Genetic Diversity and Association Analysis of Dioscorea polystachya Germplasm Resources Based on Phenotypic Traits and SSR Markers
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Determination of Phenotypic Traits
2.3. SSR Molecular Marker Analysis
2.4. Data Analysis
3. Results
3.1. Analysis of Phenotypic Genetic Diversity of Chinese Yam Germplasm Resources
3.2. Variation Analysis of Quantitative Traits
3.3. Comprehensive Evaluation of Phenotypic Traits of Germplasm Resources
3.3.1. Principal Component Analysis of Phenotypic Traits
3.3.2. Comprehensive Evaluation of Germplasm Resources
3.4. Genetic Diversity Analysis of SSR Molecular Markers
3.4.1. Analysis of SSR Molecular Marker Polymorphism and Genetic Diversity
3.4.2. Analysis of Population Genetic Structure
3.5. Linkage Disequilibrium Analysis
3.6. Association Analysis of SSR Markers and Phenotypic Traits of Chinese Yam
4. Discussion
4.1. Comprehensive Evaluation of Phenotypic Characteristics of Chinese Yam Germplasm Resources
4.2. Analysis of Genetic Diversity of Yam Germplasm Based on Phenotypic Traits and SSR Molecular Markers
4.3. Analysis of Population Structure of Chinese Yam Germplasm Materials
4.4. Correlation Analysis Between SSR Markers and Phenotypic Traits of Chinese Yam
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pei, J.; Ding, Z.Z. Flora of China; Science Press: Beijing, China, 1985; Volume 16, pp. 103–105. [Google Scholar]
- Huang, D.P.; Mo, J.G.; Lao, W.Y.; Huang, Y.F.; He, J.Z.; He, B.Z. Analysis and comparison of sixteen kinds of elements in guangshanyao and huaishanyao. Guangdong Trace Elem. Sci. 2002, 9, 47–50. [Google Scholar]
- Xue, J.P.; Zhu, H.L.; Rao, J.Y. Study on nutrient components of irons tick yam and bubil. Sci. Technol. Food Ind. 2008, 8, 268–269. [Google Scholar]
- Maurin, O.; Muasya, M.; Catalan, P.; Shongwe, E.Z.; Viruel, J.; Wilkin, P.; van der Bank, M. Diversification into novel habitats in the Africa clade of Dioscorea (Dioscoreaceae): Erect habit and elephant’s foot tubers. BMC Evol. Biol. 2016, 16, 238. [Google Scholar] [CrossRef] [PubMed]
- Coursey, D.G. The origins and domestication of yams in Africa. In Origin of African Plant Domesticates; Harlan, J.R., De Wet, J.M.J., Stemler, A.B.L., Eds.; De Gruyter Mouton Press: The Hague, Netherlands; Paris, France, 1976; pp. 383–408. [Google Scholar]
- Martin, F.W.; Sadik, S. Tropical Yams and Their Potential. Part 4. Dioscorea rotundata and Dioscorea cayenensis; USDA Agriculture Handbook 36; United States Department of Agriculture (USDA), Agricultural Research Service (ARS): Washington, DC, USA, 1977. [Google Scholar]
- Gong, Q.P.; Cheng, G.; Yuan, L.G. Standardized Cultivation Techniques of Chinese Yam; China Agricultural Press: Beijing, China, 2004. [Google Scholar]
- Yuan, K. Proofreading and Annotation of the Classic of Mountains and Rivers; Shanghai Ancient Books Publishing House: Shanghai, China, 1980; p. 135. [Google Scholar]
- Cao, T.X.; Zhu, Q.L.; Chen, X.; Wang, P.T.; Shan, N.; Zhou, Q.H.; Huang, Y.J. The complete chloroplast genome sequence of the Dioscorea persimilis Prain et Burkill (Dioscoreaceae). Mitochondrial DNA B 2020, 5, 451–452. [Google Scholar] [CrossRef]
