Chemical Profiling and Sensory Analysis Reveal Quality Differentiation in Baimudan White Tea Processed from Three Major Fujian Tea Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Sensory Evaluation and Quantitative Descriptive Analysis
2.3. Aroma Compound Analysis
2.4. Amino Acid Profiling
2.5. Carbohydrate Profiling
2.6. Calculation of Taste Active Value (TAV) and Odor Activity Value (OAV)
2.7. Statistical Analysis
3. Results
3.1. Sensory Quality Analysis of Baimudan White Tea Processed from Fujian′s Primary Cultivars
3.2. Amino Acid Profiling of Baimudan White Tea Processed from Fujian’s Primary Cultivars
3.3. Carbohydrate Profiling of Baimudan White Tea Processed from Fujian’s Primary Cultivars
3.4. Volatile Aroma Profiling of Baimudan White Tea Processed from Fujian′s Primary Cultivars
3.5. Key Aroma Compounds Determining Sensory Characteristics of Baimudan White Tea
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilal, Y.; Engelhardt, U. Characterisation of White Tea: Comparison to Green and Black Tea. J. Verbraucherschutz Lebensmittelsicherh. 2007, 2, 414–421. [Google Scholar] [CrossRef]
- Mei, Y. Analysis of China’s Tea Production and Domestic Sales in 2024. China Tea 2025, 47, 24–30. (In Chinese) [Google Scholar]
- Zhou, S.; Zhang, J.; Ma, S.; Ou, C.; Feng, X.; Pan, Y.; Gong, S.; Fan, F.; Chen, P.; Chu, Q. Recent Advances on White Tea: Manufacturing, Compositions, Aging Characteristics and Bioactivities. Trends Food Sci. Technol. 2023, 134, 41–55. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, Y.; Dai, W.; Lv, H.; Mu, B.; Li, P.; Tan, J.; Ni, D.; Lin, Z. Aroma Formation and Dynamic Changes during White Tea Processing. Food Chem. 2019, 274, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Engelhardt, U.; Lin, Z.; Kaiser, N.; Maiwald, B. Flavonoids, Phenolic Acids, Alkaloids and Theanine in Different Types of Authentic Chinese White Tea Samples. J. Food Compos. Anal. 2017, 57, 8–15. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, Y.; Zhou, S.; Li, X.; Tao, Y.; Pan, Y.; Feng, X.; Guo, H.; Chen, P.; Chu, Q. A Newly-Discovered Tea Population Variety Processed Bai Mu Dan White Tea: Flavor Characteristics and Chemical Basis. Food Chem. 2024, 446, 138851. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Chen, Z.; Xiong, Z.; Feng, W.; Wei, Y.; Li, T.; Ning, J. Sensory-Directed Flavor Analysis of Jinggu White Tea: Exploring the Formation Mechanisms of Sweet and Fruity Aromas. Food Chem. X 2024, 24, 102026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhou, C.; Zhang, C.; Xu, K.; Lu, L.; Huang, L.; Zhang, L.; Li, H.; Zhu, X.; Lai, Z.; et al. Analysis of Characteristics in the Macro-Composition and Volatile Compounds of Understory Xiaobai White Tea. Plants 2023, 12, 4102. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, Y.; Wang, X.; Zhang, H.; Chen, C.; Chen, Q.; Zhong, Q. Comprehensive Metabolite Profiling Reveals the Dynamic Changes of Volatile and Non-Volatile Metabolites in Albino Tea Cultivar ‘Ming Guan’ (MG) during White Tea Withering Process. Food Res. Int. 2025, 202, 115784. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, L.; Liang, Y.; Wang, Z.; Wang, Y.; Cao, S.; Rong, J.; Sun, W.; Chen, Z. Analysis of Flavor Characteristics and Characteristic Components of White Tea Made from Oolong Tea Cultivars. Food Sci. 2024, 45, 229–239. [Google Scholar] [CrossRef]
