccarelli, R.; Peano, C. Improvement of Fruit Storage in the Supply Chain with Modified Atmosphere Packaging. In Proceedings of the 5th International Technical Symposium on Food Processing, Monitoring Technology in Bioprocesses and Food Quality Management, Potsdam, Germany, 31 August–2 September 2009; Elsevier: Amsterdam, The Netherlands, 2009; pp. 853–856. [Google Scholar]
- Oteiza, J.M.; Prez, V.E.; Pereyra, D.; Jaureguiberry, M.V.; Sánchez, G.; Sant’Ana, A.S.; Barril, P.A. Occurrence of Norovirus, Rotavirus, Hepatitis A Virus, and Enterovirus in Berries in Argentina. Food Environ. Virol. 2022, 14, 170–177. [Google Scholar] [CrossRef]
- Thalacker-Mercer, A.; Blum, J. Discovery and Application of Dietary Compounds to Optimize Human Health, a Focus on Skeletal Muscle Regeneration. Curr. Opin. Biotechnol. 2021, 70, 131–135. [Google Scholar] [CrossRef]
- Wang, Y.; Haskell-Ramsay, C.; Gallegos, J.L.; Lodge, J.K. Effects of Chronic Consumption of Specific Fruit (Berries, Cherries and Citrus) on Cognitive Health: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Eur. J. Clin. Nutr. 2023, 77, 7–22. [Google Scholar] [CrossRef]
- Das, Q.; Shay, J.; Gauthier, M.; Yin, X.; Hasted, T.-L.; Ross, K.; Julien, C.; Yacini, H.; Kennes, Y.M.; Warriner, K. Effects of Vaccination against Coccidiosis on Gut Microbiota and Immunity in Broiler Fed Bacitracin and Berry Pomace. Front. Immunol. 2021, 12, 621803. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. Role of Nutrition in the Prevention of Alzheimer’s Disease. Aging Health 2005, 1, 359–362. [Google Scholar] [CrossRef]
- Gan, Z.; Zhang, Y.; Gao, W.; Wang, S.; Liu, Y.; Xiao, Y.; Zhuang, X.; Sun, A.; Wang, R. Effects of Nonthermal Plasma-Activated Water on the Microbial Sterilization and Storage Quality of Blueberry. Food Biosci. 2022, 49, 101857. [Google Scholar] [CrossRef]
- Xin, M.; Liu, Z.; Nie, Y.; Wang, Y.; Tian, J.; Huang, W.; Yang, S.; Yang, Y.; Li, B. Mechanism of Protein Binding to Blueberry Anthocyanins in the Presence of 2-Furaldehyde, a Sucrose Degradation Product. Food Hydrocoll. 2025, 162, 111028. [Google Scholar] [CrossRef]
- Chernenko, S. Encapsulation of Polyphenols in Baked Goods: A Strategy for Enhancing Stability and Antioxidant Activity. Technol. Audit Prod. Reserv. 2025, 4, 45–51. [Google Scholar] [CrossRef]
- Yang, H.; Guo, J.; Lin, S.; Huang, L.; Cheng, X.; Yi, W.; Wang, R.; Shan, Y.; Jiang, N.; Ding, S. New Insights into the Mechanism of Quick-Freezing Reducing Blueberry Flavor Loss: Coupling Cellular Microstructure Maintenance and Fatty Acid Metabolism Regulation. Food Res. Int. 2025, 221, 117581. [Google Scholar] [CrossRef]
- Arabia, A.; Muñoz, P.; Munné-Bosch, S. Fruit-Specific Effects of Tryptophan and Melatonin as Active Components to Extend the Functionality of Red Fruits during Post-Harvest Processing. Food Chem. 2025, 463, 141487. [Google Scholar] [CrossRef]
- Karimova, N.Y.; Alekseenko, E.V.; Shanenko, E.F. Development of the Powdered Concentrate for Soft Drink Based on Freeze-Dried Blueberry Juice. Food Syst. 2025, 8, 244–251. [Google Scholar] [CrossRef]
- Ozkan, G.; Oner, M.E.; Fischer, A.; Juadjur, A.; Aganovic, K.; Dräger, G.; Capanoglu, E.; Esatbeyoglu, T. Effects of Non-Thermal Food Processing Techniques on the Composition, Bioaccessibility and Shelf-Life of Bioactive Compounds in a Fruit Juice Blend. Food Chem. X 2025, 31, 103000. [Google Scholar] [CrossRef]