- Epping, J.; Laibach, N. An underutilized orphan tuber crop-Chinese yam: A review. Planta 2020, 252, 58. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, Y.M.; Sun, X.Q.; Li, M.; Huang, Y. Genetic relationship and identifcation of Dioscorea polystachya cultivars accessed by ISAP and SCAR markers. Arch. Biol. Sci. 2017, 69, 277–284. [Google Scholar] [CrossRef]
- Pei, C.; Ting, C.T.; Chin, H.C.; Su, P.; Tang, S.Y.; Chang, H.C. A preliminary systematic study of Dioscorea L. sect. Stenophora Uline. J. Syst. Evol. 1979, 17, 61–72. [Google Scholar]
- Li, J.; Qin, L.; Li, C.; Liu, M.D.; Zhang, Y.S. Comparative transcriptome analysis identifies putative genes involved in dioscin biosynthesis in Dioscorea zingiberensis. Molecules 2018, 23, 454. [Google Scholar] [CrossRef] [PubMed]
- Lebot, V.; Malapa, R.; Molisalé, T. Development of HP-TLC method for rapid quantification of sugars, catechins, phenolic acids and saponins to assess Yam (Dioscorea spp.) tuber flour quality. Plant Genet. Resour. 2018, 17, 62–72. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, J.; Liu, X.; Li, X.; Zhang, W.; Dai, Z.; Lu, L.; Zhou, X.; Cai, J.; Zhang, X.; et al. The origin and evolution of diosgenin biosynthetic pathway in Yam. Plant Commun. 2020, 2, 100079. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.T.; Long, W.J.; Li, Y.; Liu, T.P.; Zhao, G.L.; Ding, G.X.; Ni, X.L. Genetic diversity analysis of 45 Glutinous sorghum germplasms based on major agronomic traits and SSR markers. Crops 2024, 40, 57–64. [Google Scholar]
- Zhou, S.J.; Chen, X.J.; Zhu, Y.Q.; Chen, L.P.; Zhang, P. Research progress and suggestion on germplasms of ash gourd and chieh-qua. J. Plant Genet. Resour. 2014, 15, 211–214. [Google Scholar]
- Mignouna, H.; Mank, R.; Ellis, T. A genetic linkage map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Theor. Appl. Genet. 2002, 105, 726–735. [Google Scholar] [CrossRef]
- Sartie, A.; Asiedu, R.; Franco, J. Genetic and phenotypic diversity in a germplasm working collection of cultivated tropical yams (Dioscorea spp.). Genet. Resour. Crop. Evol. 2012, 59, 1753–1765. [Google Scholar] [CrossRef]
- Nemorin, A.; David, J.; Maledon, E.; Nudol, E.; Dalon, J.; Arnau, G. Microsatellite and flow cytometry analysis to help understand the origin of Dioscorea alata polyploids. Ann. Bot. 2013, 112, 811–819. [Google Scholar] [CrossRef]
- Kouam, E.; Avana-Tientcheu, M.; Lekeumo, V.; Akitio, H.; Khasa, D.; Pasquet, R. Agro-ecological distribution of the phenotypic diversity of aerial yam (Dioscorea bulbifera L.) in Cameroon using multivariate analysis: Prospect for germplasm conservation and improvement. Open Agric. 2018, 3, 190–206. [Google Scholar] [CrossRef]
- Zhang, W.J.; Chen, J.Y.; Liu, B.C.; Zhao, Y.Q.; Huang, Y.Z.; Chen, Y. Genetic variations on major traits of 37 Chinese Yam germplasms. Fujian J. Agric. Sci. 2019, 34, 1246–1254. [Google Scholar]
- Wu, Z.G.; Wei, Y.H.; Leng, C.H.; Tao, Z.M.; Li, L.; Ji, Z.X. Study on the phenotypic trait diversity of Wenzhou yam. J. Zhejiang Agric. Sci. 2010, 4, 735–738. [Google Scholar]
- Huang, Y.X.; Wang, F.Q.; Du, J.F.; Hua, S.M.; Lei, F.G.; Xu, X.M.; Liang, K.J.; Zhang, Z.Y. Numerical analysis of morphological variation of germplasm resources of Dioscorea. China J. Chin. Mater. Medica 2013, 38, 318–324. [Google Scholar]
