Nano ZnO and Bioinoculants Mitigate Effects of Deficit Irrigation on Nutritional Quality of Green Peppers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Experimental Area
2.2. Treatments and Experimental Design
2.3. Seedlings’ Transplanting and Soil Fertilization
2.4. Application of Treatments
2.5. Irrigation Levels’ Application
2.6. Cultivation Practices and Phytosanitary Control
2.7. Variables Evaluated
2.7.1. Physicochemical Analysis
2.7.2. Mineral Nutrient Content
2.7.3. Overall Quality Index
2.8. Statistical Analyses
3. Results
3.1. Physicochemical and Physical Color Parameters
3.2. Mineral Nutrient Content
4. Discussion
4.1. Physicochemical Attributes and Color Parameters
4.2. Mineral Nutrient Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kabir, M.Y.; Nambeesau, S.U.; Bautista, J.; Diasz-Perez, J.C. Effect of irrigation level on plant growth, physiology and fruit yield and quality in bell pepper (Capsicum annuum L.). Sci. Hort. 2021, 281, 109902. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Parashar, A.; Parewa, H.P.; Vyas, L. An alarming decline in the nutritional quality of foods: The biggest challenge for future generations’ health. Foods 2024, 13, 877. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.M.; Azevedo, B.M.; Vasconcelos, D.V.; Dantas, M.S.M.; Viana, T.V.A. Management of water deficit in the irrigated production of the green pepper. Rev. Ciênc. Agron. 2023, 54, e20228414. [Google Scholar] [CrossRef]
- Mačkić, K.; Bajić, I.; Pejić, B.; Vlajić, S.; Adamović, B.; Popov, O.; Simić, D. Yield and water use efficiency of drip irrigation of pepper. Water 2023, 15, 2891. [Google Scholar] [CrossRef]
- Marouelli, W.A.; Silva, L.C.W. Irrigation in Pepper Cultivation; Technical Circular Embrapa Hortaliças, 101; Ministério da Agricultura, Pecuária e Abastecimento: Brasília, Brazil, 2012. [Google Scholar]
- Alordzinu, K.E.; Appiah, S.A.; AL Aasmi, A.; Darko, R.O.; Li, J.; Lan, Y.; Adjibolosoo, D.; Lian, C.; Wang, H.; Qiao, S. Evaluating the influence of deficit irrigation on fruit yield and quality indices of tomatoes grown in sandy loam and silty loam soils. Water 2022, 14, e1753. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 2012; p. 889. [Google Scholar]
- García-López, J.I.; Niño-Medina, G.; Olivares-Sáenz, E.; Lira-Saldivar, R.H.; Barriga-Castro, E.D.; Vázquez-Alvarado, R.; Rodríguez-Salinas, P.A.; Zavala-García, F. Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 2019, 8, 254. [Google Scholar] [CrossRef]
- Uresti-Porras, J.-G.; Cabrera-De-La Fuente, M.; Benavidez-Mendoza, A.; Olivares-Sáenz, E.; Cabrera, R.I.; Juárez-Maldonado, A. Effect of graft and nano ZnO on nutraceutical and mineral content in bell pepper. Plants 2021, 10, 2793. [Google Scholar] [CrossRef]
- Semida, W.M.; Abdelkhalik, A.; Mohamed, G.F.; Abd El-Mageed, T.A.; Abd El-Mageed, S.A.; Rady, M.M.; Ali, E.F. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 2021, 10, e421. [Google Scholar] [CrossRef]
- Rasouli, F.; Asadi, M.; Hassanpouraghdam, M.B.; Aazami, M.A.; Ebrahimzadeh, A.; Kakaei, K.; Dokoupil, L.; Mlcek, J. Foliar application of ZnO-NPS influences chlorophyll fluorescence and antioxidants pool in Capsicum annum L. under salinity. Horticulturae 2022, 8, 908. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Ahmad, A.; Battaglia, M.L.; Bilal, H.M.; Alhammad, B.A.; Khan, N. Zinc oxide nanoparticles: A unique saline stress mitigator with the potential to increase future crop production. S. Afr. J. Bot. 2023, 59, 208–218. [Google Scholar] [CrossRef]
