Uptake Efficiency of Nitrogen Forms and Kinetic Parameters of Grafted ‘Chardonnay’ and ‘Cabernet Sauvignon’ Vines
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Nutrient Depletion and Kinetics of NO3− and NH4+ Uptake
2.3. Photosynthetic Variables
2.4. Chlorophyll a Fluorescence Assessment
2.5. Biochemical Variables in Leaves and Roots
2.6. Grapevine Collection and N Analysis in Tissues
2.7. Root System Morphology
2.8. Kinetic Parameters Related to the Uptake of N Forms
2.9. Statistical Analysis
3. Results
3.1. Plant Growth and N Concentration in Organs
3.2. Root Morphology
3.3. Kinetic Parameters Associated with NO3− and NH4+ Uptake
3.4. NO3− and NH4+ Uptake Assessment Through the Kinetic Kinetic Time-Course Sampling
3.5. Photosynthetic Parameters
3.6. Biochemical Variables in Leaves and Roots
3.7. Photosynthetic Pigments
3.8. Principal Component Analysis
4. Discussion
4.1. Morphological Parameters, Tissue Nutrients and Kinetic Parameters Related to N Uptake
4.2. Photosynthetic and Biochemical Variables
4.3. Principal Component Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cataldo, E.; Fucile, M.; Manzi, D.; Masini, C.M.; Doni, S.; Mattii, G.B. Sustainable soil management: Effects of clinoptilolite and organic compost soil application on eco-physiology, quercitin, and hydroxylated, methoxylated anthocyanins on Vitis vinifera. Plants 2023, 12, 708. [Google Scholar] [CrossRef] [PubMed]
- Visconti, F.; López, R.; Olego, M.Á. The health of vineyard soils: Towards a sustainable viticulture. Horticulture 2024, 10, 154. [Google Scholar] [CrossRef]
- Havlin, J.L.; Austin, R.; Hardy, D.; Howard, A.; Heitman, J.L. Nutrient management effects on wine grape tissue nutrient content. Plants 2022, 11, 158. [Google Scholar] [CrossRef]
- Tassinari, A.; Stefanello, L.O.; Schwalbert, R.A.; Vitto, B.B.; Kulmann, M.S.S.; Santos, J.P.J.; Arruda, W.S.; Schwalbert, R.; Tiecher, T.L.; Ceretta, C.A.; et al. Nitrogen critical level in leaves in ‘Chardonnay’ and ‘Pinot Noir’ grapevines to adequate yield and quality must. Agronomy 2022, 12, 1132. [Google Scholar] [CrossRef]
- Nortjé, G.P.; Laker, M.C. Factors that determine the sorption of mineral elements in soils and their impact on soil and water pollution. Minerals 2021, 11, 821. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.; Qin, W.; Feng, J. Measures for reducing nitrate leaching in orchards: A review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef]
- Marsala, R.Z.; Capri, E.; Russo, E.; Barazzoni, L.; Peroncini, E.; Crema, M.; De Carrey, R.; Otero, N.; Colla, R.; Calliera, M.; et al. Influence of nitrogen-based fertilization on nitrates occurrence in groundwater of hilly vineyards. Sci. Total Environ. 2021, 766, 144512. [Google Scholar] [CrossRef] [PubMed]
- Ibacache, A.; Verdugo-Vásquez, N.; Zurita-Silva, A. Rootstock: Scion combinations and nutrient uptake in grapevines. In Fruit Crops; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 297–316. [Google Scholar] [CrossRef]
- Rahemi, A.; Dodson Peterson, J.C.; Lund, K.T. Commercial grape rootstocks selections. In Grape Rootstocks and Related Species; Rahemi, A., Peterson, J.C.D., Lund, K.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 117–180. [Google Scholar] [CrossRef]
- Ollat, N.; Peccoux, A.; Papura, D.; Esmenjaud, D.; Marguerit, E.; Tandonnet, J.-P.; Bordenave, L.; Cookson, S.J.; Barrieu, F.; Rossdeutsch, L.; et al. Rootstocks as a component of adaptation to environment. In Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective; Gerós, H., Chaves, M.M., Gil, H.M., Delrot, S., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 68–108. [Google Scholar] [CrossRef]