- Qin, W.Z.; Wei, B.H.; Gan, X.Q.; Wei, M.Z.; Tang, X.H. Genetic diversity analysis of main agronomic traits in yam germplasm resources. J. South. Agric. 2014, 45, 1726–1733. [Google Scholar]
- Li, L.H.; Hua, S.M.; Chen, Z.H.; Lei, F.G.; Cao, Y.Y. Phenotypic genetic diversity research on Dioscorea Landraces of Fujian province. J. Yunnan Agric. Univ. (Nat. Sci.) 2016, 30, 257–262. [Google Scholar]
- Wu, J.P.; Jiao, Z.B.; Guo, F.L.; Chen, L.F.; Zeng, F.S.; Qiu, Z.M. Study on germplasm genetic diversity of yam based on morphological markers. Chin. Wild Plant Resour. 2017, 36, 11–15. [Google Scholar]
- Zhang, Y.J.; Sun, Y.; Ge, F.L.; Piao, J.Z.; Li, N.; Zhang, X.F.; Huang, T.H.; Xue, C.M.; Cao, J.L. Resources investigation and morphological identification for yam. Beijing J. Tradit. Chin. Med. 2018, 37, 463–468. [Google Scholar]
- Naval, M.D.M.; Zuriaga, E.; Pecchioli, S.; Llácer, G.; Giordani, E.; Badenes, M.L. Analysis of genetic diversity among persimmon cultivars using microsatellite markers. Tree Genet. Genomes 2010, 6, 677–687. [Google Scholar] [CrossRef]
- Mignouna, H.D.; Abang, M.M.; Fagbemi, S.A. A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea ratundata) germplasm characterization. Ann. Appl. Biol. 2003, 142, 269–276. [Google Scholar] [CrossRef]
- Silva, L.; Mezette, T.; Nascimento, W.; Silva, E.; Veasey, E. Spatially structured morphological and molecular diversity among Dioscorea cayenensis and D. rotundata yam accessions. Plant Genet. Resour. 2017, 15, 296–309. [Google Scholar] [CrossRef]
- Singh, R.K.; Jena, S.N.; Khan, S.; Yadav, S.; Banarjee, N.; Raghuvanshi, S.; Bhardwaj, V.; Dattamajumder, S.K.; Kapur, R.; Solomon, S.; et al. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene 2013, 524, 309–329. [Google Scholar] [CrossRef] [PubMed]
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A.K. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011, 177, 309–334. [Google Scholar] [CrossRef]
- Zhao, J.; Tong, Y.Q.; Ge, T.M.; Ge, J.W. Genetic diversity estimation and core collection construction of Sinojackia huangmeiensis based on novel microsatellite markers. Biochem. Syst. Ecol. 2016, 16, 74–80. [Google Scholar] [CrossRef]
- Zhang, T.F. Localization of QTL for Protein and Oil Content in Soybean Using Chain and Association Analysis. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2021. [Google Scholar]
- Zhang, Q.; Tian, H.L.; Guo, S.H.; Wang, Y.Q.; Pei, S.S.; Wu, C.J.; Wang, Q.B.; Zuo, X.Q. Development of high-throughput simple sequence repeat (SSR) markers for Chinese yam (Dioscorea opposita Thunb.) and genetic diversity and association analysis using phenotypic and genotypic traits. Genet. Resour. Crop Evol. 2025, 72, 7465–7482. [Google Scholar] [CrossRef]
- Bressan, E.; Neto, T.B.; Zucchi, M.I.; Rabello, R.J.; Veasey, E.A. Morphological variation and isozyme diversity in Dioscorea alata L. landraces from Vale do Ribeira, Brazil. Sci. Agric. 2011, 68, 494–502. [Google Scholar] [CrossRef]
- IPGRI/IITA. Descriptors for Yam (Dioscorea spp.); International Institute of Tropical Agriculture/Rome and International Plant Genetic Resources Institute: Ibadan, Nigeria; Rome, Italy, 1997. [Google Scholar]
- Huang, D.Y.; Huang, X.L. Descriptors and Data Quality Control Criterion for Dioscorea opposita Thunb; Science Press: Beijing, China, 2013. [Google Scholar]