- Perez, M.F.; Chacón, F.I.; Sineli, P.E.; Poehlein, A.; Daniel, R.; Dib, J.R. Impact of Postharvest Management Practices on the Microbiome of Blueberry from Tucumán, Argentina. J. Agric. Food Res. 2025, 21, 101915. [Google Scholar] [CrossRef]
- Reeh, K.W.; Cutler, G.C. Laboratory Efficacy and Fungicide Compatibility of Clonostachys Rosea against Botrytis Blight on Lowbush Blueberry. Can. J. Plant Sci. 2013, 93, 639–642. [Google Scholar] [CrossRef]
- Lehman, J.S.; Oudemans, P.V. Variation and Heritability of Phenology in the Fungus Monilinia Vaccinii-Corymbosi on Blueberry. Phytopathology 2000, 90, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Smagghe, G. Case Studies on Entomovectoring in the Greenhouse and Open Field. In Entomovectoring for Precision Biocontrol and Enhanced Pollination of Crops; Springer: Berlin/Heidelberg, Germany, 2020; pp. 123–136. [Google Scholar]
- Zhu, J.; Wang, Y.; Li, X.; Li, B.; Liu, S.; Chang, N.; Jie, D.; Ning, C.; Gao, H.; Meng, X. Combined Effect of Ultrasound, Heat, and Pressure on Escherichia Coli O157: H7, Polyphenol Oxidase Activity, and Anthocyanins in Blueberry (Vaccinium corymbosum) Juice. Ultrason. Sonochem. 2017, 37, 251–259. [Google Scholar] [CrossRef] [PubMed]
- El Horri, H.; Bartolini, S.; Remorini, D.; Ceccanti, C.; Florio, M.; D’Asaro, L.; Jain, G.; Massai, R.; Landi, M.; Guidi, L. Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry. Agronomy 2025, 15, 1708. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An Approach for Detecting, Quantifying, and Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory Field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Madsen, D.Ø.; Berg, T.; Di Nardo, M. Bibliometric Trends in Industry 5.0 Research: An Updated Overview. Appl. Syst. Innov. 2023, 6, 63. [Google Scholar] [CrossRef]
- Fan, L.; Martynenko, A.; Doucette, C.; Hughes, T.; Fillmore, S. Microbial Quality and Shelf Life of Blueberry Purée Developed Using Cavitation Technology. J. Food Sci. 2018, 83, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhu, Y.; Yu, N.; Wei, Y.; Zhang, J.; Hou, Y.; Sun, A. Evaluation of Microbial, Physicochemical Parameters and Flavor of Blueberry Juice after Microchip-Pulsed Electric Field. Food Chem. 2019, 274, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Lakhan, A.; Abdulkareem, K.H.; Almujally, N.A.; Al, B.B.S.M.T.; Memon, S.; Marhoon, H.A.; Martinek, R. Edge-Cloud Remote Sensing Data-Based Plant Disease Detection Using Deep Neural Networks with Transfer Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 11219–11229. [Google Scholar] [CrossRef]
















| Institution | Number of Documents Published | Website |
|---|---|---|
| USDA Agricultural Research Service | 25 | https://www.ars.usda.gov/ |
| Dalhousie University | 25 | https://www.dal.ca/ |
| United States Department of Agriculture | 25 | https://www.usa.gov/agencies/u-s-department-of-agriculture |
| University of Florida | 23 | https://www.ufl.edu/ |
| University of Georgia | 21 | https://www.uga.edu/ |
| Author | Number of Documents | Total Citations | H-Index | Affiliation | Country |
|---|---|---|---|---|---|
| Schumann, Arnold Walter | 11 | 3488 | 35 | University of Florida | United States |