- Hrotkó, K.; Rozpara, E. Rootstocks and improvement. In Cherries: Botany, Production and Uses; Quero-García, J., Iezzoni, A., Pulawska, J., Lang, G., Eds.; CABI: Wallingford, UK, 2017; pp. 117–139. [Google Scholar] [CrossRef]
- Vahdati, K.; Sarikhani, S.; Arab, M.M.; Leslie, C.A.; Dandekar, A.M.; Aletà, N.; Bielsa, B.; Gradziel, T.M.; Montesinos, Á.; Rubio-Cabetas, M.J.; et al. Advances in rootstock breeding of nut trees: Objectives and strategies. Plants 2021, 10, 2234. [Google Scholar] [CrossRef]
- Shaffer, R.; Sampaio, T.L.; Pinkerton, J.; Vasconcelos, M.C. Grapevine Rootstocks for Oregon Vineyards; Oregon State University Extension Service: Corvallis, OR, USA, 2004; EM8882. [Google Scholar]
- Jin, Z.; Sun, T.; Sun, H.; Yue, Q.; Yao, Y. Modifications of ‘Summer Black’ grape berry quality as affected by the different rootstocks. Sci. Hortic. 2016, 210, 130–137. [Google Scholar] [CrossRef]
- Dalbó, M.; Feldberg, N. Agronomic behavior of grape rootstocks resistant to young vine decline in Santa Catarina State, Brazil. BIO Web Conf. 2016, 7, 01017. [Google Scholar] [CrossRef]
- Instituto Agronômico de Campinas (IAC). Cultivar IAC 572 ‘Jales’. Available online: https://www.iac.sp.gov.br/cultivares/inicio/Folders/Videira/IAC572(Jales).htm (accessed on 2 December 2025).
- Soares, J.M.; Leão, P.C.S. A Vitivinicultura no Semiárido Brasileiro; Embrapa Informação Tecnológica: Brasília, DF, Brazil; Embrapa Semi-Árido: Petrolina, Brazil, 2009; 756p. [Google Scholar]
- Bowers, J.; Boursiquot, J.-M.; This, P.; Chu, K.; Johansson, H.; Meredith, C. Historical genetics: The parentage of Chardonnay, Gamay, and other wine grapes of northeastern France. Science 1999, 285, 1562–1565. [Google Scholar] [CrossRef]
- This, P.; Lacombe, T.; Thomas, M.R. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef]
- Bowers, J.; Meredith, C. The parentage of a classic wine grape, Cabernet Sauvignon. Nat. Genet. 1997, 16, 84–87. [Google Scholar] [CrossRef]
- Mauro, R.P.; Pérez-Alfocea, F.; Cookson, S.J.; Ollat, N.; Vitale, A. Physiological and molecular aspects of plant rootstock-scion interactions. Front. Plant Sci. 2022, 13, 852518. [Google Scholar] [CrossRef]
- Shivran, M.; Sharma, N.; Dubey, A.K.; Singh, S.K.; Sharma, N.; Sharma, R.M.; Singh, N.; Singh, R. Scion–rootstock relationship: Molecular mechanism and quality fruit production. Agriculture 2022, 12, 2036. [Google Scholar] [CrossRef]
- Keller, M.; Kummer, M.; Vasconcelos, M.C. Soil nitrogen utilisation for growth and gas exchange by grapevines in response to nitrogen supply and rootstock. Aust. J. Grape Wine Res. 2001, 7, 2–11. [Google Scholar] [CrossRef]
- Kulmann, M.S.S.; Sete, P.B.; Paula, B.V.; Stefanello, L.O.; Schwalbert, R.; Schwalbert, R.A.; Arruda, W.S.; Sans, G.A.; Parcianello, C.F.; Nicoloso, F.T.; et al. Kinetic parameters govern of the uptake of nitrogen forms in ‘Paulsen’ and ‘Magnolia’ grapevine rootstocks. Sci. Hortic. 2020, 264, 109174. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, L.; Wang, S.; Gu, W.; Huang, D.; Xu, W.; Jiang, A.; Li, S. Nitrate uptake kinetics of grapevine under root restriction. Sci. Hortic. 2007, 111, 358–364. [Google Scholar] [CrossRef]
- Martinez, H.E.P.; Olivos, A.; Brown, P.H.; Clemente, J.M.; Bruckner, C.H.; Jifon, J.L. Short-term water stress affecting NO3− absorption by almond plants. Sci. Hortic. 2015, 197, 50–56. [Google Scholar] [CrossRef]
- Fernandes, S.R.S.; Santos, L.A. Absorção de nutrientes. In Nutrição Mineral de Plantas, 2nd ed.; Fernandes, M.S., Ed.; Sociedade Brasileira de Ciência do Solo (SBCS): Viçosa, MG, Brazil, 2018; p. 432. (In Portuguese) [Google Scholar]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: London, UK, 2012. [Google Scholar]