- Wang, H.P.; Shen, D. Descriptors and Data Standard for Yam (Dioscorea spp.); China Agriculture Press: Beijing, China, 2014. [Google Scholar]
- Cao, T.X.; Sun, J.Y.; Shan, N.; Chen, X.; Wang, P.T.; Zhu, Q.L.; Xiao, Y.; Zhang, H.Y.; Zhou, Q.H.; Huang, Y.J. Uncovering the genetic diversity of yams (Dioscorea spp.) in China by combining phenotypic trait and molecular marker analyses. Ecol. Evol. 2021, 11, 9970–9986. [Google Scholar] [CrossRef]
- Zhai, C.J.; Ge, L.J.; Cheng, Y.J.; Qiu, L.; Wang, X.Q.; Liu, S.D. Genetic diversity analysis of wax gourd and chieh-qua germplasm resources based on phenotypic traits and ssr markers. Sci. Agric. Sin. 2024, 57, 3440–3457. [Google Scholar]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.J.; Donnelly, P.J. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Chen, W.; Wang, L.R.; Zhu, G.R.; Fang, W.C.; Chen, C.W.; Cao, K.; Zhang, S.L. Comparison of Genetic Diversity among Peach Cultivars based on Biological Traits and SSR Markers. J. Plant Genet. Resour. 2009, 10, 86–90. [Google Scholar]
- Sun, Z.Z.; Li, Q.Y.; Wang, X.K.; Zhao, W.T.; Xue, Y.; Feng, J.Y.; Liu, X.F.; Liu, M.Y.; Jiang, D. Comprehensive evaluation and phenotypic diversity analysis of germplasm resources in Mandarin. Sci. Agric. Sin. 2017, 50, 4362–4372. [Google Scholar]
- Campbell, D.R. Using phenotypic manipulations to study multivariate selection of floral trait associations. Ann. Bot. 2009, 103, 1557–1566. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Xu, J.Q.; Xu, B.; Hu, A.P.; Zhang, Y.H. Genetic diversity analysis of agronomic traits and elite accession selection in 263 cucumber germplasm resources. J. South. Agric. 2021, 52, 145–154. [Google Scholar]
- Sun, D.L.; Bian, N.F.; Chen, Z.D.; Xing, X.H.; Xu, Z.J.; Qi, Y.J.; Wang, X.; Wang, X.J.; Wang, W. Comprehensive evaluation and index screening of phenotypic traits in peanut germplasm resources. J. Plant Genet. Resour. 2018, 19, 865–874. [Google Scholar]
- Huang, Y.; Xie, Y.Q.; Li, Z.Z.; Wang, K.L.; Lin, P.; Yao, X.H. Analysis of Camellia meiocarpa phenotype diversity. J. Plant Genet. Resour. 2014, 15, 270–278. [Google Scholar]
- Jiang, X.B.; Gong, B.C.; Liu, Q.Z.; Chen, X.; Wu, K.Y.; Deng, Q.E.; Tang, D. Phenotypic diversity of important agronomic traits of local cultivars of Chinese chestnut. Acta Hortic. Sin. 2014, 41, 641–652. [Google Scholar]
- Zhou, Y.Q.; Zhou, Z.N.; Yao, H.L.; Liu, Y.J.; Tu, R.T. Application of ISSR markers in detection of genetic variation among Chinese yam (Dioscorea opposita Thunb) cultivars. Life Sci. J. 2008, 5, 6–12. [Google Scholar]
- Wang, Y.W.; Zixia, G.; Min, C.; Zhang, Y.M.; Sun, X.Q.; Zhou, Y.F.; Bin, P. Genetic relationship and species identification of Dioscorea polystachya Turcz. in Yams determined by ISSR, ISAP, SRAP and SCAR markers. Genet. Resour. Crop Evol. 2022, 69, 1953–1964. [Google Scholar]
- Wang, R.H.; Wang, T.Y.; Li, Y. Application of association analysis in molecular evaluation of crop germplasm resources. J. Plant Genet. Resour. 2007, 8, 366–372. [Google Scholar]
- Liu, J.Y.; Zhang, Y.W.; Han, X.; Zuo, J.F.; Zhang, Z.; Shang, H.; Song, Q.; Zhang, Y.M. An evolutionary population structure model reveals pleiotropic effects of GmPDAT for traits related to seed size and oil content in soybean. J. Exp. Bot. 2020, 71, 6988–7002. [Google Scholar] [CrossRef]
