Dormancy-Related Bioactive Compounds and Antioxidant Activity during Optimization of Germination Conditions for Onopordum nervosum subsp. platylepis Murb. Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cypsela Collection
2.2. Seeds Water Uptake
2.3. Process for Germination Tests
2.3.1. Experiment 1
2.3.2. Experiment 2
Germination Test
Analysis of Bioactive Compounds
- Determination of total phenol content (TPC)
- Determination of total flavonoid content (TFC)
- Determination of total condensed content (TCT)
Analysis of Antioxidant Activities
- Determination of DPPH radical scavenging activity
- Determination of Iron Reduction Ability (FRAP)
2.4. Optimization of O. platylepis Germination Conditions Using Response Surface Methodology (RSM)
2.5. Statistical Analysis
3. Results
3.1. Seeds Coat Permeability
3.2. Experiment 1
3.3. Experiment 2
3.3.1. Bioactive Compounds of Non-Germinated Seeds
3.3.2. Antioxidant Activity of Non-Germinated Seeds
3.4. Optimization of Germination Conditions
3.4.1. Seed Germination
3.4.2. Germination Time
3.4.3. Total Phenolic Content (TPC)
3.4.4. Total Flavonoid Content (TFC)
3.4.5. Total Condensed Tannins
3.4.6. Antioxidant Activity of Germinated Seeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neffati, M.; Ghrabi Gammar, Z.; Akrimi, N.; Henehi, B. Endemic plants of Tunisia. Flora Mediterr. 1999, 9, 163–174. [Google Scholar]
- El Oualidi, J.; Khamar, H.; Fennane, M.; Ibn Tattou, M.; Chauvet, S.; Taleb, M.S. Checklist des Endémiques et Spécimens Types de la Florevasculaire de l’Afrique du Nord; Institut Scientifique, Universite Mohammed V-Agdal: Rabat, Morocco, 2012; Volume 25, pp. 1–189. [Google Scholar]
- Dobignard, A.A.; Chatelain, C.A.; Fisher, M.C.; Orso, J.C.; Jeanmonod, D.C. Index synonymique de la flore d’Afrique du Nord. In Dicotyledoneae: Acanthaceae-Asteraceae; Conservatoire et Jardin botaniques de la Ville de Genève: Geneva, Switzerland, 2011; Volume 2. [Google Scholar]
- Hachicha, S.F.; Barrek, S.; Skanji, T.; Ghrabi, Z.G.; Zarrouk, H. Composition chimique de l’huile des graines d’Onopordom nervosum subsp. Platylepis Murb (Astéracées). J. Soc. Chim. Tunis. 2007, 9, 23–28. [Google Scholar]
- Kouki, R.; Essaidi, I.; Annabi, K.; Dhen, N.; Haouala, F.; Alhudhaibi, A.M.; Alrudayni, H.A.; Bziouech, S.A.; Ayari, O.; Al Mohandes Dridi, B. Chemical Composition, Antioxidant Activity, and Milk-Clotting Activity of Aqueous Extracts from Leaves, Stems, and Flowers of Three Tunisian Ecotypes of Spontaneous and Cultivated Onopordum nervosum ssp. platylepis Murb.: A Potential Novel Vegetable Rennet Option. Agronomy 2024, 14, 987. [Google Scholar] [CrossRef]
- Essaidi, I.; Dhen, N.; Lassoued, G.; Kouki, R.; Haouala, F.; Alhudhaibi, A.M.; Alrudayni, H.A.; Dridi Almohandes, B. Onopordum nervosum ssp. platylepis Flowers as a Promising Source of Antioxidant and Clotting Milk Agents: Behavior of Spontaneous and Cultivated Plants under Different Drying Methodologies. Processes 2023, 11, 2962. [Google Scholar] [CrossRef]
- Pottier-Alapetite, G.A. Flore de la Tunisie: Angiospermes-Dicotylédones-Gamopétales; Ministère de l’Enseignement Supérieur et de la Recherche Scientifique et le Ministère de l’Agriculture: Tunis, Tunisia, 1981. [Google Scholar]
- Zarembo, E.V.; Boyko, E.V. Carpology of some East Asian Cardueae (Asteraceae). In Anales del Jardín Botánico de Madrid; CSIC Press: Madrid, Spain, 2008; Volume 65, pp. 129–134. [Google Scholar]