- Castro-Rodríguez, V.; Cañas, R.A.; de la Torre, F.N.; Pascual, M.B.; Avila, C.; Cánovas, F.M. Molecular fundamentals of nitrogen uptake and transport in trees. J. Exp. Bot. 2017, 68, 2489–2500. [Google Scholar] [CrossRef]
- Xuan, W.; Beeckman, T.; Xu, G. Plant nitrogen nutrition: Sensing and signaling. Curr. Opin. Plant Biol. 2017, 39, 57–65. [Google Scholar] [CrossRef]
- Paula, B.V.; Ramos, A.C.M.; Telles, L.A.R.; Schneider, R.O.; Kulmann, M.S.S.; Kaminski, J.; Ceretta, C.A.; Melo, G.W.B.; Mayer, N.A.; Antunes, L.E.; et al. Morphological and kinetic parameters of the uptake of nitrogen forms in clonal peach rootstocks. Sci. Hortic. 2018, 239, 205–209. [Google Scholar] [CrossRef]
- Paula, B.V.; Sete, P.B.; Berghetti, Á.L.P.; da Silva, L.O.S.; Jung, J.P.; Nicoloso, F.T.; Mayer, N.A.; Kulmann, M.S.; Brunetto, G. Kinetic parameters related to nitrogen uptake in ‘Okinawa’ peach rootstocks are altered by ‘Chimarrita’ scion Nitrogen uptake in ‘Okinawa’ peach rootstock. J. Sci. Food Agric. 2022, 103, 917–923. [Google Scholar] [CrossRef]
- Sete, P.B.; Paula, B.V.; Kulmann, M.S.S.; Rossi, A.; Rozane, D.E.; Hindersmann, J.; Krug, A.V.; Brunetto, G. Kinetic parameters related to nitrogen uptake efficiency of pear trees (Pyrus communis). Sci. Hortic. 2020, 272, 109530. [Google Scholar] [CrossRef]
- Kalcsits, L.; Lotze, E.; Tagliavini, M.; Hannam, K.D.; Mimmo, T.; Neilsen, D.; Neilsen, G.; Atkinson, D.; Casagrande Biasuz, E.; Borruso, L.; et al. Recent achievements and new research opportunities for optimizing macronutrient availability, acquisition, and distribution for perennial fruit crops. Agronomy 2020, 10, 1738. [Google Scholar] [CrossRef]
- Menegatti, R.D.; Souza, A.G.; Bianchi, V.J. Nutritional efficiency for nitrogen, phosphorus and potassium in peach rootstocks. J. Plant Nutr. 2020, 44, 228–237. [Google Scholar] [CrossRef]
- Serio, F.; Miglietta, P.P.; Lamastra, L.; Ficocelli, S.; Intini, F.; De Leo, F.; De Donno, A. Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in Southern Apulia Region (Italy). Sci. Total Environ. 2018, 645, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yang, J.L.; Zhao, X.R.; Yang, S.H.; Mulder, J.; Dörsch, P.; Zhang, G.L. Nitrate leaching and N accumulation in a typical subtropical red soil with N fertilization. Geoderma 2022, 407, 115559. [Google Scholar] [CrossRef]
- Shu, W.; Wang, P.; Zhao, J.; Ding, M.; Zhang, H.; Nie, M.; Huang, G. Sources and migration similarly determine nitrate concentrations: Integrating isotopic, landscape, and biological approaches. Sci. Total Environ. 2022, 852, 158216. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Zhang, T.; Yao, S.; Guo, Y. Effects of households’ fertilization knowledge and technologies on over-fertilization: A case study of grape growers in Shaanxi, China. Land 2020, 9321, 321. [Google Scholar] [CrossRef]
- Yuan, B.; Yue, F.; Cui, Y.; Chen, C. The role of fine management techniques in relation to agricultural pollution and farmer income: The case of the fruit industry. Environ. Res. Lett. 2022, 17, 034001. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil; California Agricultural Experiment Station: Berkeley, CA, USA, 1950; Circular 347. [Google Scholar]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef] [PubMed]
- Paula, B.V.; Rozane, D.E.; Brunetto, G.; Marques, A.C.R.; Santos, E.; Melo, G.W.B. Influx 1.0: Software Para Estimar Parâmetros Cinéticos de Absorção de Nutrientes Com Base na Equação de Michaelis–Menten; SSRN: 2024. Available online: https://ssrn.com/abstract=4949719 (accessed on 10 September 2024). (In Portuguese).