- Hansen, M.; Kraft, T.; Ganestam, S.S.Ä.; Li, T.; Nilsson, N.O. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet. Res. 2001, 77, 61–66. [Google Scholar] [CrossRef]
- Tan, L.Z.; Zhao, Y.Q. Principle, optimization and application of mixed models in genomewide association study. Scientia Agric. Sin. 2024, 57, 3440–3457. [Google Scholar]
Traits | Classes (Codes) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Flowering (FL) | Absent | Male | Female | ||
Aerial tubers (ATs) | Absent | Present | |||
Leaf shape (LS) | Heart triangle | Triangular ovate | Lanceolate | Round | Shape of halberd |
Leaf color (LC) | Yellow-green | Greenish gray | Dark green | ||
Leaf apex shape (LAX) | Obtuse | Acute | |||
Distance between lobes (DBLs) | Intermediate | Very distant | |||
Leaf margin color (LMC) | Green | Purple | |||
Petiole color (PC) | Purple | Green | Greenish purple | Purplish red | |
Leaf vein color (LVC) | Yellow-green | Green | Purple | ||
Leaf vein (LV) | Five | Seven | Nine | ||
Stem color (SC) | Green | Green with purple | Brownish green | Purple | |
Tuber shape (TS) | Oval | Cylindrical | Irregular | ||
Roots hair density (RHD) | Sparse | Dense | |||
Place of roots on the tuber (PRT) | All | Upper and Middle | |||
Tuber skin color (TSC) | Brown | Black | Gray | ||
Tuber skin color under bark (TSCUB) | Beige | Purple | |||
Flesh color (FC) | White | Yellow | |||
Leaf length (LL) | Average leaf length of six mature leaves (cm) | ||||
Leaf width (LW) | Average leaf width of six mature leaves (cm) | ||||
Length to width ratio (LWR) | Average leaf length/average leaf width(cm/cm) | ||||
Tuber length (TL) | Average tuber length of six plants (cm) | ||||
Tuber diameter (TD) | Average tuber diameter of six plants (mm) | ||||
Tuber flesh weight (TFW) | Average yield of six plants (g) |
Traits | Classes (Codes) | I | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Flowering (FL) | 0.23 | 0.28 | 0.49 | 1.04 | ||
Aerial tubers (ATs) | 0.25 | 0.76 | 0.56 | |||
Leaf shape (LS) | 0.02 | 0.49 | 0.06 | 0.08 | 0.40 | 1.15 |
Leaf color (LC) | 0.08 | 0.06 | 0.87 | 0.48 | ||
Leaf apex shape (LAX) | 0.45 | 0.55 | 0.69 | |||
Distance between lobes (DBLs) | 0.66 | 0.34 | 0.64 | |||
Leaf margin color (LMC) | 0.26 | 0.74 | 0.58 | |||
Petiole color (PC) | 0.19 | 0.19 | 0.04 | 0.59 | 1.07 | |
Leaf vein color (LVC) | 0.68 | 0.28 | 0.04 | 0.74 | ||
Leaf vein (LV) | 0.04 | 0.94 | 0.02 | 0.25 | ||
Stem color (SC) | 0.04 | 0.55 | 0.02 | 0.38 | 0.90 | |
Tuber shape (TS) | 0.93 | 0.02 | 0.06 | 0.31 | ||
Roots hair density (RHD) | 0.79 | 0.21 | 0.51 | |||
Place of roots on the tuber (PRT) | 0.89 | 0.11 | 0.35 | |||
Tuber skin color (TSC) | 0.45 | 0.36 | 0.19 | 1.04 | ||
Tuber skin color under bark (TSCUB) | 0.98 | 0.02 | 0.09 | |||
Flesh color (FC) | 0.98 | 0.02 | 0.09 | |||
Mean | 0.62 |
Traits | Maximum | Minimum | Range | Mean | SD | CV | I |
---|---|---|---|---|---|---|---|
Leaf length (cm) | 12.82 | 5.88 | 6.93 | 8.48 | 1.39 | 16.41 | 1.50 |
Leaf width (cm) | 8.98 | 2.85 | 6.13 | 5.96 | 1.21 | 20.28 | 1.62 |
Length-to-width ratio | 2.20 | 1.10 | 1.10 | 1.46 | 0.23 | 15.80 | 1.57 |
Tuber length (cm) | 77.50 | 17.50 | 60.00 | 40.46 | 12.58 | 31.10 | 1.77 |