- Durán Zuazo, V.H.; Franco, T.D.; Cárceles, R.B.; Gálvez, R.B.; Cermeño, S.P.; Cuadros, T.S.; García, T.I.F. Mango fruit quality improvements in response to water stress: Implications for adaptation under environmental constraints. Hort. Sci. 2021, 48, 1–11. [Google Scholar] [CrossRef]
- Gholinezhad, E. Effect of drought stress and Fe nanofertilizer on seed yield, morphological traits, essential oil percentage and yield of dill (Anethum graveolens L.). J. Essen. Oil Bear. Plants 2017, 20, 1006–1017. [Google Scholar] [CrossRef]
- Li, J.; Zafar, S.; Javaid, A.; Perveen, S.; Hasnain, Z.; Ihtisham, M.; Abbas, A.; Usman, M.; El-Sappah, A.H.; Abbas, M. Zinc nanoparticles (ZnNPs): High-Fidelity amelioration in turnip (Brassica rapa L.) production under drought stress. Sustainability 2023, 15, 6512. [Google Scholar] [CrossRef]
- Azan, M.; Bhatti, H.N.; Khan, A.K.; Zafar, L.; Iqbal, M. Zinc oxide nano-fertilizer application (foliar and soil) effect on the growth, photosynthetic pigments and antioxidant system of maize cultivar. Biocat. Agric. Biotechnol. 2022, 42, 102343. [Google Scholar] [CrossRef]
- Baybordi, A. Zinc in Soils and Crop Nutrition; Parivar Press: Tehran, Iran, 2006; p. 179. [Google Scholar]
- Elsheery, N.I.; Helaly, M.N.; El-Hoseiny, H.M.; Alam-Eldein, S.M. Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 2020, 10, e558. [Google Scholar] [CrossRef]
- Ybaez, Q.E.; Sanchez, P.B.; Badayos, R.B. Synthesis and characterization of nano zinc oxide foliar fertilizer and its influence on yield and postharvest quality of tomato. Philipp. Agric. Sci. 2020, 103, 55–65. [Google Scholar]
- Ganguly, R.; Sarkar, A.; Dasgupta, D.; Acharya, K.; Keswani, C.; Popova, V.; Minkina, T.; Maksimov, A.Y.; Chakraborty, N. Unravelling the efficient applications of zinc and selenium for mitigation of abiotic stresses in plants. Agriculture 2022, 12, e1551. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Chachar, Z.; Li, J.; Xiao, G.; Wang, Q.; Hayat, F.; Deng, L.; Narejo, M.; Bozdar, B.; et al. Micronutrients and their effects on horticultural crop quality, productivity and sustainability. Sci. Hort. 2024, 323, 112512. [Google Scholar] [CrossRef]
- Pereira, S.I.A.; Abreu, D.; Moreira, H.; Veja, A.; Castro, P.M.L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon 2020, 6, 10. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Amby, D.B.; Hegelund, J.N.; Fimognari, L.; Großkinsky, D.-K.; Westergaard, J.C.; Müller, R.; Moelbak, L.; Liu, F.; Roitsch, T. Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front. Plant Sci. 2020, 11, 297. [Google Scholar] [CrossRef]
- Ramakrishna, W.; Rathore, P.; Kumari, R.; Yadav, R. Brown gold of marginal soil: Plant growth-promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. Sci. Total Environ. 2020, 711, 135062. [Google Scholar] [CrossRef] [PubMed]
- Kiran, S.; Furtana, G.B.; Ellialtioglu, Ş.Ş. Physiological and biochemical assay of drought stress responses in eggplant (Solanum melongena L.) inoculated with commercial inoculant of Azotobacter chroococum and Azotobacter vinelandii. Sci. Hort. 2022, 305, 111394. [Google Scholar] [CrossRef]