- von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence a practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, G.; Li, J.; Qian, Q.; Yu, J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 2004, 167, 527–533. [Google Scholar] [CrossRef]
- Zeraik, A.E.; Souza, F.S.; Fatibello-Filho, O.; Leite, O.D. Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação. Quim. Nova 2008, 31, 731–734. (In Portuguese) [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S. Purification and quantitative relationship with water-soluble protein in seedlings. J. Plant Physiol. 1977, 48, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- El-Moshaty, F.I.B.; Pike, S.M.; Novacky, A.J.; Sehgal, O.P. Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus. Physiol. Mol. Plant Pathol. 1993, 43, 109–119. [Google Scholar] [CrossRef]
- Jaworski, E.G. Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 1971, 43, 1274–1279. [Google Scholar] [CrossRef]
- Gibson, R.B. The determination of nitrogen by the Kjeldahl method. J. Am. Chem. Soc. 1904, 26, 105–110. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Danjon, F.; Pot, D.; Raffin, A.; Courdier, F. Genetics of root architecture in 1- year-old Pinus pinaster measured with the WinRHIZO image analysis system: Preliminary results. In The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology; Springer: Dordrecht, Holanda, 2000; pp. 77–81. [Google Scholar] [CrossRef]
- Ruiz, H.A. Estimativa dos parâmetros cinéticos em Km e Vmax por uma aproximação gráfico-matemática. Rev. Ceres 1985, 32, 79–84. (In Portuguese) [Google Scholar]
- Nielsen, N.E.; Barber, S.A. Differences among genotypes of corn in the kinetics of P uptake. Agron. J. 1978, 70, 695–698. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 22 August 2022).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://cran.r-project.org/package=factoextra (accessed on 22 August 2022).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Fathi, A. Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A review. Agrisost 2022, 28, 1–8. [Google Scholar] [CrossRef]
- Lang, C.P.; Bárdos, G.; Merkt, N.; Zörb, C. Expression of key enzymes for nitrogen assimilation in grapevine rootstock in response to N—Form and timing. J. Plant Nutr. Soil. Sci. 2020, 183, 91–98. [Google Scholar] [CrossRef]
- Ventura, M.; Scandellari, F.; Bonora, E.; Tagliavini, M. Nutrient release during decomposition of leaf litter in a peach (Prunus persica L.) orchard. Nutr. Cycl. Agroecosyst. 2010, 87, 115–125. [Google Scholar] [CrossRef]
- Brunetto, G.; Ceretta, C.A.; Melo, G.W.B.; Girotto, E.; Ferreira, P.A.A.; Lourenzi, C.R.; Couto, R.R.; Tassinaria, A.; Hammerschmitt, R.K.; Silva, L.O.S.; et al. Contribution of nitrogen from urea applied at different rates and times on grapevine nutrition. Sci. Hortic. 2016, 207, 1–6. [Google Scholar] [CrossRef]
- Rossdeutsch, L.; Schreiner, R.P.; Skinkis, P.A.; Deluc, L. Nitrate uptake and transport properties of two grapevine rootstocks with varying vigor. Front. Plant Sci. 2021, 11, 608813. [Google Scholar] [CrossRef]
- Mahmud, K.P.; Field, S.K.; Rogiers, S.Y.; Nielsen, S.; Guisard, Y.; Holzapfel, B.P. Rootstocks alter the seasonal dynamics and vertical distribution of new root growth of Vitis vinifera cv. Shiraz grapevines. Agronomy 2023, 13, 2355. [Google Scholar] [CrossRef]