Tuber diameter (mm) | 15.38 | 1.75 | 13.63 | 6.65 | 2.95 | 44.36 | 1.79 |
Tuber flesh weight (g) | 1316.00 | 61.50 | 1254.50 | 350.72 | 250.60 | 71.45 | 1.45 |
Trait | Principal Component | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
FL | 0.01 | 0.47 | 0.14 | −0.42 | 0.18 | 0.02 | 0.14 | −0.06 |
AT | 0.00 | 0.08 | −0.38 | −0.55 | 0.49 | 0.12 | −0.14 | 0.00 |
LS | −0.51 | 0.05 | 0.39 | 0.37 | 0.17 | 0.02 | 0.15 | 0.04 |
LC | 0.57 | 0.48 | 0.14 | 0.28 | −0.13 | 0.08 | 0.12 | 0.03 |
LAX | −0.57 | −0.17 | 0.03 | −0.06 | 0.04 | 0.13 | 0.08 | 0.41 |
DBL | −0.41 | −0.12 | −0.11 | 0.34 | 0.41 | −0.28 | 0.45 | −0.02 |
LMC | −0.45 | 0.40 | 0.22 | 0.24 | −0.09 | −0.24 | 0.37 | −0.03 |
PC | 0.38 | −0.13 | −0.02 | 0.07 | −0.35 | −0.39 | 0.35 | 0.32 |
LVC | −0.16 | −0.14 | −0.22 | −0.18 | 0.27 | 0.36 | 0.48 | 0.38 |
LV | 0.65 | 0.01 | 0.46 | −0.22 | 0.31 | 0.17 | 0.18 | −0.01 |
SC | −0.33 | 0.44 | 0.26 | 0.18 | 0.10 | −0.11 | −0.27 | 0.16 |
TS | 0.29 | −0.43 | 0.08 | 0.47 | −0.09 | 0.15 | 0.27 | −0.21 |
RHD | 0.27 | −0.06 | −0.31 | 0.39 | 0.28 | −0.05 | 0.03 | −0.49 |
PRT | −0.04 | −0.47 | −0.41 | −0.05 | 0.42 | 0.11 | 0.27 | −0.14 |
TSC | −0.08 | 0.43 | 0.18 | −0.36 | −0.37 | 0.21 | 0.41 | −0.04 |
TSCUB | 0.39 | −0.43 | 0.75 | −0.04 | 0.24 | 0.01 | −0.04 | 0.07 |
FC | 0.39 | −0.43 | 0.75 | −0.04 | 0.24 | 0.01 | −0.04 | 0.07 |
LL | 0.59 | 0.09 | −0.39 | 0.13 | 0.20 | −0.43 | −0.11 | 0.39 |
LW | 0.65 | 0.50 | −0.21 | 0.08 | 0.30 | −0.24 | 0.06 | 0.18 |
LWR | −0.36 | −0.78 | −0.04 | 0.04 | −0.10 | −0.18 | −0.24 | 0.21 |
TL | −0.44 | 0.45 | 0.29 | 0.07 | 0.38 | −0.10 | −0.18 | −0.13 |
TD | 0.32 | 0.07 | −0.27 | 0.43 | −0.19 | 0.64 | −0.11 | 0.16 |
YPP | −0.13 | 0.33 | 0.03 | 0.55 | 0.31 | 0.37 | −0.19 | 0.27 |
Eigenvalue | 3.67 | 3.03 | 2.49 | 2.02 | 1.73 | 1.41 | 1.36 | 1.11 |
Contribution rate (%) | 15.95 | 13.16 | 10.83 | 8.80 | 7.50 | 6.14 | 5.91 | 4.83 |
Accumulated contribution rate (%) | 15.95 | 29.11 | 39.94 | 48.74 | 56.24 | 62.39 | 68.30 | 73.13 |
Accessions | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D Value | Ranking |
---|---|---|---|---|---|---|---|---|---|---|
DP24 | 0.482 | 1.000 | 0.276 | 0.624 | 0.758 | 0.923 | 0.281 | 0.700 | 0.626 | 1 |
DP52 | 1.000 | 0.000 | 1.000 | 0.325 | 0.853 | 0.371 | 0.394 | 0.641 | 0.597 | 2 |
DP22 | 0.582 | 0.669 | 0.087 | 0.656 | 0.842 | 0.584 | 0.971 | 0.259 | 0.569 | 3 |
DP5 | 0.544 | 0.853 | 0.249 | 0.566 | 0.430 | 0.565 | 0.417 | 0.901 | 0.562 | 4 |
DP23 | 0.528 | 0.958 | 0.249 | 0.581 | 0.875 | 0.196 | 0.358 | 0.471 | 0.561 | 5 |
DP42 | 0.363 | 0.644 | 0.322 | 0.999 | 0.569 | 0.419 | 0.285 | 1.000 | 0.546 | 6 |
DP39 | 0.646 | 0.771 | 0.192 | 0.458 | 0.354 | 0.508 | 0.655 | 0.740 | 0.544 | 7 |
DP1 | 0.552 | 0.803 | 0.237 | 0.463 | 0.398 | 0.680 | 0.530 | 0.710 | 0.544 | 8 |
DP2 | 0.503 | 0.825 | 0.195 | 0.457 | 0.731 | 0.241 | 0.747 | 0.487 | 0.529 | 9 |
DP47 | 0.601 | 0.811 | 0.175 | 0.369 | 0.364 | 0.602 | 0.467 | 0.797 | 0.526 | 10 |
DP41 | 0.601 | 0.779 | 0.170 | 0.333 | 0.466 | 0.735 | 0.495 | 0.545 | 0.522 | 11 |
DP27 | 0.574 | 0.620 | 0.054 | 0.418 | 1.000 | 0.342 | 0.502 | 0.763 | 0.517 | 12 |
DP37 | 0.750 | 0.360 | 0.099 | 0.935 | 0.303 | 1.000 | 0.425 | 0.173 | 0.516 | 13 |
DP38 | 0.434 | 0.582 | 0.240 | 0.493 | 0.540 | 0.293 | 1.000 | 0.914 | 0.515 | 14 |