- Sala, O.A.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global Biodiversity Scenarios for the Year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Yahia, A.; Mashaly, I.; El-Bana, M.; Rizk, R.; El-Sherbeny, G. Intraspecific Variations in Functional and Molecular Traits of Near-Endemic Onopordum alexandrinum Boiss. in Natural and Anthropogenic Habitats along the Western Mediterranean Coast of Egypt: Implications for Conservation. Plants 2020, 9, 1041. [Google Scholar] [CrossRef]
- Coelho, N.; Gonçalves, S.; Romano, A. Endemic Plant Species Conservation: Biotechnological Approaches. Plants 2020, 9, 345. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Pérez-Garcia, F.; Duran, J.M. The effect of gibberellic acid on germination of Onopordum nervosum Boiss. seeds. Seed Sci. Technol. 1990, 18, 83–88. [Google Scholar]
- Godefroid, S.; Van de Vyver, A.; Vanderborght, T. Germination capacity and viability of threatened species collections in seed banks. Biodivers. Conserv. 2010, 19, 1365–1383. [Google Scholar] [CrossRef]
- Corli, A.; Orsenigo, S.; Porro, F.; Rossi, G.; Lodetti, S.; Mondoni, A. Germination niche of co-occurring threatened native and alien species: A case study in Lindernia procumbens and L. dubia. Plant Ecol. 2024, 225, 725–729. [Google Scholar] [CrossRef]
- Ben Mariam, E. Biodiversity in Tunisia (Fauna, Flora): Threats and Solutions. 2023. Available online: https://www.researchgate.net/publication/375552581_Biodiversity_in_Tunisia_Fauna_Flora_threats_and_solutions (accessed on 5 September 2024).
- Brahim, N.E.M.B.; Chaabane, A.; Toumi, L.; Sebei, H. Les plantes rares de la Tunisie septentrionale et centrale. In Annales de l’Inrat; National Institute of Agricultural Research of Tunisia: Tunis, Tunisia, 2014; Volume 389, pp. 1–18. [Google Scholar]
- Francisco-Ortega, J.; Santos-Guerra, A.; Kim, S.C.; Crawford, D.J. Plant genetic diversity in the Canary Islands: A conservation perspective. Am. J. Bot. 2000, 87, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, P.; Kumar, P.P. Regulation of Seed Germination: The Involvement of Multiple Forces Exerted via Gibberellic Acid Signaling. Mol. Plant 2018, 12, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Chen, Z. The Control of Seed Dormancy and Germination by Temperature, Light and Nitrate. Bot. Rev. 2020, 86, 39–75. [Google Scholar] [CrossRef]
- Yang, L.E.; Peng, D.L.; Li, Z.M.; Huang, L.; Yang, J.; Sun, H. Cold stratification, temperature, light, GA3, and KNO3 effects on seed germination of Primula beesiana from Yunnan, China. Plant Divers. 2020, 42, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Flores, J.; Jurado, E.; Himenez-Bremont, J.F. Breaking seed dormancy in specially protected Turbinicarpus lophophoroides and Turbinicarpus pseudopectinatus (Cactaceae). Plant Species Biol. 2008, 23, 43–46. [Google Scholar] [CrossRef]
- Topham, A.T.; Taylor, R.E.; Yan, D.; Nambara, E.; Johnston, I.G.; Bassel, G.W. Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in Arabidopsis seeds. Proc. Natl. Acad. Sci. USA 2017, 114, 6629–6634. [Google Scholar] [CrossRef]
- Corbineau, F. Oxygen, a key signalling factor in the control of seed germination and dormancy. Seed Sci. Res. 2022, 32, 126–136. [Google Scholar] [CrossRef]
- Xiong, L.; Zhu, J.K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 2002, 25, 131–139. [Google Scholar] [CrossRef]
- Roeber, V.M.; Bajaj, I.; Rohde, M.; Schmülling, T.; Cortleven, A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ. 2021, 44, 645–664. [Google Scholar] [CrossRef]