- Cuneo, I.F.; Barrios-Masias, F.; Knipfer, T.; Uretsky, J.; Reyes, C.; Lenain, P.; Brodersen, C.R.; Walker, M.A.; McElrone, A.J. Differences in grapevine rootstock sensitivity and recovery from drought are linked to fine root cortical lacunae and root tip function. New Phytol. 2021, 229, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Kulmann, M.S.S.; Stefanello, L.O.; Tassinari, A.; Arruda, W.S.; Vitto, B.B.; Souza, R.O.S.; Ceretta, C.A.; Simão, D.G.; Tiecher, T.L.; Brunetto, G. Dynamics of spatial and temporal growth of the root system of grapevine (Vitis vinifera L.) under nitrogen levels in sandy soil in subtropical climate. Sci. Hortic. 2022, 303, 111223. [Google Scholar] [CrossRef]
- Batista, R.O.; Furtini Neto, A.E.; Deccetti, S.F.C.; Viana, C.S. Root morphology and nutrient uptake kinetics by australian Cedar clones. Rev. Caatinga 2016, 29, 153–162. [Google Scholar] [CrossRef]
- Somkuwar, R.G.; Bhange, M.A.; Upadhyay, A.K.; Ramteke, S.D. Interaction effect of rootstocks on gas exchange parameters, biochemical changes and nutrient status) in Sauvignon Blanc winegrapes. J. Adv. Agric. 2014, 3, 218–225. [Google Scholar] [CrossRef]
- Dovis, V.L.; Erismann, N.M.; Machado, E.C.; Quaggio, J.A.; Boaretto, R.M.; Mattos Júnior, D. Biomass partitioning and photosynthesis in the quest for nitrogen—Use efficiency for citrus tree species. Tree Physiol. 2021, 41, 163–176. [Google Scholar] [CrossRef]
- Cannea, F.B.; Padiglia, A. Antioxidant defense systems in plants: Mechanisms, regulation, and biotechnological strategies for enhanced oxidative stress tolerance. Life 2025, 15, 1293. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Sood, M. Reactive oxygen species (ROS): Plant perspectives on oxidative signalling and biotic stress response. Discov. Plants 2025, 2, 187. [Google Scholar] [CrossRef]
- Nguyen, T.N.P.; Sung, J. Light spectral-ranged specific metabolisms of plant pigments. Metabolites 2025, 15, 1. [Google Scholar] [CrossRef]
- Donato, V.M.T.S.; Andrade, A.G.; Souza, E.S.; França, J.G.E.; Maciel, G.A. Atividade enzimática em variedades de cana-de-açúcar cultivadas in vitro sob diferentes níveis de nitrogênio. Pesqui. Agropecu. Bras. 2004, 39, 1087–1093. (In Portuguese) [Google Scholar] [CrossRef]
- Barbosa, M.P.; Bonfim, R.A.A.D.; Silva, L.D.D.; Souza, M.O.; Soares, P.P.D.S.; Sá, M.C.; Cairo, P.A.R. Nitrate reductase activity in Eucalyptus urophylla and Khaya senegalensis seedlings: Optimization of the in vivo assay. J. Ecol. Eng. 2022, 23, 204–211. [Google Scholar] [CrossRef]
- Nugraheni, W.; Solichatu, S.; Etikawati, N. Variations in growth, proline content, and nitrate reductase activity of Canna edulis at different water availability. Cell. Biol. Dev. 2019, 3, 30–39. [Google Scholar] [CrossRef]
- Jiménez, A.; Martí, M.C.; Sevilla, F. Oxidative post-translational modifications of plant antioxidant systems under environmental stress. Physiol. Plant. 2025, 177, e70118. [Google Scholar] [CrossRef]
- Glass, A.D.M.; Britto, D.T.; Kaiser, B.N.; Kinghorn, J.R.; Kronzucker, H.J.; Kumar, A.; Okamoto, M.; Rawat, S.; Siddiqi, M.Y.; Unkles, S.E.; et al. The regulation of nitrate and ammonium transport systems in plants. J. Exp. Bot. 2002, 53, 855–864. [Google Scholar] [CrossRef]
- Muratore, C.; Espen, L.; Prinsi, B. Nitrogen uptake in plants: The plasma membrane root transport systems from a physiological and proteomic perspective. Plants 2021, 10, 681. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Li, J.; Huang, D. The utilization and roles of nitrogen in plants. Forests 2024, 15, 1191. [Google Scholar] [CrossRef]
