Direct Transcriptional Activation of LEHP2 and LEHP3 by LeMYB2 and LeMYB5 Underlies Postharvest Browning in Lentinus edodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials of Shiitake Mushrooms
2.2. Assessment of Browning Degree and Measurement of Skin Color
2.3. Sampling and Processing of Shiitake Mushroom Fruiting Body
2.4. Measurement of Browning Related Indices
2.4.1. POD Activity Assay
2.4.2. SOD Activity Assay
2.4.3. MDA Content Determination
2.4.4. Relative Electrical Conductivity Measurement
2.5. Relative Expression Measurements of Selected Genes
2.5.1. Extraction of Total RNA from Shiitake Mushrooms
2.5.2. Reverse Transcription of RNA
2.5.3. Quantitative Real-Time PCR (qRT-PCR)
2.6. Bioinformatics Analysis and Subcellular Localization of the LeMYB2/5
2.6.1. Bioinformatics Analysis of the LeMYB2/5 Gene Family
2.6.2. Subcellular Localization of LeMYB2/5 Transcription Factors in Tobacco
2.7. EMSA
2.8. DLR
2.9. Statistical Analysis
3. Results
3.1. The Browning Degree of Shiitake Mushroom—The Color of the Cap and the Flesh
3.2. Browning Related Indices During the Storage of Shiitake Mushrooms
3.2.1. Results of SOD Enzyme Activity, MDA Levels, and Electrical Conductivity Changes During the Storage of Shiitake Mushrooms
3.2.2. Results of POD Enzyme Activity and LEHPs Gene Relative Expression Changes During the Storage of Shiitake Mushrooms
3.3. Analysis of Cis-Acting Progenitors of the LEHP 1, 2, 3 Gene
3.4. LeMYB Gene Relative Expression Changes During the Storage of Shiitake Mushrooms
3.5. Bioinformatics Analysis and Subcellular Localization of LeMYB2/5
3.5.1. Bioinformatics Analysis of LeMYB2 and LeMYB5
3.5.2. Subcellular Localization of LeMYB2/5 Transcription Factors
3.6. Browning Regulation Mechanisms Mediated by LeMYB2 and LeMYB5 in Postharvest Shiitake Mushrooms
3.6.1. Analys of EMSA
3.6.2. Analys of DLR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EMSA | Electrophoretic Mobility Shift Assay |
DLR | Dual-Luciferase Reporter Assay |
MDA | Malondialdehyde |
SOD | Superoxide dismutase |
POD | Peroxidase |
PPO | Polyphenol oxidase |
HPs | Heme peroxidases |
H2O2 | Hydrogen peroxide |
TFs | Transcription factors |
qRT-PCR | Quantitative Real-Time PCR |
ROS | reactive oxygen species |
References
- Kupcova, K.; Stefanova, I.; Plavcova, Z.; Hosek, J.; Hrouzek, P.; Kubec, R. Antimicrobial, cytotoxic, anti-inflammatory, and antioxidant activity of culinary processed shiitake medicinal mushroom (Lentinus edodes, Agaricomycetes) and its major sulfur sensory-active compound-lenthionine. Int. J. Med. Mushrooms 2018, 20, 165–175. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, U.; Eo, H.J. Influence of storage temperature on levels of bioactive compounds in shiitake mushrooms (Lentinula edodes). Mycobiology 2023, 51, 445–451. [Google Scholar] [CrossRef]
- Analysis of the Results of the National Edible Fungi Statistical Survey in 2023; Tridge. 2024. Available online: https://www.tridge.com/news/analysis-of-the-results-of-the-national-edib-fxovru (accessed on 17 September 2025).