- Khan, M.N.; Fu, C.; Li, J.; Tao, Y.; Li, Y.; Hu, J.; Chen, H.; Khan, Z.; Wu, H.; Li, Z. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? Chemosphere 2023, 310, 136911. [Google Scholar] [CrossRef]
- Kildisheva, O.A.; Dixon, K.W.; Silveira FA, O.; Chapman, T.D.i.; Sacco, A.; Mondoni, A.; Turner, S.R.; Cross, A.T. Dormancy and germination: Making every seed count in restoration. Restor. Ecol. 2020, 28, S256–S265. [Google Scholar] [CrossRef]
- Qaderi, M.M.; Cavers, P.B. Variation in germination response within Scotch thistle, Onopordum acanthium L., populations matured under greenhouse and field conditions. Écoscience 2000, 7, 57–65. [Google Scholar] [CrossRef]
- Sharma, R.K.; Sharma, S.; Sharma, S.S. Seed germination behavior of some medicinal plants of Lahaul and Spiticoldd desert (Himachal Pradesh): Implications for conservation and cultivation. Curr. Sci. 2006, 90, 1113–1118. [Google Scholar]
- Parsons, W.T.; Cuthbertson, E.G. Noxious Weeds of Australia; Inkata Press: Melbourne, Australia, 1992; pp. 342–344. [Google Scholar]
- Gálvez, C.; Bermejo, J.H. Life cycle and adaptive strategies of three non-annual, ruderal Cardueae: Onopordum nervosum, Carthamus arborescens, and Cirsium scabrum. Plant Syst. Evol. 1990, 171, 117–128. [Google Scholar] [CrossRef]
- Pérez, C.; Pérez-García, F.; Fernández, H.; Revilla, M.A. The levels of GA3 and GA20 may be associated with dormancy release in Onopordum nervosum seeds. Plant Growth Reg. 2002, 38, 141–143. [Google Scholar] [CrossRef]
- Ruiz-Hernández, A.A.; Cárdenas-López, J.L.; Cortez-Rocha, M.O.; González-Aguilar, G.A.; Robles-Sánchez, R.M. Optimization of germination of white sorghum by response surface methodology for preparing porridges with biological potential. CyTA J. Food 2021, 19, 49–55. [Google Scholar] [CrossRef]
- Perales-Sánchez, J.X.; Reyes-Moreno, C.; Gómez-Favela, M.A.; Milán-Carrillo, J.; Cuevas-Rodríguez, E.O.; Valdez-Ortiz, A.; Gutiérrez-Dorado, R. Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods Hum. Nutr. 2014, 69, 196–202. [Google Scholar] [CrossRef]
- Moussavi, S.R.; Rezaei, M.; Mousavi, A. A General Overview on Seed Dormancy and Methods of Breaking It. Adv. Environ. Biol. 2011, 5, 3333–3337. [Google Scholar]
- Ogawa, K.; Iwabuchi, M. A Mechanism for Promoting the Germination of Zinnia elegans Seeds by Hydrogen Peroxide. Plant Cell Physiol. 2001, 42, 286–291. [Google Scholar] [CrossRef]
- Inácio, M.C.; Moraes, I.M.; Mendonça, P.C.; Morel LJ, F.; França, S.C.; Bertoni, B.W.; Pereira AM, S. Phenolic Compounds Influence Seed Dormancy of Palicourea rigida H.B.K. (Rubiaceae), a Medicinal Plant of the Brazilian Savannah. Am.J. Plant Sci. 2013, 4, 129–133. [Google Scholar] [CrossRef]
- Yücel, G.; Erken, K. Optimal germination methods, ornamental plant features, and ex situ conservation of endemic Campanula grandis Fisch and CA Mey. J. Environ. Eng. Landsc. Manag. 2023, 31, 132–141. [Google Scholar] [CrossRef]
- Ayele, T.B.; Gailing, O.; Finkeldey, R. Assessment and integration of genetic, morphological and demographic variation in Hageniaabyssinica (Bruce) J.F. Gmel to guide its conservation. J. Nat. Conserv. 2011, 19, 8–17. [Google Scholar] [CrossRef]
