Integrated Analysis of Transcriptome and Metabolome Provides Insights into Phenylpropanoid Biosynthesis of Blueberry Leaves in Response to Low-Temperature Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Low-Temperature Stress Treatments
2.2. Transcriptomic Analysis by Transcriptome Deep Sequencing
2.3. RNA Sequencing Data Validation
2.4. Metabolomics Analysis by UHPLC-MS/MS
2.5. Integrative Analysis of Transcriptomic and Metabolomic Data
3. Results
3.1. Transcriptome Analysis and Differentially Expressed Genes in Response to Low-Temperature Stress
3.2. Functional Annotation and Enrichment Analysis of Differentially Expressed Genes
3.3. The Differentially Expressed Transcription Factors in Response to Low-Temperature Stress
3.4. Metabolome Analysis in Response to Low-Temperature Stress
3.5. Differentially Accumulated Metabolites in Response to Low-Temperature Stress
3.6. Enrichment Analysis of KEGG Pathways for Differentially Accumulated Metabolites
3.7. Differentially Accumulated Metabolites and Differentially Expressed Genes in Phenylpropanoid Biosynthesis KEGG Pathway Under Low-Temperature Stress
3.8. Combined Metabolome and Transcriptome Analysis of the Phenylpropanoid Biosynthesis Pathway Under Low-Temperature Stress
4. Discussion
4.1. The DEGs and DAMs in Response to Low-Temperature Stress in Blueberry Leaves
4.2. The Regulatory Network of Low-Temperature Stress-Induced Accumulation of Phenylpropanoid Metabolites in Blueberry Leaves
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adhikari, L.; Baral, R.; Paudel, D.; Min, D.; Makaju, S.O.; Poudel, H.P.; Acharya, J.P.; Missaoui, A.M. Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress 2022, 4, 100081. [Google Scholar] [CrossRef]
- Guan, Y.L.; Hwarari, D.; Mateko, K.H.; Baseer, A.; Cao, Y.W.; Movahedi, A.; Yang, L. Low temperature stress-induced perception and molecular signaling pathways in plants. Environ. Exp. Bot. 2023, 207, 105190. [Google Scholar] [CrossRef]
- Zhu, J. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; He, L.; Li, F. Understanding cold stress response mechanisms in plants: An overview. Front. Plant Sci. 2024, 15, 1443317. [Google Scholar] [CrossRef] [PubMed]
- Gusain, S.; Joshi, S.; Joshi, R. Sensing, signalling, and regulatory mechanism of cold-stress tolerance in plants. Plant Physiol. Biochem. 2023, 197, 107646. [Google Scholar] [CrossRef]
- Kuang, L.; Chen, J.; Bao, X.; Zhang, D.; Liu, J.; Wang, W.; Wei, Y.; Zong, C. Environmental and phytohormonal factors regulating anthocyanin biosynthesis in fruits. Horticulturae 2025, 11, 681. [Google Scholar] [CrossRef]
- Zou, S.; Zhuo, M.; Abbas, F.; Zeng, R.; Hu, G.; Wang, H.; Huang, X. ROS- and CBF- mediated pathways are involved in chlorophyll degradation and anthocyanin accumulation enhanced by cool temperatures in ripening litchi fruits. Postharvest Biol. Technol. 2024, 212, 112888. [Google Scholar] [CrossRef]
- Solecka, D.; Boudet, A.; Kacperska, A. Phenylpropanoid and anthocyanin changes in low-temperature treated winter oilseed rape leaves. Plant Physiol. Biochem. 1999, 37, 491–496. [Google Scholar] [CrossRef]
- Rezaie, R.; Mandoulakani, B.A.; Fattahi, M. Cold stress changes antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum L. Sci. Rep. 2020, 10, 5290. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef]
- Wang, Y.; Shu, Z.; Wang, W.; Jiang, X.; Li, D.; Pan, J.; Li, X. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biol. Plant. 2016, 60, 443–451. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Ngatia, J.N.; Wang, Y.; Khoso, M.A.; Farooq, U.; Chen, S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. Physiol. Mol. Biol. Plants 2021, 27, 1953–1968. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Tian, X.; Li, S.; Fu, Y.; Xu, J.; Wang, G. The AabHLH35 transcription factor identified from Anthurium andraeanum is involved in cold and drought tolerance. Plants 2019, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Hao, Y.; Kapoor, A.; Dong, C.; Fujii, H.; Zheng, X.; Zhu, J. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 2006, 281, 37636–37645. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Kang, J.; Kang, D.; Gu, H.; Qin, G. AtMYB14 regulates cold tolerance in Arabidopsis. Plant Mol. Biol. Rep. 2013, 31, 87–97. [Google Scholar] [CrossRef]