DP30 | 0.848 | 0.658 | 0.025 | 0.509 | 0.440 | 0.224 | 0.198 | 0.959 | 0.511 | 15 |
DP28 | 0.516 | 0.896 | 0.219 | 0.597 | 0.926 | 0.108 | 0.286 | 0.074 | 0.510 | 16 |
DP49 | 0.551 | 0.475 | 0.278 | 0.777 | 0.330 | 0.248 | 0.932 | 0.516 | 0.504 | 17 |
DP21 | 0.611 | 0.686 | 0.158 | 0.303 | 0.302 | 0.636 | 0.478 | 0.970 | 0.503 | 18 |
DP25 | 0.349 | 0.872 | 0.345 | 0.599 | 0.719 | 0.613 | 0.176 | 0.090 | 0.502 | 19 |
DP20 | 0.441 | 0.846 | 0.278 | 0.389 | 0.666 | 0.256 | 0.537 | 0.477 | 0.501 | 20 |
DP40 | 0.492 | 0.739 | 0.253 | 0.286 | 0.494 | 0.350 | 0.957 | 0.486 | 0.501 | 21 |
DP48 | 0.673 | 0.751 | 0.148 | 0.387 | 0.398 | 0.125 | 0.566 | 0.797 | 0.500 | 22 |
DP29 | 0.866 | 0.648 | 0.000 | 0.551 | 0.583 | 0.000 | 0.250 | 0.660 | 0.495 | 23 |
DP53 | 0.529 | 0.726 | 0.248 | 0.450 | 0.428 | 0.357 | 0.386 | 0.721 | 0.490 | 24 |
DP44 | 0.557 | 0.800 | 0.227 | 0.292 | 0.430 | 0.268 | 0.745 | 0.353 | 0.484 | 25 |
DP45 | 0.575 | 0.680 | 0.155 | 0.500 | 0.605 | 0.170 | 0.733 | 0.224 | 0.481 | 26 |
DP19 | 0.699 | 0.233 | 0.067 | 1.000 | 0.436 | 0.394 | 0.887 | 0.000 | 0.473 | 27 |
DP43 | 0.525 | 0.820 | 0.308 | 0.237 | 0.337 | 0.374 | 0.664 | 0.264 | 0.473 | 28 |
DP8 | 0.664 | 0.708 | 0.164 | 0.381 | 0.399 | 0.241 | 0.390 | 0.568 | 0.473 | 29 |
DP32 | 0.765 | 0.630 | 0.061 | 0.557 | 0.581 | 0.124 | 0.144 | 0.505 | 0.471 | 30 |
DP3 | 0.425 | 0.468 | 0.256 | 0.608 | 0.432 | 0.272 | 0.764 | 0.781 | 0.468 | 31 |
DP36 | 0.553 | 0.774 | 0.209 | 0.160 | 0.335 | 0.577 | 0.515 | 0.411 | 0.462 | 32 |
DP10 | 0.497 | 0.754 | 0.281 | 0.479 | 0.463 | 0.319 | 0.243 | 0.363 | 0.461 | 33 |
DP18 | 0.498 | 0.775 | 0.290 | 0.389 | 0.467 | 0.475 | 0.255 | 0.209 | 0.460 | 34 |
DP16 | 0.588 | 0.770 | 0.220 | 0.395 | 0.387 | 0.221 | 0.289 | 0.397 | 0.455 | 35 |
DP51 | 0.652 | 0.793 | 0.208 | 0.111 | 0.297 | 0.088 | 0.682 | 0.383 | 0.447 | 36 |
DP15 | 0.438 | 0.739 | 0.264 | 0.290 | 0.674 | 0.156 | 0.584 | 0.211 | 0.446 | 37 |
DP14 | 0.588 | 0.609 | 0.157 | 0.130 | 0.522 | 0.491 | 0.389 | 0.591 | 0.442 | 38 |
DP4 | 0.459 | 0.622 | 0.281 | 0.322 | 0.405 | 0.712 | 0.268 | 0.377 | 0.440 | 39 |
DP7 | 0.596 | 0.684 | 0.218 | 0.289 | 0.395 | 0.170 | 0.405 | 0.386 | 0.433 | 40 |
DP46 | 0.440 | 0.698 | 0.330 | 0.133 | 0.170 | 0.359 | 0.792 | 0.516 | 0.432 | 41 |
DP13 | 0.629 | 0.666 | 0.182 | 0.223 | 0.425 | 0.475 | 0.254 | 0.237 | 0.430 | 42 |
DP9 | 0.538 | 0.702 | 0.270 | 0.343 | 0.398 | 0.082 | 0.329 | 0.450 | 0.429 | 43 |
DP50 | 0.616 | 0.529 | 0.205 | 0.341 | 0.000 | 0.886 | 0.398 | 0.147 | 0.417 | 44 |
DP34 | 0.665 | 0.527 | 0.137 | 0.427 | 0.401 | 0.327 | 0.252 | 0.136 | 0.409 | 45 |
DP31 | 0.698 | 0.438 | 0.108 | 0.388 | 0.275 | 0.237 | 0.180 | 0.722 | 0.404 | 46 |
DP33 | 0.724 | 0.354 | 0.011 | 0.405 | 0.521 | 0.232 | 0.411 | 0.183 | 0.389 | 47 |
DP26 | 0.569 | 0.625 | 0.238 | 0.286 | 0.196 | 0.056 | 0.417 | 0.371 | 0.389 | 48 |
DP6 | 0.416 | 0.596 | 0.258 | 0.000 | 0.349 | 0.289 | 0.313 | 0.474 | 0.353 | 49 |
DP11 | 0.251 | 0.277 | 0.144 | 0.761 | 0.126 | 0.079 | 0.400 | 0.763 | 0.320 | 50 |
DP17 | 0.379 | 0.009 | −0.144 | −0.229 | 1.117 | 0.710 | 0.443 | 0.679 | 0.288 | 51 |
DP35 | 0.256 | 0.105 | 0.213 | 0.192 | 0.505 | 0.364 | 0.537 | 0.482 | 0.286 | 52 |
DP12 | 0.000 | 0.326 | 0.264 | 0.698 | 0.369 | 0.142 | 0.000 | 0.430 | 0.261 | 53 |