- Yang, C.; Hu, Z.; Lu, M.; Li, P.; Tan, J.; Chen, M.; Lv, H.; Zhu, Y.; Zhang, Y.; Guo, L.; et al. Application of Metabolomics Profiling in the Analysis of Metabolites and Taste Quality in Different Subtypes of White Tea. Food Res. Int. 2018, 106, 909–919. [Google Scholar] [CrossRef]
- Chen, D.; Sun, Z.; Gao, J.; Peng, J.; Wang, Z.; Zhao, Y.; Lin, Z.; Dai, W. Metabolomics Combined with Proteomics Provides a Novel Interpretation of the Compound Differences among Chinese Tea Cultivars (Camellia Sinensis Var. Sinensis) with Different Manufacturing Suitabilities. Food Chem. 2022, 377, 131976. [Google Scholar] [CrossRef]
- Yu, Y.; Liang, Z.; Zhang, L.; Chen, Z.; Zhao, Y.; Chen, Q.; Ye, N.; Yang, R. Widely Targeted Metabolomics Reveals the Quality Characteristics of a New Tea Cultivar, “Baiyun 0495”. Foods 2025, 14, 2206. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, Q.; Wu, Z.; Bi, W.; Chen, B.; Hao, Z.; Wu, L.; Ye, N.; Sun, Y. Volatile Metabolomics and Coexpression Network Analyses Provide Insight into the Formation of the Characteristic Cultivar Aroma of Oolong Tea (Camellia sinensis). LWT 2022, 164, 113666. [Google Scholar] [CrossRef]
- Ramírez-Rivera, E.J.; Díaz-Rivera, P.; Ramón-Canul, L.G.; Juárez-Barrientos, J.M.; Rodríguez-Miranda, J.; Herman-Lara, E.; Prinyawiwatkul, W.; Herrera-Corredor, J.A. Comparison of Performance and Quantitative Descriptive Analysis Sensory Profiling and Its Relationship to Consumer Liking between the Artisanal Cheese Producers Panel and the Descriptive Trained Panel. J. Dairy Sci. 2018, 101, 5851–5864. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Ou, X.; Li, Q.; Huang, H.; Zhang, J.; Wang, F.; Shi, Y.; Hao, Z.; Zhang, B.; et al. The New Aristocrat of Wuyi Rock Tea: Chemical Basis of the Unique Aroma Quality of “Laocong Shuixian”. Foods 2025, 14, 1706. [Google Scholar] [CrossRef] [PubMed]
- GB/T 16291.1-2012; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors. National Standards of People’s Republic of China: Beijing, China, 2012.
- GB/T 23776-2018; Methodology for Sensory Evaluation of Tea. Standardization Administration of China: Beijing, China, 2018.
- Tang, M.; Liao, X.; Xu, M.; Zhang, J.; Wu, X.; Wei, M.; Jin, S.; Zheng, Y.; Ye, N. Comprehensive Investigation on the Flavor Difference in Five Types of Tea from JMD (Camellia sinensis ‘Jinmudan’). J. Sci. Food Agric. 2025, 105, 990–1002. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhao, F.; Chen, M.; Ye, N.; Lin, Q.; Ouyang, L.; Cai, X.; Meng, P.; Gong, X.; Wang, Y. Determination of 21 Free Amino Acids in 5 Types of Tea by Ultra-High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry (UHPLC-MS/MS) Using a Modified 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate (AQC) Method. J. Food Compos. Anal. 2019, 81, 46–54. [Google Scholar] [CrossRef]
- Feng, Y.; Tian, D.; Wang, C.; Huang, Y.; Luo, Y.; Zhang, X.; Li, L. Aromatic Volatile Substances in Different Types of Guangnan Dixu Tea Based on HS-SPME-GC-MS Odor Activity Value. Metabolites 2025, 15, 257. [Google Scholar] [CrossRef]
- Yang, F.; Fu, A.; Meng, H.; Liu, Y.; Bi, S. Non-Volatile Taste Active Compounds and Umami Evaluation of Agrocybe Aegerita Hydrolysates Derived Using Different Enzymes. Food Biosci. 2024, 58, 103772. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “One for All, All for One” Bioinformatics Platform for Biological Big-Data Mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Xiang, L.; Zhu, C.; Qian, J.; Zhou, X.; Wang, M.; Song, Z.; Chen, C.; Yu, W.; Chen, L.; Zeng, L. Positive Contributions of the Stem to the Formation of White Tea Quality-Related Metabolites during Withering. Food Chem. 2024, 449, 139173. