Root-Specific Overexpression of the CmDUF239-1 Gene Enhances Heat Tolerance in Melon Seedlings by Upregulating Antioxidant Enzymes Activities, Proline Content, and Expression of Heat Shock Protein-Related Genes
Abstract
1. Introduction
2. Materials and Methods
2.1. Creation of CmDUF239-1 Overexpressing Melon Seedlings
2.2. Heat Stress Treatment
2.3. Measurement of Phenotypic Indicators
2.4. Measurement of Physiological Indicators
2.5. Transcriptome Analysis
2.6. Quantitative Fluorescent PCR Analysis
2.7. Data Statistical Analysis and Graphical Presentation
3. Results
3.1. Effects of Overexpressing the CmDUF239-1 on Phenotype and Relative Conductivity in Melon Seedlings Under Heat Stress
3.2. Differential Gene Analysis
3.3. The Effect of CmDUF239-1 Overexpression on Antioxidant Enzyme Activity in Roots
3.4. The Effect of CmDUF239-1 Overexpression on the Expression of Antioxidant Enzyme-Related Genes
3.5. The Effect of CmDUF239-1 Overexpression on Proline Accumulation and Related Gene Expression
3.6. The Effect of CmDUF239-1 Overexpression on HSP Gene Expression
4. Discussion
4.1. Positive Regulation of Heat Tolerance in Grafted Melon by CmDUF239-1
4.2. CmDUF239-1 Enhances Heat Tolerance in Melon Seedlings by Increasing Antioxidant Enzyme Activity and Proline Accumulation
4.3. CmDUF239-1 Enhances HSP-Related Gene Expression in Melon Seedlings to Mitigate Heat Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ROS | reactive oxygen species |
HSPs | Heat Shock Protein |
MT | melatonin |
OEDUF239-1 | overexpressed CmDUF239-1 |
qRT-PCR | quantitative real-time PCR |
FW | fresh mass |
DW | dry mass |
MDA | malondialdehyde |
SOD | superoxide dismutase |
POD | peroxidase |
CAT | catalase |
APX | ascorbate peroxidase |
ProDH | proline dehydrogenase |
Pro | proline |
TPM | transcripts per million |
EV | empty vector |
PCA | Principal Component Analysis |
GO | Gene Ontology |
GR | glutathione reductase |
References
- Shelake, R.M.; Wagh, S.G.; Patil, A.M.; Červený, J.; Waghunde, R.R.; Kim, J.Y. Heat stress and plant–biotic interactions: Advances and perspectives. Plants 2024, 13, 2022. [Google Scholar] [CrossRef]
- Sato, H.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Complex plant responses to drought and heat stress under climate change. Plant J. 2024, 117, 1873–1892. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Sharma, L.; Onkarappa, D.; Yogendra, K.; Bose, J.; Sharma, R.A. Molecular basis and engineering strategies for transcription factor-mediated reproductive-stage heat tolerance in crop plants. Agronomy 2024, 14, 159. [Google Scholar] [CrossRef]
- Masouleh, S.S.S.; Sassine, Y.N. Molecular and biochemical responses of horticultural plants and crops to heat stress. Ornam. Hortic. 2020, 26, 148–158. [Google Scholar] [CrossRef]
- Lakshmi, G.; Beena, R.; Soni, K.B.; Viji, M.M.; Jha, U.C. Exogenously applied plant growth regulator protects rice from heat-induced damage by modulating plant defense mechanism. J. Crop Sci. Biotechnol. 2022, 26, 63–75. [Google Scholar] [CrossRef]
- Zahra, N.; Hafeez, M.B.; Ghaffar, A.; Kausar, A.; Zeidi, M.A.; Siddique, K.H.M.; Farooq, M. Plant photosynthesis under heat stress: Effects and management. Environ. Exp. Bot. 2023, 206, 105178. [Google Scholar] [CrossRef]
- Saini, N.; Nikalje, G.C.; Zargar, S.M.; Suprasanna, P. Molecular insights into sensing, regulation and improving of heat tolerance in plants. Plant Cell Rep. 2021, 41, 799–813. [Google Scholar] [CrossRef]
- Pandey, V.; Singh, S. Plant adaptation and tolerance to heat stress: Advance approaches and future aspects. Comb. Chem. High Throughput Screen. 2024, 27, 1701–1715. [Google Scholar] [CrossRef]
- Gong, H.L.; Chen, Q.Q. Exogenous sucrose protects potato seedlings against heat stress by enhancing the antioxidant defense system. J. Soil Sci. Plant Nutr. 2021, 21, 1511–1519. [Google Scholar] [CrossRef]