- Olabinjo, O.O. Response Surface Techniques as an Inevitable Tool in Optimization Process. In Response Surface Methods-Theory, Applications and Optimization Techniques; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Jang, G.H.; Chung, J.M.; Rhie, Y.H.; Lee, S.Y. Seed Dormancy Class and Ecophysiological Features of Veronicastrum sibiricum (L.) Pennell (Scrophulariaceae) Native to the Korea Peninsula. Plants 2022, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Baskin, C.C.; Askin, C.C.; Kin, C.C.; Zackrisson, O.; Askim, J.M. Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. Am. J. Bot 2002, 89, 486–493. [Google Scholar] [CrossRef]
- Maghdouri, M.; Ghasemnezhad, M.; Rabiei, B.; Golmohammadi, M.; Atak, A. Optimizing Seed Germination and Seedling Growth in Different Kiwifruit Genotypes. Horticulturae 2021, 7, 314. [Google Scholar] [CrossRef]
- Ellis, R.H.; Roberts, E.H. Improved equations for the prediction of seed longevity. Ann. Bot. 1980, 45, 13–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagent. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of phenolics and their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Tiitto, R.J. Phenolic constituents in the leaves of northemwiliows methods for the the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Kim, B.R.; Park, S.S.; Youn, G.J.; Kwak, Y.J.; Kim, M.J. Characteristics of Sunsik, a cereal-based readyto-drink Korean beverage, with added germinated wheat and herbal plant extract. Foods 2020, 9, 1654. [Google Scholar] [CrossRef]
- Yildirim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 2001, 49, 4083–4089. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, P.J.; Martínez-Villaluenga, C.; Amigo, L.; Frias, J. Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chem. 2014, 152, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Carrera-Castaño, G.; Calleja-Cabrera, J.; Pernas, M.; Gómez, L.; Oñate-Sánchez, L. An Updated Overview on the Regulation of Seed Germination. Plants 2020, 9, 703. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.G.; Street, R.A.; Van Staden, J. Germination and seedling growth requirements for propagation of Dioscorea dregeana (Kunth) Dur. and Schinz—A tuberous medicinal plant. S. Afr. J. Bot. 2007, 73, 131–137. [Google Scholar] [CrossRef]
- Vidak, M.; Lazarević, B.; Javornik, T.; Šatović, Z.; Carović-Stanko, K. Seed Water Absorption, Germination, Emergence and Seedling Phenotypic Characterization of the Common Bean Landraces Differing in Seed Size and Color. Seeds 2022, 1, 324–339. [Google Scholar] [CrossRef]
- Muscolo, A.; Panuccio, M.R.; Sidari, M. The effect of phenols on respiratory enzymes in seed germination Respiratory enzyme activities during germination of Pinus laricio seeds treated with phenols extracted from different forest soils. Plant Growth Regul. 2001, 35, 31–35. [Google Scholar] [CrossRef]
- Reigosa, M.J.; Souto, X.C.; Gonzlez, L. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 1999, 28, 83–88. [Google Scholar] [CrossRef]
- Kabtni, S.; Sdouga, D.; BettaibRebey, I.; Save, M.; Trifi-Farah, N.; Fauconnier, M.L.; Marghali, S. Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Sci. Rep. 2020, 10, 8293. [Google Scholar] [CrossRef]
- MacGregor, D.R.; Kendall, S.L.; Florance, H.; Fedi, F.; Moore, K.; Paszkiewicz, K.; Smirnoff, N.; Penfield, S. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytol. 2015, 205, 642–652. [Google Scholar] [CrossRef]
- Televiciute, D.; Taraseviciene, Z.; Danilcenko, H.; Barcauskaite, K.; Kandaraite, M.; Paulauskiene, A. Changes in chemical composition of germinated leguminous under abiotic stress conditions. Food Sci. Technol. 2020, 40, 415–421. [Google Scholar] [CrossRef]