- Araujo, J.L.; Mesquita Alves, J.; Rocha, R.H.C.; Santos, J.Z.L.; Santos Barbosa, R.; Costa, F.M.N.; Lima, G.S.; Freitas, L.N.; Lima, A.S.; Nogueira, A.E.P.; et al. Beneficial microorganisms affect soil microbiological activity and corn yield under deficit irrigation. Agriculture 2023, 13, 1169. [Google Scholar] [CrossRef]
- Chiappero, J.; Cappellari, L.R.; Alderete, L.G.; Palermo, T.B.; Banchio, E. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind. Crops Prod. 2019, 139, 111553. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, L.; Hao, R.; Bai, X.; Wang, Y.; Yu, X. Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant Soil 2020, 452, 423–440. [Google Scholar] [CrossRef]
- Ahmet, T.; Hayrettin, K.; Özmen, N. Response of red pepper (Capsicum annuum L.) to foliar applications of Zinc. Comm. Soil Sci. Plant Anal. 2021, 52, 1256–1263. [Google Scholar] [CrossRef]
- Lin, Y.; Watts, D.B.; Kloepper, J.K.; Feng, Y.; Torbert, H.A. Influence of plant growth-promoting rhizobacteria on corn growth under drought stress. Comm. Soil Sci. Plant Anal. 2020, 51, 250–264. [Google Scholar] [CrossRef]
- Kazerooni, E.A.; Maharachchikumbura, S.S.N.; Adhikari, A.; Al-Sadi, A.M.; Kang, S.M.; Kim, L.R.; Lee, I.J. Rhizospheric Bacillus amyloliquefaciens Protects Capsicum annuum cv. Geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes. Front. Plant Sci. 2021, 25, 669693. [Google Scholar] [CrossRef]
- Vinci, G.; Cozzolino, V.; Mazzei, P.; Monda, H. Effects of Bacillus amyloliquefaciens and different phosphorus sources on maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil 2018, 429, 437–450. [Google Scholar] [CrossRef]
- Yu, Y.-Y.; Xu, J.-D.; Huang, T.-X.; Zhong, J.; Yu, H.; Qiu, J.-P.; Guo, J.-H. Combination of beneficial bacteria improves blueberry production and soil quality. Food Sci. Nutr. 2020, 8, 5776–5784. [Google Scholar] [CrossRef]
- EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa em Solos. In Manual of Soil Analysis Methods, 2nd ed.; EMBRAPA: Rio de Janeiro, Brazil, 2011; 225p. [Google Scholar]
- AGRITEMPO. Agrometeorological Monitoring System: Meteorological Stations for the State of PB. Available online: https://www.agritempo.gov.br/br/estado/PB/estacoes/ (accessed on 1 November 2023).
- Khan, M.R.; Akram, M.S.; Moonmoon, J.F.; Tarafder, M.M.A.; Rahman, M.H.; Das, S.; Skalicka, J.; Skalicky, M.; Hossain, A. Soil and foliar zinc application techniques influence the productivity, zinc concentration, and protein content in the grains of bread wheat varieties. Acta Agrobot. 2023, 76, 1–13. [Google Scholar] [CrossRef]
- Jalal, A.; Oliveira, C.E.S.; Fernandes, G.C.; Silva, E.C.; Costa, K.N.; Souza, J.S.; Leite, G.S.; Biagini, A.L.C.; Galindo, F.S.; Teixeira Filho, M.C.M. Integrated use of plant growth-promoting bacteria and nano-zinc foliar spray is a sustainable approach for wheat biofortification, yield, and zinc use efficiency. Front. Plant Sci. 2023, 14, 1146808. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.; Malik, V.K.; Gupta, V.; Narwal, S.; Sirohi, M.; Ankush, P.V.; Gupta, O.P.; Misra, A.K.; Singh, G. Impact of foliar application of iron and zinc fertilizers on grain iron, zinc, and protein contents in bread wheat (Triticum aestivum L.). Front. Nutr. 2024, 11, 1378937. [Google Scholar] [CrossRef]
- Cavalcante, F.J.A. Fertilization Recommendations for the State of Pernambuco (Brazil), 2nd ed.; Instituto Agronômico de Pernambuco—IPA: Recife, Brazil, 2008; 212p. [Google Scholar]
- Bernardo, S.; Soares, A.A.; Mantovani, E.C. Manual of Irrigation, 8th ed.; Universidade Federal de Viçosa: Viçosa, Brazil, 2006; 625p. [Google Scholar]