- Buttar, Z.A.; Wu, S.N.; Arnao, M.B.; Wang, C.; Ullah, I.; Wang, C. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 2020, 9, 809. [Google Scholar] [CrossRef]
- Rahman, S.U.; Ali, A.; Husssain, A.; Nazeer, S.; Hassan, M.U.; Abbas, W. Remediation of heat stress in tomato (Lycopersicon esculentum L.) by foliar application of proline. Turk. J. Agric. Food Sci. Technol. 2025, 13, 648–655. [Google Scholar] [CrossRef]
- Murtazina, N.D.; Sharapova, L.S.; Yurina, N.P. The dynamics of cytoplasmic HSP70 and chloroplast HSP70B chaperone levels under heat stress differs in three pumpkin species with different stress resistance. Appl. Biochem. Microbiol. 2024, 60, 686–693. [Google Scholar] [CrossRef]
- Chandel, G.; Dubey, M.; Meena, R. Differential expression of heat shock proteins and heat stress transcription factor genes in rice exposed to different levels of heat stress. J. Plant Biochem. Biotechnol. 2012, 22, 277–285. [Google Scholar] [CrossRef]
- Zhuang, K.; Gao, Y.; Liu, Z.; Diao, P.; Sui, N.; Meng, Q.; Meng, C.; Kong, F. WHIRLY1 regulates HSP21.5A expression to promote thermotolerance in tomato. Plant Cell Physiol. 2019, 61, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.B.; Xiong, T.; Wang, X.J.; Chen, Y.R.; Wang, J.L.; Guo, C.L.; Ye, Z.Y. Lineage-specific gene duplication and expansion of DUF1216 gene family in Brassicaceae. PLoS ONE 2024, 19, e0302292. [Google Scholar] [CrossRef] [PubMed]
- Nabi, R.B.S.; Tayade, R.; Hussain, A.; Adhikari, A.; Lee, I.J.; Yun, B.W. A novel DUF569 gene is a positive regulator of the drought stress response in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 5316. [Google Scholar] [CrossRef]
- Liu, X.; Wu, H.; Ren, Z.; Wang, Y.; Yang, G.; Cong, H.; Yu, B. Dual-functional antioxidant CIRAKLC peptide discovery: A biomaterial-integrated strategy for ROS scavenging and enzyme modulation in oxidative stress therapeutics. ACS Appl. Mater. Interfaces 2025, 17, 30686–30699. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, Y.; Li, X. Overexpression of OsDUF6 increases salt stress tolerance in rice. BMC Plant Biol. 2024, 24, 216. [Google Scholar] [CrossRef]
- Gayen, D.; Roy, S.; Chakraborty, S.; Sarkar, S.N.; Datta, K.; Datta, S.K. A DUF2488-containing protein OsDUF2488 interacts with OsPrx1.1 to modulate ROS homeostasis and drought tolerance in rice. Plant Biotechnol. J. 2025. advance online publication. [Google Scholar]
- Tiwari, P.; Singh, P.; Indoliya, Y.; Singh, P.C.; Chakrabarty, D. DUF4057 containing express-protein negatively regulates the drought responses in rice. Environ. Exp. Bot. 2023, 215, 105507. [Google Scholar] [CrossRef]
- Kavas, M.; Bulut, S.; Khawar, K.M.; Özcan, S. Overexpression of GmDUF4228-70 increases proline accumulation and drought tolerance in soybean. Plant Physiol. Biochem. 2022, 189, 1–12. [Google Scholar]
- Liu, Y.; Tan, Z.; Meng, L.; Li, Y.; Peng, Y. CmDUF239-1 improves the salt tolerance of grafted melon by enhancing antioxidant capacity and Na+/K+ homeostasis. Plants 2025, 14, 2670. [Google Scholar] [CrossRef]
- Amarasinghe, R.M.N.T.; Sakimin, S.Z.; Wahab, P.E.M.; Ramlee, S.; Jaafar, J.N. Growth, physiology and yield responses of four rock melon (Cucumis melo var. cantaloupensis) cultivars in elevated temperature. Plant Arch. 2021, 21, 129–136. [Google Scholar]
- Yonny, M.E.; Rodríguez Torresi, A.; Cuyamendous, C.; Réversat, G.; Oger, C.; Galano, J.M.; Durand, T.; Vigor, C.; Nazareno, M.A. Thermal stress in melon plants: Phytoprostanes and phytofurans as oxidative stress biomarkers and the effect of antioxidant supplementation. J. Agric. Food Chem. 2016, 64, 8296–8304. [Google Scholar] [CrossRef]
- Tao, M.Q.; Jahan, M.S.; Hou, K.; Shu, S.; Wang, Y.; Sun, J.; Guo, S.R. Bitter melon (Momordica charantia L.) rootstock improves the heat tolerance of cucumber by regulating photosynthetic and antioxidant defense pathways. Plants 2020, 9, 692. [Google Scholar] [CrossRef]