- An, J.; Li, R.; Qu, F.; You, C.; Wang, X.; Hao, Y. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant J. 2018, 96, 562–577. [Google Scholar] [CrossRef]
- Wu, R.; Wang, Y.; Wu, T.; Xu, X.; Han, Z. MdMYB4, an R2R3-Type MYB transcription factor, plays a crucial role in cold and salt stress in apple calli. J. Am. Soc. Hortic. Sci. 2017, 142, 209–216. [Google Scholar] [CrossRef]
- Wang, R.; Cao, Z.; Hao, Y. Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiol. Plant. 2014, 150, 76–87. [Google Scholar] [CrossRef]
- Wu, R.; Wang, Y.; Wu, T.; Xu, X.; Han, Z. Functional characterisation of MdMYB44 as a negative regulator in the response to cold and salt stress in apple calli. J. Hortic. Sci. Biotechnol. 2018, 93, 347–355. [Google Scholar] [CrossRef]
- Xu, H.; Yang, G.; Zhang, J.; Wang, Y.; Zhang, T.; Wang, N.; Jiang, S.; Zhang, Z.; Chen, X. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus. Biochem. Biophys. Res. Commun. 2018, 500, 405–410. [Google Scholar] [CrossRef]
- An, J.; Wang, X.; Zhang, X.; Xu, H.; Bi, S.; You, C.; Hao, Y. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnol. J. 2020, 18, 337–353. [Google Scholar] [CrossRef]
- Wang, M.; Huang, T.; Peng, Z.; Wang, S.; Wu, G.; Xiong, L.; Lan, S.; Peng, D.; Liu, Z.; Ai, Y. An R2R3-MYB transcription factor regulates anthocyanin accumulation in response to temperature signals in Cymbidium ensifolium. Plant Physiol. Biochem. 2025, 228, 110244. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yu, X.; Lin, C.; Zhao, P.; Wang, B.; Zou, L.; Li, S.; Yu, X.; Chen, Y.; Zhang, P.; et al. Down-regulation of MeMYB2 leads to anthocyanin accumulation and increases chilling tolerance in cassava (Manihot esculenta Crantz). Crop J. 2023, 11, 1181–1191. [Google Scholar] [CrossRef]
- Wei, X.; Wang, H.; Guo, D.; Wang, B.; Zhang, X.; Wang, J.; Liu, Y.; Wang, X.; Liu, C.; Dong, W. Integrated transcriptomic and proteomic analysis reveals molecular mechanisms of the cold stress response during the overwintering period in blueberries (Vaccinium spp.). Plants 2024, 13, 1911. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Clevenger, J.; Lee, K.; Zhang, J.; Li, C. Genetic breeding to improve freeze tolerance in blueberries, a review. Horticulturae 2025, 11, 614. [Google Scholar] [CrossRef]
- Piljac-Zegarac, J.; Belscak, A.; Piljac, A. Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions. J. Med. Food 2009, 12, 608–614. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Jiang, G.; Zhao, J.; Wang, W.; Hong, X. Integrated analysis of transcriptome and metabolome reveals insights for low-temperature germination in hybrid rapeseeds (Brassica napus L.). J. Plant Physiol. 2023, 291, 154120. [Google Scholar] [CrossRef]
- Stracke, R.; Werber, M.; Weisshaar, B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 2001, 4, 447–456. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.; Zhu, J. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef]
- Jaglo-Ottosen, K.R.; Gilmour, S.J.; Zarka, D.G.; Schabenberger, O.; Thomashow, M.F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 1998, 280, 104–106. [Google Scholar] [CrossRef]
- Liu, Q.; Kasuga, M.; Sakuma, Y.; Abe, H.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 1998, 10, 1391–1406. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Z.; Xie, S.; Si, T.; Li, Y.; Zhu, J.K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol. 2016, 171, 2744–2759. [Google Scholar] [CrossRef] [PubMed]