- Christiansen, J.E. Irrigation by Sprinkling; University of California: Berkeley, CA, USA, 1942. [Google Scholar]
- Jessen, M.E. Water Consumption by Agriculture Plants; Kozlowski, T.T., Ed.; Water deficits and plant growth; Academic Press: New York, NY, USA; London, UK, 1968; 22p. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and drainage paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Pinheiro, J.M.S. Post-Harvest Technology for Preserving Bananas of the Cultivar Tropical. Master’s Degree, Universidade Estadual de Montes Claros, Janaúba, Brazil, 2009; 59p. [Google Scholar]
- IAL—Instituto Adolfo Lutz. Normas analíticas do Instituto Adolfo Lutz. In Physicochemical Methods for Food Analysis, 4th ed.; IAL—Instituto Adolfo Lutz: São Paulo, Brazil, 2008; 1020p. [Google Scholar]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC: Gaithersburg, Maryland, 2012. [Google Scholar]
- Tedesco, M.J.; Milan, P.A.; Ernani, P.R. Analysis of Soil, Plants and Other Materials, 2nd ed.; UFRGS. Boletim Técnico, 5; Universidade Federal do Rio Grande do Sul, Departamento de Solos: Porto Alegre, Brazil, 1995; 118p. [Google Scholar]
- Funsueb, S.; Thanavanich, C.; Theanjumpol, P.; Kittiwachana, S. Development of new fruit quality indices through aggregation of fruit quality parameters and their predictions using near-infrared spectroscopy. Postharvest Biol. Technol. 2023, 204, 112438. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biom. Trust. 1965, 52, 591–609. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Viena, Austria, 2023. [Google Scholar]
- Zhang, H.; Xiang, Y.; He, N.; Liu, X.; Liu, H.; Fang, L.; Zhang, F.; Sun, X.; Zhang, D.; Li, X.; et al. Enhanced vitamin C production mediated by an ABA-Induced PTP-like nucleotidase improves plant drought tolerance in Arabidopsis and maize. Mol. Plant. 2020, 13, 760–776. [Google Scholar] [CrossRef]
- Medyouni, I.; Zouaoui, R.; Rubio, E.; Serino, S.; Ahmed, H.B.; Bertin, N. Effects of water deficit on leaves and fruit quality during the development period in tomato plant. Food. Sci. Nutr. 2021, 9, 1949–1960. [Google Scholar] [CrossRef]
- Agbemafle, R.; Owusu-Sekyere, J.D.; Bart-Plange, A. Effect of deficit irrigation and storage on the nutritional composition of tomato (Lycopersicon esculentum Mill. cv. Pectomech). Croatian J. Food Technol. Biotechnol. Nutr. 2015, 10, 59–65. [Google Scholar]
- Al-Selwey, W.A.; Alsadon, A.A.; Al-Doss, A.A.; Solieman, T.H.; Dewir, Y.F.; Ibrahim, A.A. Effect of deficit irrigation on total yield, fruit physical characteristics, and nutritional value of four drought tolerant tomato (Solanum lycopersicum L.) genotypes. J. Agric. Sci. Technol. 2021, 23, 1105–1118. [Google Scholar]
- Nurzy’nska-Wierdak, R.; Buczkowska, H.; Sałata, A. Do AMF and Irrigation Regimes Affect Sweet Pepper Fruit Quality under Open Field Conditions? Agronomy 2021, 11, 2349. [Google Scholar] [CrossRef]
- Toumi, I.; Zarrouk, O.; Ghrab, M.; Nagaz, K. Improving peach fruit quality traits using deficit irrigation strategies in southern Tunisia arid area. Plants 2022, 11, 1656. [Google Scholar] [CrossRef] [PubMed]
- Dai, N.; Schaffer, A.; Petreikov, M.; Shahak, Y.; Giller, Y.; Ratner, K. Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 1999, 11, 1253–1266. [Google Scholar] [CrossRef] [PubMed]