- Kıran, S.; Furtana, G.B.; Talhouni, M.; Ellialtıoğlu, Ş.Ş. Drought stress mitigation with humic acid in two Cucumis melo L. genotypes differ in their drought tolerance. Bragantia 2019, 78, 490–497. [Google Scholar] [CrossRef]
- Ansari, W.A.; Krishna, R.; Yadav, P.S.; Chaubey, T.; Behera, T.K.; Bhat, K.V.; Pandey, S. Alteration in physio-chemical properties and gene expression pattern of snapmelon (Cucumis melo var. momordica) genotypes against drought stress. Plant Genet. Resour. Charact. Util. 2024, 22, 87–96. [Google Scholar] [CrossRef]
- Peng, Y.Q.; Cao, H.S.; Cui, L.J.; Wang, Y.; Wei, L.X.; Geng, S.Y.; Yang, L.; Huang, Y.; Bie, Z.L. CmoNAC1 in pumpkin rootstocks improves salt tolerance of grafted cucumbers by binding to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2 and CmoHKT1;1 to regulate H2O2, ABA signaling and K+/Na+ homeostasis. Hortic. Res. 2023, 10, uhad157. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Rehman, A.; Li, P.; Chang, L.; Zhang, Y.; Niu, Q. Physiological and transcriptomic analysis reveals the responses and difference to high temperature and humidity stress in two melon genotypes. Int. J. Mol. Sci. 2022, 23, 734. [Google Scholar] [CrossRef]
- Tilahun, S.; Baek, M.W.; An, K.S.; Choi, H.R.; Lee, J.H.; Hong, J.S.; Jeong, C.S. Radish microgreens produced without substrate in a vertical multi-layered growing unit are rich in nutritional metabolites. Front. Plant Sci. 2023, 14, 1236055. [Google Scholar] [CrossRef]
- Yang, T.; Samarakoon, U.; Altland, J.; Ling, P. Influence of electrical conductivity on plant growth, nutritional quality, and phytochemical properties of kale (Brassica napus) and collard (Brassica oleracea) grown using hydroponics. Agronomy 2024, 14, 2704. [Google Scholar] [CrossRef]
- Yang, W.; Wen, D.; Yang, Y.; Li, H.; Yang, C.; Yu, J.; Xiang, H. Metabolomics and transcriptomics combined with physiology reveal key metabolic pathway responses in tobacco roots exposed to NaHS. BMC Plant Biol. 2024, 24, 680. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Germano, T.A.; Thiers, K.L.L.; Batista, M.C.; de Souza Miranda, R.; Arnholdt-Schmitt, B.; Costa, J.H. Transcriptome analyses in a selected gene set indicate alternative oxidase (AOX) and early enhanced fermentation as critical for salinity tolerance in rice. Plants 2022, 11, 2145. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhu, X.; Shao, W.; Song, J.; Jiang, W.; He, Y.; Yin, J.; Ma, D.; Qiao, Y. Genome-wide mining of wheat DUF966 gene family provides new insights into salt stress responses. Front. Plant Sci. 2020, 11, 569838. [Google Scholar] [CrossRef] [PubMed]
- Kijowska-Oberc, J.; Wawrzyniak, M.K.; Ciszewska, L.; Ratajczak, E. Evaluation of P5CS and ProDH activity in Paulownia tomentosa (Steud.) as an indicator of oxidative changes induced by drought stress. PeerJ 2024, 12, e16697. [Google Scholar] [CrossRef]
- Love, M.I.; Anders, S.; Kim, V.; Huber, W. RNA-Seq workflow: Gene-level exploratory analysis and differential expression. F1000Research 2016, 4, 1070. [Google Scholar] [CrossRef]
- Zogopoulos, V.L.; Malatras, A.; Michalopoulos, I. Special issue on differential gene expression and coexpression. Biology 2023, 12, 1226. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, H.S.; Yang, L.; Chen, C.; Shabala, L.; Xiong, M.; Niu, M.; Liu, J.; Zheng, Z.; Zhou, L.; et al. Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae. J. Exp. Bot. 2019, 70, 5879–5893. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Tian, J.; Li, Y.; Hu, Y.; Zhong, Q.; Yin, J.; Zhu, Y. Mining the roles of cucumber DUF966 genes in fruit development and stress response. Plants 2022, 11, 2497. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, P.; Gao, W.; Long, Y.; Wang, Y.; Geng, S.; Su, X.; Jiao, Y.; Chen, Q.; Qu, Y. Genome-wide identification of the DUF668 gene family in cotton and expression profiling analysis of GhDUF668 in Gossypium hirsutum under adverse stress. BMC Genom. 2021, 22, 395. [Google Scholar] [CrossRef]