- Liang, G.; Gong, W.; Li, B.; Zuo, J.; Pan, L.; Liu, X. Analysis of heavy metals in foodstuffs and an assessment of the health risks to the general public via consumption in Beijing, China. Int. J. Environ. Res. Public Health 2019, 16, 909. [Google Scholar] [CrossRef]
- Tao, F.; Chen, W.; Jia, Z. Effect of simulated transport vibration on the quality of shiitake mushroom (Lentinus edodes) during storage. Food Sci. Nutr. 2021, 9, 1152–1159. [Google Scholar] [CrossRef]
- Ogawa, K.; Yashima, T. Water concentration and rate of decrease in shiitake cultivation log during fruiting body development, as measured by MRI. Fungal Biol. 2023, 127, 1362–1375. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, X.; Song, Z.; Kong, W.; Kang, Y.; Kong, W.; Ng, T.B. Coating shiitake mushrooms (Lentinus edodes) with a polysaccharide from Oudemansiella radicata improves product quality and flavor during postharvest storage. Food Chem. 2021, 352, 129357. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ren, R.; Yao, L.; Tong, L.; Li, J.; Wang, D.; Gu, S. Effect of hyperbranched poly-L-lysine and chitosan treatment on quality of shiitake mushrooms (Lentinus edodes) during cold storage. Food Meas. 2024, 18, 9560–9572. [Google Scholar] [CrossRef]
- Lin, X.; Sun, D.-W. Research advances in browning of button mushroom (Agaricus bisporus): Affecting factors and controlling methods. Trends Food Sci. Technol. 2019, 90, 63–75. [Google Scholar] [CrossRef]
- Wang, C.; Meng, L.; Zhang, G.; Yang, X.; Pang, B.; Cheng, J.; He, B.; Sun, F. Unraveling crop enzymatic browning through integrated omics. Front. Plant Sci. 2024, 15, 1342639. [Google Scholar] [CrossRef]
- Lei, J.; Li, B.; Zhang, N.; Yan, R.; Guan, W.; Brennan, C.S.; Gao, H.; Peng, B. Effects of UV-C treatment on browning and the expression of polyphenol oxidase (PPO) genes in different tissues of Agaricus bisporus during cold storage. Postharvest Biol. Technol. 2018, 139, 99–105. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Li, W.; Liu, P.; Chen, W.; Zhang, Z.; Yang, Y. The mechanism of preharvest treatment of polysaccharide from Lentinus edodes residue on inhibiting browning of postharvest Agaricus bisporus. Postharvest Biol. Technol. 2025, 227, 113608. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Guo, J.; Deng, D.; He, G.; Ji, C.; Wang, R.; Long, H.; Wang, J.; et al. Effect of shiitake mushrooms polysaccharide and chitosan coating on softening and browning of shiitake mushrooms (Lentinus edodes) during postharvest storage. Int. J. Biol. Macromol. 2022, 218, 816–827. [Google Scholar] [CrossRef]
- Tilley, A.; McHenry, M.P.; McHenry, J.A.; Solah, V.; Bayliss, K. Enzymatic browning: The role of substrates in polyphenol oxidase mediated browning. Curr. Res. Food Sci. 2023, 7, 100623. [Google Scholar] [CrossRef]
- Zou, Y.-J.; Wang, H.-X.; Zhang, J.-X. A Novel peroxidase from fresh fruiting bodies of the mushroom Pleurotus pulmonarius. Int. J. Pept. Res. Ther. 2019, 25, 1389–1396. [Google Scholar] [CrossRef]
- Liu, J.; Chang, M.; Meng, J.; Liu, J.; Cheng, Y.-F.; Feng, C. Effect of ozone treatment on the quality and enzyme activity of Lentinus edodes during cold storage. J. Food Process. Preserv. 2020, 44, e14557. [Google Scholar] [CrossRef]
- Wei, J.; Liu, B.; Zhong, R.; Chen, Y.; Fang, F.; Huang, X.; Pang, X.; Zhang, Z. Characterization of a longan pericarp browning related peroxidase with a focus on its role in proanthocyanidin and lignin polymerization. Food Chem. 2024, 461, 140937. [Google Scholar] [CrossRef] [PubMed]
- Passardi, F.; Bakalovic, N.; Teixeira, F.K.; Margis-Pinheiro, M.; Penel, C.; Dunand, C. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics 2007, 89, 567–579. [Google Scholar] [CrossRef]
- Liers, C.; Bobeth, C.; Pecyna, M.; Ullrich, R.; Hofrichter, M. DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl. Microbiol. Biotechnol. 2010, 85, 1869–1879. [Google Scholar] [CrossRef]
- Freitas, C.D.T.; Costa, J.H.; Germano, T.A.; Rocha, R.D.O.; Ramos, M.V.; Bezerra, L.P. Class III plant peroxidases: From classification to physiological functions. Int. J. Biol. Macromol. 2024, 263, 130306. [Google Scholar] [CrossRef]
- Tong, Y.; Xue, J.; Li, Q.; Zhang, L. A generalist regulator: MYB transcription factors regulate the biosynthesis of active compounds in medicinal plants. J. Exp. Bot. 2024, 75, 4729–4744. [Google Scholar] [CrossRef]
- Wang, X.; Niu, Y.; Zheng, Y. Multiple functions of MYB transcription factors in abiotic stress responses. Int. J. Mol. Sci. 2021, 22, 6125. [Google Scholar] [CrossRef]