- Polashock, J.J. Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J. Am. Soc. Hortic. Sci. 2010, 135, 44. [Google Scholar] [CrossRef]
- Walworth, A.E.; Rowland, L.J.; Polashock, J.J.; Hancock, J.F.; Song, G. Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Mol. Breed. 2012, 30, 1313–1323. [Google Scholar] [CrossRef]
- Nia, Y.; Aslam, M.M.; Wang, X.; Gu, H.; Li, W.; Shao, Y. The CpCOR1 gene enhances cold tolerance and antioxidant activity of papaya fruit in response to postharvest chilling stress. Postharvest Biol. Technol. 2024, 218, 113154. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, J.; Sun, T.; Wang, X.; Zhu, C.; Ai, Y.; Gu, H. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana. J. Integr. Plant Biol. 2017, 59, 118–133. [Google Scholar] [CrossRef]
- Chinnusamy, V. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003, 17, 1043–1054. [Google Scholar] [CrossRef]
- Han, H.; Zhang, L.; Li, S.; Zhao, R.; Wang, F.; Zhang, N.; Wang, X. Transcriptome analysis reveals the involvement of phenylpropane metabolic pathway in cold tolerance of Cinnamomun bodinieri. Russ. J. Plant Physiol. 2025, 72, 24. [Google Scholar] [CrossRef]
- Yue, Y.; Ma, S.; Niu, J.; Ren, Y.; Zhao, X.; Shi, Q.; Yu, Y. Integrative transcriptomic and metabolomic analysis reveal the flavonoid biosynthesis of Physalis under low temperature stress. Physiol. Plant. 2025, 177, e70445. [Google Scholar] [CrossRef]
- Liu, Z.; Pan, J.; Liu, S.; Yang, Z.; Zhang, H.; Yu, T.; He, S. Integrated transcriptome and metabolome analysis provides insights into the low-temperature response in sweet potato (Ipomoea batatas L.). Genes 2025, 16, 899. [Google Scholar] [CrossRef]
- Yu, M.; Zhaxi, L.; Deqing, Z.; Wei, X.; Tang, Y. Advances in plant reponse to low-temperature stress. Plant Growth Regul. 2025, 105, 167–185. [Google Scholar] [CrossRef]
- Cabello, J.V.; Arce, A.L.; Chan, R.L. The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J. 2015, 69, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.; Wang, Y.; Cheng, H.; Su, Y.; Zhang, Y.; Zheng, L. The Kandelia obovata transcription factor KoWRKY40 enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biol. 2022, 22, 274. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Li, X.; Li, W.; Yao, A.; Niu, C.; Hou, R.; Liu, W.; Wang, Y.; Zhang, L.; Han, D. Overexpression of Malus baccata WRKY40 (MbWRKY40) enhances stress tolerance in Arabidopsis subjected to cold and drought. Plant Stress 2023, 10, 100209. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q.; Zhang, Z.; Zhang, P.; Li, C.; Sun, L.; Fang, J.; Wang, R.; Wei, F.; Li, Y.; et al. Genome-wide identification and expression divergence of CBF family in Actinidia arguta and functional analysis of AaCBF4 under cold stress. Life 2025, 15, 227. [Google Scholar] [CrossRef]
- Wang, P.; Chen, X.; Guo, Y.; Zheng, Y.; Yue, C.; Yang, J.; Ye, N. Identification of CBF transcription factors in tea plants and a survey of potential CBF target genes under low temperature. Int. J. Mol. Sci. 2019, 20, 5137. [Google Scholar] [CrossRef]
- Peng, M.; Wang, H.; Wen, S.; Liang, Z.; Huang, Z.; Zhang, B.; Chen, T.; Liu, Q.; Li, Q.; Meng, Y.; et al. Identification and expression analysis of the heat shock proteins Hsp70, Hsp90, and Hsp90b in Litopenaeus vannamei under low-temperature stress. Aquacult. Rep. 2025, 40, 102591. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Wang, X.; Cao, J.; Yang, S.; Shao, Q.; Yu, M.; Jin, Z.; Liu, L. Identification and expression analysis of low-temperature stress responsive MIKC-Type MADS-Box gene family in wheat. Trop. Plant Biol. 2025, 18, 17. [Google Scholar] [CrossRef]
- Lee, H.G.; Seo, P.J. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J. 2015, 82, 962–977. [Google Scholar] [CrossRef]
- Dong, H.; Xing, H.; Li, R.; Fang, Y. Suitable regional distribution of blueberry in Liaoning province under current and future climate scenarios based on MaxEnt model. Chin. J. Agrometeorol. 2025, 46, 1338–1349. [Google Scholar] [CrossRef]