- Singh, S.; Praveen, A.; Dudha, N.; Bhadrecha, P. Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production. Physiol. Mol. Biol. Plants 2024, 30, 1185–1208. [Google Scholar] [CrossRef]
- Jayaraman, K.; Sevanthi, A.M.; Raman, K.V.; Jiwani, G.; Solanke, A.U.; Mandal, P.K.; Mohapatra, T. Overexpression of a DUF740 family gene (LOC_Os04g59420) imparts enhanced climate resilience through multiple stress tolerance in rice. Front. Plant Sci. 2023, 13, 947312. [Google Scholar] [CrossRef]
- Luo, C.; Akhtar, M.; Min, W.; Alam, Y.; Ma, T.; Shi, Y.; She, Y.; Lu, X. The suppressed expression of a stress responsive gene “OsDSR2” enhances rice tolerance in drought and salt stress. J. Plant Physiol. 2023, 282, 153927. [Google Scholar] [CrossRef]
- Reddy, P.S.; Chakradhar, T.; Reddy, R.A.; Nitnavare, R.B.; Mahanty, S.; Reddy, M.K. Role of Heat Shock ProteinSs in improving heat stress tolerance in crop plants. In Heat Shock Proteins and Plants; Springer: Cham, Switzerland, 2016; pp. 283–307. [Google Scholar]
- Mas-Ud, A.; Juthee, S.A.; Hosenuzzaman; Islam, S.; Haque, E.; Matin, M.N. Current understanding of Heat Shock ProteinS-mediated responses to heat stress in rice. Environ. Exp. Bot. 2025, 237, 106192. [Google Scholar] [CrossRef]
- Amrutha, V.; Reshma, M.; Manju, R.V.; Anith, K.N.; Gopinath, P.P.; Sarada, S.; Beena, R. High temperature stress induced changes in physiological, biochemical, hormonal and gene expression patterns in contrasting tomato genotypes. Plant Physiol. Rep. 2024, 29, 872–888. [Google Scholar] [CrossRef]
- Tiwari, M.; Kumar, R.; Min, D.; Jagadish, S.V.K. Genetic and molecular mechanisms underlying root architecture and function under heat stress—A hidden story. Plant Cell Environ. 2022, 45, 771–788. [Google Scholar] [CrossRef] [PubMed]
- Delamare, J.; Brunel-Muguet, S.; Bressan, M.; Firmin, S.; Prigent-Combaret, C.; Personeni, E. Root traits and root-rhizosphere interactions are overlooked players in the plant acclimation to heat stress. Rhizosphere 2025, 35, 101124. [Google Scholar] [CrossRef]
- Luo, H.; Xu, H.; Chu, C.; He, F.; Fang, S. High temperature can change root system architecture and intensify root interactions of plant seedlings. Front. Plant Sci. 2020, 11, 160. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tan, Z.; Liu, Y.; Peng, Y.; Liu, C. Root-Specific Overexpression of the CmDUF239-1 Gene Enhances Heat Tolerance in Melon Seedlings by Upregulating Antioxidant Enzymes Activities, Proline Content, and Expression of Heat Shock Protein-Related Genes. Horticulturae 2025, 11, 1198. https://doi.org/10.3390/horticulturae11101198
Li Y, Tan Z, Liu Y, Peng Y, Liu C. Root-Specific Overexpression of the CmDUF239-1 Gene Enhances Heat Tolerance in Melon Seedlings by Upregulating Antioxidant Enzymes Activities, Proline Content, and Expression of Heat Shock Protein-Related Genes. Horticulturae. 2025; 11(10):1198. https://doi.org/10.3390/horticulturae11101198
Chicago/Turabian StyleLi, Yang, Zhanming Tan, Yanjun Liu, Yuquan Peng, and Chunyan Liu. 2025. "Root-Specific Overexpression of the CmDUF239-1 Gene Enhances Heat Tolerance in Melon Seedlings by Upregulating Antioxidant Enzymes Activities, Proline Content, and Expression of Heat Shock Protein-Related Genes" Horticulturae 11, no. 10: 1198. https://doi.org/10.3390/horticulturae11101198
APA StyleLi, Y., Tan, Z., Liu, Y., Peng, Y., & Liu, C. (2025). Root-Specific Overexpression of the CmDUF239-1 Gene Enhances Heat Tolerance in Melon Seedlings by Upregulating Antioxidant Enzymes Activities, Proline Content, and Expression of Heat Shock Protein-Related Genes. Horticulturae, 11(10), 1198. https://doi.org/10.3390/horticulturae11101198