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.S. Evaluation of Strong Taste Types in Green Tea and Synergistic Effects of Multi-Component Ratios. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2023. (In Chinese) [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Chen, R.; Sun, L.; Lai, X.; Li, Q.; Hao, M.; Zhang, S.; Li, Q.; Sun, S.; et al. Metabolomics-Based Analysis of the Effects of Differences in Soluble Sugars on the Sweetness Quality of Six Major Tea Types in China. Food Funct. 2025, 16, 3707–3720. [Google Scholar] [CrossRef]
- Hu, W.; Wang, G.; Lin, S.; Liu, Z.; Wang, P.; Li, J.; Zhang, Q.; He, H. Digital Evaluation of Aroma Intensity and Odor Characteristics of Tea with Different Types-Based on OAV-Splitting Method. Foods 2022, 11, 2204. [Google Scholar] [CrossRef]
- Wu, R.; Liang, H.; Hu, N.; Lu, J.; Li, C.; Tang, D. Chemical, Sensory Variations in Black Teas from Six Tea Cultivars in Jingshan, China. Foods 2025, 14, 1558. [Google Scholar] [CrossRef]
- Shu, C.; She, Y.-B.; Xiao, Z.-B.; Xu, L.; Niu, Y.-W.; Zhu, J.-C. SPME/GC-MS/GC-O/OAV Study on Key Aroma Components of Fresh and Aged Longjing Tea. Food Ind. 2016, 37, 279–285. (In Chinese) [Google Scholar]
- Wong, M.; Sirisena, S.; Ng, K. Phytochemical Profile of Differently Processed Tea: A Review. J. Food Sci. 2022, 87, 1925–1942. [Google Scholar] [CrossRef]
- Horanni, R.; Engelhardt, U.H. Determination of amino acids in white, green, black, oolong, Pu-erh teas and tea products. J. Food Compos. Anal. 2013, 31, 94–100. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Wang, D.; Yu, F.; Zhang, N.; Song, C.; Granato, D. Analytical Strategy Coupled to Chemometrics to Differentiate Camellia Sinensis Tea Types Based on Phenolic Composition, Alkaloids, and Amino Acids. J. Food Compos. Anal. 2020, 85, 3253–3263. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.V.; Bowyer, M.C.; Roach, P.D. L-Theanine: Properties, Synthesis and Isolation from Tea. J. Sci. Food Agric. 2011, 91, 1931–1939. [Google Scholar] [CrossRef]
- Hou, Z.-W.; Wang, Y.-J.; Xu, S.-S.; Wei, Y.-M.; Bao, G.-H.; Dai, Q.-Y.; Deng, W.-W.; Ning, J.-M. Effects of Dynamic and Static Withering Technology on Volatile and Nonvolatile Components of Keemun Black Tea Using GC-MS and HPLC Combined with Chemometrics. LWT 2020, 130, 109547. [Google Scholar] [CrossRef]
- Qin, X.; Zhou, J.; He, C.; Qiu, L.; Zhang, D.; Yu, Z.; Wang, Y.; Ni, D.; Chen, Y. Non-Targeted Metabolomics Characterization of Flavor Formation of Lichuan Black Tea Processed from Different Cultivars in Enshi. Food Chem. X 2023, 19, 100809. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.-Q.; Granato, D.; Xu, Y.-Q.; Ho, C.-T. Association between Chemistry and Taste of Tea: A Review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, M.; Cao, Z.; Sun, Z.; Derkach, T.; Liu, B. Decoding the Molecular Mechanism of Sweet Taste of Amino Acids by Their Intrinsic Properties and Interactions with Human Sweet Taste Receptor. ChemistrySelect 2024, 9, e202403468. [Google Scholar] [CrossRef]
- Deng, W.-W.; Wang, R.; Yang, T.; Jiang, L.; Zhang, Z.-Z. Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from Camellia Sinensis, Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea. J. Agric. Food Chem. 2017, 65, 11036–11045. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Ma, Y.; Xiao, Z.; Zhu, J.; Xiong, W.; Chen, F. Characterization of the Key Aroma Compounds of Three Kinds of Chinese Representative Black Tea and Elucidation of the Perceptual Interactions of Methyl Salicylate and Floral Odorants. Molecules 2022, 27, 1631. [Google Scholar] [CrossRef]