- Kaplan, F.; Kopka, J.; Haskell, D.W.; Zhao, W.; Schiller, K.C.; Gatzke, N.; Sung, D.Y.; Guy, C.L. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 2004, 136, 4159–4168. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Lan, J.; Wei, D.; Lan, L.; Hao, H.; Zhao, S.; Huang, L.; Shuang, K.; Bin, C.; Wen, H. A review of bavachinin and its derivatives as multi-therapeutic agents. Chem. Biodivers. 2025, 22, 1612–1880. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Xu, R.; Chang, K.; Yuan, S.; Huang, C.; Wang, J.; Li, S.; Liu, F.; Zhong, F. Identification of PAL gene in purple cabbage and functional analysis related to anthocyanin synthesis. Horticulturae 2023, 9, 469. [Google Scholar] [CrossRef]
- Li, X.; Zang, C.; Ge, H.; Zhang, J.; Grierson, D.; Yin, X.R.; Chen, K.S. Involvement of PAL, C4H, and 4CL in chilling injury-induced flesh lignification of loquat fruit. Hortscience 2017, 52, 127–131. [Google Scholar] [CrossRef]
- Imaizumi, R.; Mameda, R.; Takeshita, K.; Kubo, H.; Sakai, N.; Nakata, S.; Takahashi, S.; Kataoka, K.; Yamamoto, M.; Nakayama, T.; et al. Crystal structure of chalcone synthase, a key enzyme for isoflavonoid biosynthesis in soybean. Proteins 2021, 89, 126–131. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, P.; Hao, S.; Li, R.; Zhang, Y.; Zhao, Q.; Wen, P.; Cheng, C. Characterization and functional analysis of chalcone synthase genes in highbush blueberry (Vaccinium corymbosum). Int. J. Mol. Sci. 2023, 24, 13882. [Google Scholar] [CrossRef]
- Huang, H.; Hu, K.; Han, K.; Xiang, Q.; Silan, D.S. Flower colour modification of chrysanthemum by suppression of F3′H and overexpression of the exogenous Senecio cruentus F3′5′H gene. PLoS ONE 2013, 8, e74395. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Putterill, J.; Dare, A.P.; Plunkett, B.J.; Cooney, J.; Peng, Y.; Souleyre, E.J.F.; Albert, N.W.; Espley, R.V.; Günther, C.S. Two genes, ANS and UFGT2, from Vaccinium spp. are key steps for modulating anthocyanin production. Front. Plant Sci. 2023, 14, 1082246. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, H.; Yang, C.; Wang, X.; Shi, B.; Zheng, B.; Ma, X.; Qian, M.; Gao, A.; Zhou, K. Transcription regulation of anthocyanins and proanthocyanidins accumulation by bagging in ‘Ruby’ red mango: An RNA-seq study. Horticulturae 2023, 9, 870. [Google Scholar] [CrossRef]
- Zhong, R.; Liu, J.; Huang, X.; Zhang, Z.; Li, Y.; Fang, F.; Pang, X. Molecular and functional characterization of the key proanthocyanidin pathway enzymes anthocyanidin reductases and leucoanthocyanidin reductases in Litchi chinensis. J. Agric. Food Chem. 2024, 72, 25972–25986. [Google Scholar] [CrossRef]
- Wagner, A.; Tobimatsu, Y.; Goeminne, G.; Phillips, L.; Flint, H.; Steward, D.; Torr, K.; Donaldson, L.; Boerjan, W.; Ralph, J. Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements. Plant Mol. Biol. 2013, 81, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; He, C.; Yan, S.; Liu, J.; Huang, H.; Li, X.; Su, Q.; Jiang, W.; Pang, Y. New dual functional CYP450 gene involves in isoflavone biosynthesis in Glycine max L. Synth. Syst. Biotechnol. 2023, 8, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Chen, Z.; Jiang, H.; Chen, J. Computational studies of the regioselectivities of COMT-catalyzed meta-/para-O methylations of luteolin and quercetin. J. Phys. Chem. B 2014, 118, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Kranz, H.D.; Denekamp, M.; Greco, R.; Jin, H.; Leyva, A.; Meissner, R.C.; Petroni, K.; Urzainqui, A.; Bevan, M.; Martin, C.; et al. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J. 1998, 16, 263–276. [Google Scholar] [CrossRef]
- Bogs, J.; Faffe, F.W.; Takos, A.M.; Walker, A.R.; Robinson, S.P. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 2007, 143, 1347–1361. [Google Scholar] [CrossRef]