- Mira-García, A.B.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. Effect of water stress and shading on lime yield and quality. Plants 2023, 12, 503. [Google Scholar] [CrossRef] [PubMed]
- Martins, B.L.R.; Araujo, R.H.C.R.; Rocha, J.L.A.; Silva, T.I.; Alves, K.A.; Almeida, E.S.; Ferreira, K.N. Zinc oxide nanoparticles and bioinoculants on the postharvest quality of eggplant subjected to water deficit. Rev. Bras. Eng. Agric. Amb. 2024, 28, e279019. [Google Scholar] [CrossRef]
- Silva, T.I.; Sousa, S.V.; Cruz, R.R.P.; Costa, F.B.; Silva, L.A.; Sales, J.N.B.; Brito, M.E.B.; Ribeiro, W.S.R.; Soares, L.A.A.; Soares-Filho, W.S. Fruit quality of ‘Tahiti’ lime grafted onto different rootstocks grown under salt stress. Arid Land Res. Man. 2024, 38, 447–463. [Google Scholar] [CrossRef]
- Lu, H.; Qi, X.; Rahman, S.; Qiao, D.; Li, P.; Han, Y.; Zhao, Z. Rice physiological response with Bacillus subtilis and saccharomyces cerevisiae inoculation into soil under reclaimed water–fresh water combined irrigation. Water 2021, 13, e773. [Google Scholar] [CrossRef]
- Albuquerque, F.S.; Silva, E.F.F.; Bezerra Neto, E.; Souza, A.E.R.; Santos, A.N. Mineral nutrients in pepper fertigated under irrigation slides and doses of potassium. Hort. Bras. 2012, 30, 681–687. [Google Scholar] [CrossRef]
- Perin, E.C.; Messoas, R.S.; Gallo, V.; Bdrdwsko, J.M.; Sduza, E.R.; Avola, L.D.; Bamberg, A.L.; Rdmbaldo, C.V. Mineral content and antioxidant compounds in strawberry fruit submitted to drough stress. Food Sci. Technol. 2019, 39, 245–254. [Google Scholar] [CrossRef]
- Silva, E.C.; Nogueira, R.J.; Silva, M.A.; Albuquerque, M.B. Drought stress and plant nutrition. Plant stress. Glob. Sci. Books 2011, 5, 32–41. [Google Scholar] [CrossRef]
- Farooq, A.; Javad, S.; Jabeen, K.; Shah, A.A.; Ahmad, A.; Shah, A.N.; Alyemeni, M.N.; Walid, F.A.M.; Abbas, A. Effect of calcium oxide, zinc oxide nanoparticles and their combined treatments on growth and yield attributes of Solanum lycopersicum L. J. King Saud Univ.-Sci. 2023, 35, e102647. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Singh, U.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci. Total Environ. 2019, 688, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Mahouachi, J.; Marrero-Díaz, E. Plant growth and fruit nutrient changes in Carica papaya L. genotypes subjected to regulated deficit irrigation. Life 2022, 12, 1831. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Shao, G.; Lu, J.; Keabetswe, L.; Hoogenboom, G. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Sci. Agric. 2020, 77, e20180390. [Google Scholar] [CrossRef]
- Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef]
Chemical | Value | Physical | Value |
---|---|---|---|
pH (CaCl2) | 6.20 | Sand (g kg−1) | 444 |
P (mg kg−1) | 291 | Silt (g kg−1) | 353 |
K+ (mg kg−1) | 633 | Clay (g kg−1) | 203 |
Na+ (mg kg−1) | 169 | BD (g cm−3) | 1.36 |
Ca2+ (mg kg−1) | 1578 | PD (g cm−3) | 2.59 |
Mg2+ (mg kg−1) | 562 | TP (m3 m−3) | 0.47 |
Zn2+ (mg kg−1) | 1.69 | FC (%) | 12.87 |
H+ + Al3+ (cmolc dm−3) | 2.30 | PWP (%) | 5.29 |
OM (g kg−1) | 6.40 | AWC (%) | 7.58 |
V (%) | 83.0 | ||
CEC (cmolc dm−3) | 4.10 | - | - |
Irrigation Depth (%) | Treatments DHA | pH | SS (°Brix) | TA (g per 100 g) |
---|---|---|---|---|
Control | 5.443 ± 0.464 aA | 4.858 ± 0.175 aA | 0.109 ± 0.018 aA | |
T1 (ZnSO4 via leaves) | 5.432 ± 0.265 aA | 4.975 ± 0.325 aA | 0.109 ± 0.001 aA | |