- Bao, S.; An, Q.; Yang, Y.; Li, X.; Chen, G.; Chen, Y.; Chen, J.; Liu, Z.; Huang, J. Tea Plant Varieties Influence the Aroma Characteristics of Zhenghe White Tea: Based on Zhenghe Dabaicha and Fuan Dabaicha. Food Res. Int. 2025, 208, 116278. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Ni, H.; Wu, L.; Weng, S.Y.; Li, L.; Chen, F. Analysis of Aroma-Active Volatiles in an SDE Extract of White Tea. Food Sci. Nutr. 2021, 9, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, M.; Li, Y.; Yin, J.; Wan, X.; Yang, X. Characterization of the Key Aroma Compounds in Infusions of Four White Teas by the Sensomics Approach. Eur. Food Res. Technol. 2022, 248, 1299–1309. [Google Scholar] [CrossRef]
- Paparella, A.; Shaltiel-Harpaza, L.; Ibdah, M. β-Ionone: Its Occurrence and Biological Function and Metabolic Engineering. Plants 2021, 10, 754. [Google Scholar] [CrossRef]
- Chen, Q.-C.; Zhu, Y.; Yan, H.; Chen, M.; Xie, D.-C.; Wang, M.-Q.; Ni, D.-J.; Lin, Z. Identification of Aroma Composition and Key Odorants Contributing to Aroma Characteristics of White Teas. Molecules 2020, 25, 6050. [Google Scholar] [CrossRef]
- Ma, L.; Sun, Y.; Wang, X.; Zhang, H.; Zhang, L.; Yin, Y.; Wu, Y.; Du, L.; Du, Z. The Characteristic of the Key Aroma-Active Components in White Tea Using GC-TOF-MS and GC-Olfactometry Combined with Sensory-Directed Flavor Analysis. J. Sci. Food Agric. 2023, 103, 7136–7152. [Google Scholar] [CrossRef]
- Lin, S.Y.; Chen, Y.L.; Lee, C.L.; Cheng, C.Y.; Roan, S.F.; Chen, I.Z. Monitoring Volatile Compound Profiles and Chemical Compositions during the Process of Manufacturing Semi-Fermented Oolong Tea. J. Hortic. Sci. Biotechnol. 2013, 88, 159–164. [Google Scholar] [CrossRef]
- Shao, C.; Peng, X.; Li, Y.; Chen, Z.; Li, X.; Xu, R.; Qiu, S.; Luo, Y.; Liu, J.; Huang, J. Synergistic Effects of Pre-Harvest Drought and Shade on Flavor and Aroma Enhancement in Fermented Tea: Insights into JA/ABA Signaling and Metabolic Regulation. Food Chem. 2025, 459, 145252. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhai, X.; Guo, D.; Du, W.; Gao, T.; Zhou, J.; Schwab, W.G.; Song, C. Characterization of Key Odorants in Xinyang Maojian Green Tea and Their Changes During the Manufacturing Process. J. Agric. Food Chem. 2022, 70, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, L.; Deng, Y.; Yuan, H.; Zhu, J.; Jiang, Y.; Yang, Y. Characterization of the Key Odorants in Floral Aroma Green Tea Based on GC-E-Nose, GC-IMS, GC-MS and Aroma Recombination and Investigation of the Dynamic Changes and Aroma Formation during Processing. Food Chem. 2023, 427, 136641. [Google Scholar] [CrossRef] [PubMed]
- Jumtee, K.; Komura, H.; Bamba, T.; Fukusaki, E. Predication of Japanese Green Tea (Sen-Cha) Ranking by Volatile Profiling Using Gas Chromatography Mass Spectrometry and Multivariate Analysis. J. Biosci. Bioeng. 2011, 112, 252–255. [Google Scholar] [CrossRef]




| Compounds | Taste Threshold (mg/kg) [26] | Taste Description | ZHDB (TAV) | FADB (TAV) | FDDH (TAV) |
|---|---|---|---|---|---|
| Xylitol | 3070 | Sweet | 0.00 | 0.00 | 0.00 |
| Sorbitol | 6160 | Sweet | 0.00 | 0.00 | 0.00 |
| Inositol | 3190 | Sweet | 0.35 | 0.31 | 0.43 |
| Glu | 3240 | Sweet | 0.17 | 0.21 | 0.21 |
| Gal | 4500 | Sweet | 0.02 | 0.02 | 0.15 |
| D-Ara | 17,040 | Sweet | 0.00 | 0.00 | 0.00 |