- Caldas, G.V.; Blair, M.W. Inheritance of seed condensed tannins and their relationship with seed-coat color and pattern genes in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2009, 119, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Fernandes, Â.; Pereira, C.; Tzortzakis, N.; Vaz, J.; Soković, M.; Ferreira, I. Bioactivities, chemical composition and nutritional value of Cynara cardunculus L. seeds. Food Chem. 2019, 289, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Mandim, F.; Petropoulos, S.A.; Dias, M.I.; Pinela, J.; Kostic, M.; Soković, M.; Santos-Buelga, C.; Isabel CF, R.; Barros, L. Seasonal variation in bioactive properties and phenolic composition of cardoon (Cynara cardunculus var. altilis) bracts. Food Chem. 2021, 336, 127744. [Google Scholar] [CrossRef]
- Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic composition of Cynara cardunculus L. organs, and their biological activities. Comptes Rendus Biol. 2008, 331, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Khaldi, S.; Chaouachi, F.; Ksouri, R.; Gazzah, M. Polyphenolic composition in different organs of Tunisia populations of Cynara cardunculus L. and their antioxidant activity. J. Food Nutr. Res. 2013, 1, 1–6. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G.; Knödler, M.; Carle, R.; Schieber, A. Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem. 2010, 119, 1175–1181. [Google Scholar] [CrossRef]
- Jeevan Kumar, S.P.; Rajendra Prasad, S.; Banerjee, R.; Thammineni, C. Seed birth to death: Dual functions of reactive oxygen species in seed physiology. Ann. Bot. 2015, 116, 663–668. [Google Scholar] [CrossRef]
- Huarte, H.R.; Puglia, G.D.; Varisco, D.; Pappalardo, H.; Calderaro, P.; Toscano, V.; Raccuia, S.A. Effect of reactive oxygen species on germination of Cynara cardunculus (L.) cultivars. Acta Hortic. 2020, 1284, 33–40. [Google Scholar] [CrossRef]
- Norden, N.; Daws, M.I.; Antoine, C.; Gonzalez, M.A.; Garwood, N.C.; Chave, J. The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Funct. Ecol. 2009, 23, 203–210. [Google Scholar] [CrossRef]
- Blakesley, D.; Elliott, S.; Kuarak, C.; Navakitbumrung, P.; Zangkum, S.; Anusarnsunthorn, V. Propagating framework tree species to restore seasonally dry tropical forest: Implications of seasonal seed dispersal and dormancy. For. Ecol. Manag. 2002, 164, 31–38. [Google Scholar] [CrossRef]
- Aung, T.; Kim, S.J.; Eun, J.B. A hybrid RSM-ANN-GA approach on disper of extraction conditions for bioactive component-rich laver (Porphyra dentata) extract. Food Chem. 2022, 366, 130689. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, K.A.; Gravatt, D.A. Effects of cold stratification and hormones on seed germination of Sarracenia alata. Tex. J. Sci. 2019, 71, 7. [Google Scholar] [CrossRef]
- Chen, S.Y.; Chien, C.T.; Baskin, J.M.; Baskin, C.C. Storage behavior and changes in 461 concentrations of abscisic acid and gibberellins during dormancy break and germination in 462 seeds of Phellodendron amurense var. wilsonii (Rutaceae). Tree Physiol. 2010, 30, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Chou, S.H.; Tsai, C.C.; Hsu, W.Y.; Baskin, C.C.; Baskin, J.M.; Chien, C.T.; Kuo-Huang, L.L. Effects of moist cold stratification on germination, plant growth regulators, metabolites and embryo ultrastructure in seeds of Acer morrisonense (Sapindaceae). Plant Physiol. Biochem. 2015, 94, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Lan, Q.; Pritchard, H.W.; Xue, H.; Wang, X. Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiol. Biochem. 2016, 109, 406–415. [Google Scholar] [CrossRef]