50% Etc | T2 (ZnONPs via leaves) | 5.370 ± 0.204 aA | 4.767 ± 0.639 aA | 0.130 ± 0.018 aA |
T3 (ZnONPs via leaves) + PGPB via soil | 5.443 ± 0.252 aA | 4.792 ± 0.382 aA | 0.119 ± 0.022 aA | |
T4 (ZnSO4 via soil) + PGPB via soil | 5.437 ± 0.388 aA | 5.289 ± 0.615 aA | 0.103 ± 0.011 aA | |
Mean | 5.425 A | 4.936 A | 0.114 A | |
Control | 5.392 ± 0.292 aA | 5.233 ± 0.183 aA | 0.119 ± 0.013 aA | |
T1 (ZnSO4 via leaves) | 5.438 ± 0.263 aA | 4.992 ± 0.185 aA | 0.114 ± 0.011 aA | |
100% Etc | T2 (ZnONPs via leaves) | 5.350 ± 0.479 aA | 5.054 ± 0.042 aA | 0.109 ± 0.001 aA |
T3 (ZnONPs via leaves) + PGPB via soil | 5.282 ± 0.342 aA | 5.183 ± 0.745 aA | 0.114 ± 0.021 aA | |
T4 (ZnSO4 via soil) + PGPB via soil | 5.246 ± 0.138 aA | 5.042 ± 0.203 aA | 0.125 ± 0.021 aA | |
Mean | 5.341 A | 5.101 A | 0.116 A | |
SS/TA | C * | °Hue | ||
Control | 42.792 ± 4.477 aA | 20.581 ± 0.910 aA | 50.673 ± 4.500 aA | |
T1 (ZnSO4 via leaves) | 45.820 ± 2.991 aA | 20.809 ± 1.900 aA | 53.451 ± 5.700 aA | |
50% Etc | T2 (ZnONPs via leaves) | 37.420 ± 4.065 aA | 21.514 ± 0.842 aA | 50.670 ± 3.060 aA |
T3 (ZnONPs via leaves) + PGPB via soil | 42.878 ± 2.473 aA | 21.276 ± 2.196 aA | 50.859 ± 6.110 aA | |
T4 (ZnSO4 via soil) + PGPB via soil | 46.971 ± 5.969 aA | 21.161 ± 1.872 aA | 50.692 ± 4.560 aA | |
Mean | 43.176 A | 21.068 A | 51.269 A | |
Control | 44.246 ± 5.600 aA | 20.607 ± 2.472 aA | 50.311 ± 1.222 aA | |
T1 (ZnSO4 via leaves) | 44.029 ± 3.802 aA | 21.164 ± 1.079 aA | 50.755 ± 5.330 aA | |
100% Etc | T2 (ZnONPs via leaves) | 46.549 ± 3.840 aA | 21.911 ± 2.091 aA | 50.959 ± 4.060 aA |
T3 (ZnONPs via leaves) + PGPB via soil | 53.822 ± 2.628 aA | 22.170 ± 0.629 aA | 49.863 ± 1.485 aA | |
T4 (ZnSO4 via soil) + PGPB via soil | 41.123 ± 6.286 aA | 23.012 ± 2.622 aA | 50.230 ± 2.891 aA | |
Mean | 45.954 A | 21.773 A | 50.424 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, B.L.R.; Ferreira, K.N.; Rocha, J.L.A.; Araujo, R.H.C.R.; Lopes, G.; Santos, L.C.d.; Bezerra Neto, F.; Sá, F.V.d.S.; Silva, T.I.d.; da Silva, W.I.; et al. Nano ZnO and Bioinoculants Mitigate Effects of Deficit Irrigation on Nutritional Quality of Green Peppers. Horticulturae 2024, 10, 969. https://doi.org/10.3390/horticulturae10090969
Martins BLR, Ferreira KN, Rocha JLA, Araujo RHCR, Lopes G, Santos LCd, Bezerra Neto F, Sá FVdS, Silva TId, da Silva WI, et al. Nano ZnO and Bioinoculants Mitigate Effects of Deficit Irrigation on Nutritional Quality of Green Peppers. Horticulturae. 2024; 10(9):969. https://doi.org/10.3390/horticulturae10090969
Chicago/Turabian StyleMartins, Bruna Lorrane Rosendo, Kaikí Nogueira Ferreira, Josinaldo Lopes Araujo Rocha, Railene Hérica Carlos Rocha Araujo, Guilherme Lopes, Leônidas Canuto dos Santos, Francisco Bezerra Neto, Francisco Vaniés da Silva Sá, Toshik Iarley da Silva, Whashington Idalino da Silva, and et al. 2024. "Nano ZnO and Bioinoculants Mitigate Effects of Deficit Irrigation on Nutritional Quality of Green Peppers" Horticulturae 10, no. 9: 969. https://doi.org/10.3390/horticulturae10090969
APA StyleMartins, B. L. R., Ferreira, K. N., Rocha, J. L. A., Araujo, R. H. C. R., Lopes, G., Santos, L. C. d., Bezerra Neto, F., Sá, F. V. d. S., Silva, T. I. d., da Silva, W. I., de Lima, G. S., Paiva, F. J. d. S., & Santos, J. Z. L. (2024). Nano ZnO and Bioinoculants Mitigate Effects of Deficit Irrigation on Nutritional Quality of Green Peppers. Horticulturae, 10(9), 969. https://doi.org/10.3390/horticulturae10090969