| Raffinose | 14,860 | Sweet | 0.05 | 0.04 | 0.01 |
| Suc | 890 | Sweet | 3.34 | 3.66 | 2.33 |
| Compounds | Threshold μg/kg [28,29] | Odor Description | ZHDB | FDDH | FADB | |||
|---|---|---|---|---|---|---|---|---|
| Content μg/g | OAV | Content μg/g | OAV | Content μg/g | OAV | |||
| β-Ocimene | 2 | Sweet | 5.62 a | 2808.87 | 1.14 c | 567.75 | 3.16 b | 1581.11 |
| Benzyl alcohol | 20,000 | Sweet Floral | 9.73 a | 0.5 | 8.46 a | 0.4 | 5.68 b | 0.3 |
| 1-Hexanol | 500 | Petrol-like | 0.99 a | 2.0 | 0.31 b | 0.6 | 0.88 a | 1.8 |
| Indole | 500 | Floral | 0.06 a | 0.1 | 0.04 a | 0.1 | 0.03 a | 0.1 |
| Benzaldehyde | 350 | Sweet | 9.00 a | 25.7 | 7.60 b | 21.7 | 8.30 a | 23.7 |
| Hotrienol | 110 | Sweet | 2.20 a | 20.0 | 2.68 a | 24.4 | 2.62 a | 23.9 |
| 1-Octanol | 110 | Fruity | 0.54 a | 4.9 | 0.34 b | 3.1 | 0.56 a | 5.1 |
| (Z)-3-Hexenol | 70 | Green/Vegetal | 3.83 a | 54.7 | 1.69 c | 24.2 | 2.53 b | 36.1 |
| Methylsalicylate | 40 | Floral | 69.30 a | 1732.6 | 23.11 c | 577.7 | 48.22 b | 1205.4 |
| Geraniol | 40 | Floral | 114.01 a | 2850.1 | 11.25 c | 281.3 | 45.36 b | 1134.1 |
| Hexyl hexanoate | 40 | Fresh | 0.12 a | 3.0 | 0.01 b | 0.4 | 0.04 b | 1.1 |
| (E)-2-Hexenal | 17 | Green/Vegetal | 1.79 a | 105.4 | 1.59 b | 93.5 | 1.20 b | 70.9 |
| (Z)-3-Hexenal | 17 | Green/Vegetal | 0.07 a | 4.4 | 0.05 a | 2.8 | 0.08 a | 4.8 |
| (+)-Limonene | 10 | Sweet Orange | 1.13 a | 112.6 | 0.40 b | 40.4 | 1.01 a | 101.1 |
| Linalool | 6 | Floral | 38.32 a | 6387.3 | 28.10 b | 4683.8 | 37.54 a | 6257.5 |
| Ionone | 5.7 | Sweet Floral | 0.01 a | 1.7 | 0.01 a | 2.4 | 0.01 a | 1.5 |
| Hexyl acetate | 5 | Apple-like | 0.10 a | 19.4 | 0.04 a | 7.9 | 0.06 a | 11.7 |
| Hexanal | 4.5 | Green/Vegetal | 1.89 a | 419.6 | 1.50 b | 333.7 | 2.08 a | 463.1 |
| β-Ionone | 3.5 | Floral | 4.49 a | 1284.1 | 5.29 a | 1510.8 | 5.39 a | 1541.0 |
| β-Cyclocitral | 3 | Fruity | 0.03 a | 9.1 | 0.04 a | 14.8 | 0.03 a | 11.3 |
| Citral | 3 | Fresh Fruity | 0.43 a | 144.2 | 0.46 a | 152.4 | 0.38 a | 125.2 |
| Myrcene | 1.2 | Sweet Fatty | 4.76 a | 3964.3 | 0.98 c | 818.9 | 3.44 b | 2865.1 |
| Pentyl hexanoate | 0.05 | Sweet Floral | 0.09 a | 1793.4 | 0.10 a | 2000.3 | 0.11 a | 2206.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Zhang, Y.; Zou, Y.; Shi, Y.; Zhang, J.; Deng, H.; Ji, Z.; Liang, Z.; Li, X. Chemical Profiling and Sensory Analysis Reveal Quality Differentiation in Baimudan White Tea Processed from Three Major Fujian Tea Cultivars. Horticulturae 2025, 11, 1196. https://doi.org/10.3390/horticulturae11101196
Zheng Y, Zhang Y, Zou Y, Shi Y, Zhang J, Deng H, Ji Z, Liang Z, Li X. Chemical Profiling and Sensory Analysis Reveal Quality Differentiation in Baimudan White Tea Processed from Three Major Fujian Tea Cultivars. Horticulturae. 2025; 11(10):1196. https://doi.org/10.3390/horticulturae11101196
Chicago/Turabian StyleZheng, Yucheng, Yuping Zhang, Yun Zou, Yutao Shi, Jianming Zhang, Huili Deng, Zhanhua Ji, Zhenying Liang, and Xinlei Li. 2025. "Chemical Profiling and Sensory Analysis Reveal Quality Differentiation in Baimudan White Tea Processed from Three Major Fujian Tea Cultivars" Horticulturae 11, no. 10: 1196. https://doi.org/10.3390/horticulturae11101196
APA StyleZheng, Y., Zhang, Y., Zou, Y., Shi, Y., Zhang, J., Deng, H., Ji, Z., Liang, Z., & Li, X. (2025). Chemical Profiling and Sensory Analysis Reveal Quality Differentiation in Baimudan White Tea Processed from Three Major Fujian Tea Cultivars. Horticulturae, 11(10), 1196. https://doi.org/10.3390/horticulturae11101196