| Zaman, Qamar Uz | 10 | 4322 | 34 | University of Lahore | Pakistan |
| Howard, Luke R | 8 | 12,164 | 56 | University of Arkansas | United States |
| Li, Bin | 7 | 5964 | 40 | Shenyang Agricultural University | China |
| Li, Changying Charlie | 7 | 5872 | 44 | University of Florida | United States |
| Journal | Number of Documents | Editorial Office | SJR Ranking | H-Index | Country |
|---|---|---|---|---|---|
| Acta Horticulturae | 56 | International Society for Horticultural Science | Q4 | 74 | Belgium |
| Plant Disease | 21 | American Phytopathological Society | Q1 | 135 | United States |
| Food Chemistry | 12 | Elsevier | Q1 | 348 | United Kingdom |
| Hortscience | 10 | American Society for Horticultural Science | Q2 | 109 | United States |
| Journal of Agricultural and Food Chemistry | 8 | American Chemical Society | Q1 | 358 | United States |
| Document | Title | Citations | Reference | Journal |
|---|---|---|---|---|
| 1 | Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden | 1255 | [119] | Journal of the Science of Food and Agriculture |
| 2 | Recent Research on the Health Benefits of Blueberries and Their Anthocyanins | 469 | [11] | Advances in Nutrition |
| 3 | Dietary factors affecting polyphenol bioavailability | 464 | [120] | Nutrition Reviews |
| 4 | Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease | 412 | [121] | Free Radical Biology and Medicine |
| 5 | Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes | 298 | [122] | Food Microbiology |
| 6 | Processing and Storage Effects on Monomeric Anthocyanins, Percent Polymeric Color, and Antioxidant Capacity of Processed Blueberry Products | 279 | [123] | Food Sciencie |
| 7 | Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases | 273 | [124] | Oxidative Medicine and Cellular Longevity |
| 8 | Berry antioxidants: small fruits providing large benefits | 236 | [125] | Journal of the Science of Food and Agriculture |
| 9 | Fruit cuticular waxes as a source of biologically active triterpenoids | 211 | [126] | Phytochemistry Reviews |
| 10 | Anthocyanins, Phenolics, and Antioxidant Capacity of Processed Lowbush Blueberry Products | 194 | [127] | Food Sciencie |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzon, D.A.; Amado, G.M.; Rodriguez, J.; Villagran, E. Global Research Trends and Thematic Evolution of Blueberry (Vaccinium spp.) Science: A Bibliometric Analysis. Horticulturae 2025, 11, 1501. https://doi.org/10.3390/horticulturae11121501
Pinzon DA, Amado GM, Rodriguez J, Villagran E. Global Research Trends and Thematic Evolution of Blueberry (Vaccinium spp.) Science: A Bibliometric Analysis. Horticulturae. 2025; 11(12):1501. https://doi.org/10.3390/horticulturae11121501
Chicago/Turabian StylePinzon, David Alejandro, Gina Marcela Amado, Jader Rodriguez, and Edwin Villagran. 2025. "Global Research Trends and Thematic Evolution of Blueberry (Vaccinium spp.) Science: A Bibliometric Analysis" Horticulturae 11, no. 12: 1501. https://doi.org/10.3390/horticulturae11121501
APA StylePinzon, D. A., Amado, G. M., Rodriguez, J., & Villagran, E. (2025). Global Research Trends and Thematic Evolution of Blueberry (Vaccinium spp.) Science: A Bibliometric Analysis. Horticulturae, 11(12), 1501. https://doi.org/10.3390/horticulturae11121501