Markers | Na | Ne | I | Ho | He | H | PIC |
---|---|---|---|---|---|---|---|
YM02 | 5 | 2.297 | 1.033 | 0.302 | 0.571 | 0.565 | 0.703 |
YM03 | 2 | 1.935 | 0.676 | 0.531 | 0.488 | 0.483 | 0.318 |
YM06 | 7 | 6.531 | 1.970 | 0.725 | 0.858 | 0.847 | 0.927 |
YM07 | 6 | 4.681 | 1.646 | 0.558 | 0.796 | 0.786 | 0.907 |
YM09 | 7 | 6.179 | 1.864 | 0.619 | 0.848 | 0.838 | 0.942 |
YM12 | 2 | 1.679 | 0.594 | 0.521 | 0.409 | 0.404 | 0.402 |
YM13 | 4 | 1.288 | 0.493 | 0.244 | 0.226 | 0.224 | 0.392 |
YM17 | 2 | 1.913 | 0.670 | 0.787 | 0.483 | 0.477 | 0.294 |
YM19 | 4 | 2.720 | 1.131 | 0.935 | 0.639 | 0.632 | 0.533 |
YM21 | 2 | 1.641 | 0.579 | 0.532 | 0.395 | 0.390 | 0.374 |
YM24 | 2 | 1.939 | 0.677 | 0.600 | 0.490 | 0.484 | 0.473 |
YM30 | 2 | 1.110 | 0.205 | 0.063 | 0.100 | 0.099 | 0.150 |
YM32 | 8 | 5.563 | 1.848 | 0.773 | 0.830 | 0.820 | 0.942 |
YM33 | 3 | 1.190 | 0.325 | 0.135 | 0.161 | 0.160 | 0.259 |
YM35 | 5 | 3.458 | 1.337 | 0.891 | 0.719 | 0.711 | 0.819 |
YM37 | 7 | 4.080 | 1.641 | 0.886 | 0.764 | 0.755 | 0.904 |
YM41 | 2 | 1.156 | 0.261 | 0.146 | 0.137 | 0.135 | 0.218 |
Da1D08 | 5 | 2.741 | 1.201 | 0.739 | 0.642 | 0.635 | 0.843 |
SSR-17 | 5 | 1.977 | 0.927 | 0.575 | 0.500 | 0.494 | 0.717 |
Total | 80 | 54.078 | 19.078 | 10.562 | 10.056 | 9.939 | 11.117 |
Mean | 4.211 | 2.846 | 1.004 | 0.556 | 0.529 | 0.523 | 0.585 |
Trait | Marker Site | General Linear Model (GLM) | Mixed Linear Model (MLM) | ||
---|---|---|---|---|---|
p | R2 (%) | p | R2 (%) | ||
FL | YM07_2 (400 bp) | - | - | 0.0093 | 13.94 |
AT | YM06_3 (350 bp) | 0.0016 | 18.03 | 0.0036 | 18.58 |
AT | YM13_3 (400 bp) | 0.0085 | 12.96 | - | - |
LMC | YM13_3 (400 bp) | 0.0013 | 18.72 | 0.0035 | 18.75 |
LMC | YM37_2 (350 bp) | 0.0012 | 19.03 | 0.0063 | 16.25 |
LMC | YM37_7 (100 bp) | 0.0068 | 13.73 | 0.0026 | 20.16 |
LL | Da1D08_4 (300 bp) | 0.0028 | 16.46 | 0.0055 | 16.77 |
LL | YM19_3 (130 bp) | - | - | 0.0067 | 15.94 |
LWR | YM06_1 (500 bp) | 0.0062 | 13.79 | 0.0058 | 16.70 |
LW | YM19_3 (130 bp) | - | - | 0.0032 | 19.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, D.; Tang, R.; Yang, G.; Yang, Y.; Hu, M.; Tang, M.; Cao, T.; Du, P. Genetic Diversity and Association Analysis of Dioscorea polystachya Germplasm Resources Based on Phenotypic Traits and SSR Markers. Horticulturae 2025, 11, 1193. https://doi.org/10.3390/horticulturae11101193
Tan D, Tang R, Yang G, Yang Y, Hu M, Tang M, Cao T, Du P. Genetic Diversity and Association Analysis of Dioscorea polystachya Germplasm Resources Based on Phenotypic Traits and SSR Markers. Horticulturae. 2025; 11(10):1193. https://doi.org/10.3390/horticulturae11101193
Chicago/Turabian StyleTan, Dan, Rong Tang, Ge Yang, Yinfang Yang, Miao Hu, Min Tang, Tianxu Cao, and Ping Du. 2025. "Genetic Diversity and Association Analysis of Dioscorea polystachya Germplasm Resources Based on Phenotypic Traits and SSR Markers" Horticulturae 11, no. 10: 1193. https://doi.org/10.3390/horticulturae11101193
APA StyleTan, D., Tang, R., Yang, G., Yang, Y., Hu, M., Tang, M., Cao, T., & Du, P. (2025). Genetic Diversity and Association Analysis of Dioscorea polystachya Germplasm Resources Based on Phenotypic Traits and SSR Markers. Horticulturae, 11(10), 1193. https://doi.org/10.3390/horticulturae11101193