- Czemmel, S.; Stracke, R.; Weissharr, B.; Cordon, N.; Harris, N.N.; Walker, A.R.; Robinson, S.P.; Bogs, J. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol. 2009, 151, 1513–1530. [Google Scholar] [CrossRef]
- Zifkin, M.; Jin, A.; Ozga, J.A.; Zaharia, I.; Schernthamer, J.P.; Gesell, A.; Abrams, S.R.; Kennedy, J.A.; Constabel, P. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol. 2012, 158, 200–224. [Google Scholar] [CrossRef]
- An, X.; Tian, Y.; Chen, K.; Liu, X.; Liu, D.; Xie, X.; Cheng, C.; Cong, P.; Hao, Y. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiol. 2015, 56, 650–662. [Google Scholar] [CrossRef]
- Deluc, L.; Bogs, J.; Walker, A.R.; Ferrier, T.; Decendit, A.; Merillon, J.; Robinson, S.P.; Barrieu, F. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol. 2008, 147, 2041–2053. [Google Scholar] [CrossRef]
- Liu, C.; Jun, J.H.; Dixon, R.A. MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol. 2014, 165, 1424–1439. [Google Scholar] [CrossRef]
- Akagi, T.; Tsujimoto, T.; Ikegami, A.; Yonemori, K. Effects of seasonal temperature changes on DkMyb4 expression involved in proanthocyanidin regulation in two genotypes of persimmon (Diospyros kaki Thunb.) fruit. Planta 2011, 233, 883–894. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, G.; Tang, Q.; Song, W.; Gao, Q.; Xiang, G.; Li, X.; Liu, G.; Fan, W.; Li, X.; et al. EbMYBP1, a R2R3-MYB transcription factor, promotes flavonoid biosynthesis in Erigeron breviscapus. Front. Plant Sci. 2022, 13, 946827. [Google Scholar] [CrossRef]
- Wang, N.; Xu, H.; Jiang, S.; Zhang, Z.; Lu, N.; Qiu, H.; Qu, C.; Wang, Y.; Wu, S.; Chen, X. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant J. 2017, 90, 276–292. [Google Scholar] [CrossRef]









| Gene ID | Gene Family | Gene Name | Fold Change | |||
|---|---|---|---|---|---|---|
| L6h_vs._L0h | L12h_vs._L0h | L24h_vs._L0h | L48h_vs._L0h | |||
| VaccDscaff12-processed-gene-63.5 | AP2 | CBF2 | 16.68 | -- | -- | -- |
| VaccDscaff206-processed-gene-1.6 | ERF109 | 16.34 | -- | -- | -- | |
| VaccDscaff38-augustus-gene-244.13 | MYB | MYB14 | 16.31 | -- | -- | -- |
| VaccDscaff20-augustus-gene-258.24 | WRKY | WRKY40 | 16.87 | 26.62 | -- | -- |
| VaccDscaff2-augustus-gene-24.22 | HSF | HSF30 | -- | -- | 20.26 | -- |
| VaccDscaff13-processed-gene-79.20 | Zinc finger | MPSR1 | -- | -- | 17.19 | -- |
| VaccDscaff27-augustus-gene-109.27 | ZHD4 | -- | -- | -- | 17.92 | |
| VaccDscaff22-snap-gene-30.36 | MADS-box | MADS3 | -- | -- | -- | 25.14 |
| VaccDscaff23-augustus-gene-282.26 | MADS27 | -- | -- | -- | 30.61 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, S.; Li, Y.; Feng, X.; Song, Y.; Liu, Y.; An, J.; Wen, M.; Zhang, C.; Zhou, L. Integrated Analysis of Transcriptome and Metabolome Provides Insights into Phenylpropanoid Biosynthesis of Blueberry Leaves in Response to Low-Temperature Stress. Horticulturae 2025, 11, 1495. https://doi.org/10.3390/horticulturae11121495
Jia S, Li Y, Feng X, Song Y, Liu Y, An J, Wen M, Zhang C, Zhou L. Integrated Analysis of Transcriptome and Metabolome Provides Insights into Phenylpropanoid Biosynthesis of Blueberry Leaves in Response to Low-Temperature Stress. Horticulturae. 2025; 11(12):1495. https://doi.org/10.3390/horticulturae11121495
Chicago/Turabian StyleJia, Sijin, Yuanjing Li, Xinghua Feng, Yan Song, Yanyu Liu, Jiayao An, Mingzheng Wen, Chunyu Zhang, and Lianxia Zhou. 2025. "Integrated Analysis of Transcriptome and Metabolome Provides Insights into Phenylpropanoid Biosynthesis of Blueberry Leaves in Response to Low-Temperature Stress" Horticulturae 11, no. 12: 1495. https://doi.org/10.3390/horticulturae11121495
APA StyleJia, S., Li, Y., Feng, X., Song, Y., Liu, Y., An, J., Wen, M., Zhang, C., & Zhou, L. (2025). Integrated Analysis of Transcriptome and Metabolome Provides Insights into Phenylpropanoid Biosynthesis of Blueberry Leaves in Response to Low-Temperature Stress. Horticulturae, 11(12), 1495. https://doi.org/10.3390/horticulturae11121495