- Jiao, L.; Yuan, S.; Zhang, L.; Shi, Z.; Wang, X.; Ma, M.; Huang, H.; Liu, X.; Meng, D. Methyl jasmonate-induced postharvest disease resistance in Agaricus bisporus is synergistically regulated by AbbZIP2 and AbMYB11 to facilitate ROS balance. Postharvest Biol. Technol. 2025, 228, 113667. [Google Scholar] [CrossRef]
- Wang, L.; Gao, W.; Wu, X.; Zhao, M.; Qu, J.; Huang, C.; Zhang, J. Genome-wide characterization and expression analyses of pleurotus ostreatus MYB transcription factors during developmental stages and under heat stress based on de novo sequenced genome. Int. J. Mol. Sci. 2018, 19, 2052. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Jiang, H.; Wang, Y.; Zhang, L.; Shi, Z.; Jiao, L.; Meng, D. A 3R-MYB transcription factor is involved in Methyl Jasmonate-Induced disease resistance in Agaricus bisporus and has implications for disease resistance in Arabidopsis. J. Adv. Res. 2025, 73, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Jia, C.; Jia, W.; Li, Y.; Chang, M.; Zhang, H. Mechanism of high-voltage electrostatic field treatment in maintaining the postharvest quality of Agaricus bisporus. Horticulturae 2025, 11, 1129. [Google Scholar] [CrossRef]
- Deng, B.; Wang, W.; Ruan, C.; Deng, L.; Yao, S.; Zeng, K. Involvement of CsWRKY70 in salicylic acid-induced citrus fruit resistance against Penicillium digitatum. Hortic. Res. 2020, 7, 157. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Feng, L.; Liu, H.; Li, L.; Wang, X.; Kitazawa, H.; Guo, Y. Improving the property of a reproducible bioplastic film of glutenin and its application in retarding senescence of postharvest Agaricus bisporus. Food Biosci. 2022, 48, 101796. [Google Scholar] [CrossRef]
- Patricia Twala, P.; Mitema, A.; Baburam, C.; Aliye Feto, N. Breakthroughs in the discovery and use of different peroxidase isoforms of microbial origin. AIMS Microbiol. 2020, 6, 330–349. [Google Scholar] [CrossRef]
- Li, G.; Feng, D.; Li, K.; Han, S.; Lv, Y.; Deng, Z.; Zeng, G.; Qin, X.; Shen, X.; Liu, S. Integrated transcriptome and DNA methylome analysis reveal the browning mechanism in Agaricus bisporus. Gene 2025, 955, 149437. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Z.; Li, J.; Zhang, Y.; Guo, Y.; Cheng, J.-H. Effects of dielectric barrier discharge cold plasma on the activity, structure and conformation of horseradish peroxidase (HRP) and on the activity of litchi peroxidase (POD). LWT 2021, 141, 111078. [Google Scholar] [CrossRef]
- Li, C.; Huang, D.; Wei, R.; Hong, Y.; Zhang, W.; Pan, X. Genome-wide characterization, identification, and function analysis of candidate JsMYB genes involved in regulating flavonol biosynthesis in Juglans sigillata Dode. Sci. Hortic. 2023, 317, 112044. [Google Scholar] [CrossRef]
- Li, P.; Xia, E.; Fu, J.; Xu, Y.; Zhao, X.; Tong, W.; Tang, Q.; Tadege, M.; Fernie, A.R.; Zhao, J. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). Plant J. 2022, 110, 1144–1165. [Google Scholar] [CrossRef]
- Meng, Z.; Ma, Y.; Wang, Q.; Li, Q. The R2R3-MYB transcription factor StODO1 functions as a positive regulator of polyphenol oxidase and enzymatic browning in Solanum tuberosum L. Postharvest Biol. Technol. 2025, 227, 113575. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, Q.; Bao, T.; Kong, M.; Gu, T.; Jiang, L.; Wang, T.; Xu, T.; Wang, N.; Zhang, Z.; et al. Transcription factor MdbZIP44 targets the promoter of MdPPO2 to regulate browning in Malus domestica Borkh. Plant Physiol. Biochem. 2024, 214, 108934. [Google Scholar] [CrossRef]
- Zhou, X.; Iqbal, A.; Li, J.; Liu, C.; Murtaza, A.; Xu, X.; Pan, S.; Hu, W. Changes in browning degree and reducibility of polyphenols during autoxidation and enzymatic oxidation. Antioxidants 2021, 10, 1809. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, B.; Li, Y.; Yuan, X.; Liu, J.; Chen, C.; Zhang, H. Direct Transcriptional Activation of LEHP2 and LEHP3 by LeMYB2 and LeMYB5 Underlies Postharvest Browning in Lentinus edodes. Horticulturae 2025, 11, 1176. https://doi.org/10.3390/horticulturae11101176
Deng B, Li Y, Yuan X, Liu J, Chen C, Zhang H. Direct Transcriptional Activation of LEHP2 and LEHP3 by LeMYB2 and LeMYB5 Underlies Postharvest Browning in Lentinus edodes. Horticulturae. 2025; 11(10):1176. https://doi.org/10.3390/horticulturae11101176
Chicago/Turabian StyleDeng, Bing, Yunzhi Li, Xuewen Yuan, Jingyu Liu, Cunkun Chen, and Hongyan Zhang. 2025. "Direct Transcriptional Activation of LEHP2 and LEHP3 by LeMYB2 and LeMYB5 Underlies Postharvest Browning in Lentinus edodes" Horticulturae 11, no. 10: 1176. https://doi.org/10.3390/horticulturae11101176
APA StyleDeng, B., Li, Y., Yuan, X., Liu, J., Chen, C., & Zhang, H. (2025). Direct Transcriptional Activation of LEHP2 and LEHP3 by LeMYB2 and LeMYB5 Underlies Postharvest Browning in Lentinus edodes. Horticulturae, 11(10), 1176. https://doi.org/10.3390/horticulturae11101176