- Tesfay, S.Z.; Modi, A.T.; Mohammed, F. The effect of temperature in moringa seed phytochemical compounds and carbohydrate mobilization. S. Afr. J. Bot. 2016, 102, 190–196. [Google Scholar] [CrossRef]
Days of Cold Stratification | Gibberellic Acid Concentration (ppm) | |
---|---|---|
Code | X1 | X2 |
Level (−1) | 0 | 500 |
Center (0) | 7 | 750 |
Level (+1) | 14 | 1000 |
Coefficients | SGP (%) | MGT (Days) | TPC (mgGAE/g DW) | TFC (mgQE/g DW) | CTC (mg EC/g DW) | EC50 DPPH (mg/mL) |
---|---|---|---|---|---|---|
β0 (intercept) | 84.07 | 4.964 | 10.67 | 15.136 | 4.595 | 0.168 |
Linear | ||||||
β1 (cold stratification) | 3.33 | −0.77 | −3.94 | 3.42 | 4.44 | −0.453 |
β2 (GA3) | 18.33 | −0.33 | 6.677 | 0.272 | 1.60 | 0.189 |
Quadratic | ||||||
β11 (cold stratification) | 22.22 | −1.274 | −2.393 | 0.88 | 2.56 | −0.226 |
β22 (GA3) | −0.27 | −0.274 | −3.838 | −1.248 | −0.01 | 0.029 |
Interaction β12 | 27.5 | 0.5 | −0.277 | 0.553 | 1.688 | −0.28 |
p Values | ||||||
---|---|---|---|---|---|---|
SGP (%) | MGT (Days) | TPC (mg GAE/g DW) | TFC (mg QE/g DW) | CTC (mg EC/g DW) | EC50DPPH (mg/mL) | |
x1 (cold stratification) | 0.363 | 0.0156 | 0.000 | 0.000 | 0.000 | 0.000 |
x2 (GA3) | 0.0027 | 0.226 | 0.000 | 0.203 | 0.0005 | 0.000 |
x1x2 | 0.001 | 0.147 | 0.488 | 0.059 | 0.0009 | 0.000 |
x12 | 0.0004 | 0.0001 | 0.0002 | 0.0018 | 0.000 | 0.000 |
x22 | 0.919 | 0.176 | 0.000 | 0.0004 | 0.946 | 0.000 |
R2 | 0.981 | 0.884 | 0.996 | 0.99 | 0.994 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhen, N.; Kouki, R.; Bziouech, S.A.; Essaidi, I.; Naffati, L.; Haouala, F.; Alhudhaibi, A.M.; Alrudayni, H.A.; Kammoun, M.; Al Mohandes Dridi, B. Dormancy-Related Bioactive Compounds and Antioxidant Activity during Optimization of Germination Conditions for Onopordum nervosum subsp. platylepis Murb. Using Response Surface Methodology. Horticulturae 2024, 10, 967. https://doi.org/10.3390/horticulturae10090967
Dhen N, Kouki R, Bziouech SA, Essaidi I, Naffati L, Haouala F, Alhudhaibi AM, Alrudayni HA, Kammoun M, Al Mohandes Dridi B. Dormancy-Related Bioactive Compounds and Antioxidant Activity during Optimization of Germination Conditions for Onopordum nervosum subsp. platylepis Murb. Using Response Surface Methodology. Horticulturae. 2024; 10(9):967. https://doi.org/10.3390/horticulturae10090967
Chicago/Turabian StyleDhen, Najla, Rania Kouki, Samra Akef Bziouech, Ismahen Essaidi, Lamia Naffati, Faouzi Haouala, Abdulrahman M. Alhudhaibi, Hassan A. Alrudayni, Mariem Kammoun, and Bouthaina Al Mohandes Dridi. 2024. "Dormancy-Related Bioactive Compounds and Antioxidant Activity during Optimization of Germination Conditions for Onopordum nervosum subsp. platylepis Murb. Using Response Surface Methodology" Horticulturae 10, no. 9: 967. https://doi.org/10.3390/horticulturae10090967
APA StyleDhen, N., Kouki, R., Bziouech, S. A., Essaidi, I., Naffati, L., Haouala, F., Alhudhaibi, A. M., Alrudayni, H. A., Kammoun, M., & Al Mohandes Dridi, B. (2024). Dormancy-Related Bioactive Compounds and Antioxidant Activity during Optimization of Germination Conditions for Onopordum nervosum subsp. platylepis Murb. Using Response Surface Methodology. Horticulturae, 10(9), 967. https://doi.org/10.3390/horticulturae10090967