- Sperandio, M.V.L. Expressão gênica de transportadores de nitrato e amônio, proteína reguladora NAR e bombas de prótons em arroz (Oryza Sativa L.) e seus efeitos na eficiência de absorção de nitrogênio. Master’s Thesis, Na Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil, 2011; 69p. (In Portuguese). [Google Scholar]
- Meng, X.; Chen, W.W.; Wang, Y.Y.; Huang, Z.R.; Ye, X.; Chen, L.S.; Yang, L.T. Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE 2021, 16, e0246944. [Google Scholar] [CrossRef] [PubMed]
- Schwalbert, R.; Milanesi, G.D.; Stefanello, L.; Moura-Bueno, J.M.; Drescher, G.L.; Marques, A.C.R.; Kulmann, M.S.S.; Berghetti, A.P.; Tarouco, C.P.; Machado, L.C.; et al. How do native grasses from South America handle zinc excess in the soil? A physiological approach. Environ. Exp. Bot. 2022, 195, 104779. [Google Scholar] [CrossRef]









| Variables | ‘Cabernet Sauvignon’ | ‘Chardonnay’ | ||||
|---|---|---|---|---|---|---|
| ‘IAC 572’ | ‘Paulsen 1103’ | ‘SO4’ | ‘IAC 572’ | ‘Paulsen 1103’ | ‘SO4’ | |
| Shoot dry matter (g) | 13.14 ns | 12.15 ns | 12.10 ns | 10.06 ns | 11.87 ns | 11.02 ns |
| Root dry matter (g) | 3.75 ns | 3.74 ns | 2.87 ns | 2.33 b | 4.05 a | 3.71 ab |
| Total dry matter (g) | 16.89 ns | 15.89 ns | 14.98 ns | 12.38 ns | 15.93 ns | 14.73 ns |
| Shoot/root ratio | 3.74 ns | 3.28 ns | 4.44 ns | 4.44 ns | 3.02 ns | 3.07 ns |
| Total N in leaf (g kg−1) | 23.84 ns | 22.57 ns | 24.42 ns | 23.14 ab | 22.73 b | 25.70 a |
| Total N in stems (g kg−1) | 7.54 b | 7.71 b | 8.97 a | 9.71 a | 7.07 b | 8.84 a |
| Total N in roots (g kg−1) | 17.94 b | 24.53 a | 16.29 b | 15.86 b | 14.35 b | 21.86 a |
| N use efficiency (g2 g−1) (1) | 1.33 ns | 1.10 ns | 1.09 ns | 0.92 b | 1.32 a | 0.90 b |
| N uptake efficiency (g2 g−1) (1) | 3.63 ns | 3.93 ns | 5.05 ns | 5.98 a | 3.19 b | 4.59 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassinari, A.; Kulmann, M.S.d.S.; Siqueira, G.N.d.; Peripolli, G.Z.; Dias, B.G.; Hindersmann, J.; Krug, A.V.; Schwalbert, R.; Berghetti, Á.L.P.; Tabaldi, L.A.; et al. Uptake Efficiency of Nitrogen Forms and Kinetic Parameters of Grafted ‘Chardonnay’ and ‘Cabernet Sauvignon’ Vines. Horticulturae 2025, 11, 1480. https://doi.org/10.3390/horticulturae11121480
Tassinari A, Kulmann MSdS, Siqueira GNd, Peripolli GZ, Dias BG, Hindersmann J, Krug AV, Schwalbert R, Berghetti ÁLP, Tabaldi LA, et al. Uptake Efficiency of Nitrogen Forms and Kinetic Parameters of Grafted ‘Chardonnay’ and ‘Cabernet Sauvignon’ Vines. Horticulturae. 2025; 11(12):1480. https://doi.org/10.3390/horticulturae11121480
Chicago/Turabian StyleTassinari, Adriele, Matheus Severo de Souza Kulmann, Gustavo Nogara de Siqueira, Guilherme Zanon Peripolli, Bianca Goularte Dias, Jacson Hindersmann, Amanda Veridiana Krug, Raissa Schwalbert, Álvaro Luís Pasquetti Berghetti, Luciane Almeri Tabaldi, and et al. 2025. "Uptake Efficiency of Nitrogen Forms and Kinetic Parameters of Grafted ‘Chardonnay’ and ‘Cabernet Sauvignon’ Vines" Horticulturae 11, no. 12: 1480. https://doi.org/10.3390/horticulturae11121480
APA StyleTassinari, A., Kulmann, M. S. d. S., Siqueira, G. N. d., Peripolli, G. Z., Dias, B. G., Hindersmann, J., Krug, A. V., Schwalbert, R., Berghetti, Á. L. P., Tabaldi, L. A., Nicoloso, F. T., Araujo, M. M., & Brunetto, G. (2025). Uptake Efficiency of Nitrogen Forms and Kinetic Parameters of Grafted ‘Chardonnay’ and ‘Cabernet Sauvignon’ Vines. Horticulturae, 11(12), 1480. https://doi.org/10.3390/horticulturae11121480

