Automated Tenderness Assessment of Okra Using Robotic Non-Destructive Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetal Material
2.2. Separation of Two Sets
2.3. Robot Sensor Design
2.4. Robot Sensing Procedure
2.5. Non-Destructive Measurements
2.6. Destructive Measurements
2.7. Data Description, Signal Processing and Statistical Analysis
3. Results
3.1. Destructive Test Results
3.2. Confirmation of the Differences in the Tenderness of the Two Sets
3.3. Non-Destructive Classification of Okra Pods Based on the Robotic Sensor
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erdogan, H.; Sahin, Y.S.; Bütüner, A.K. Potential for early detection of powdery mildew in okra under field conditions using thermal imaging. Sci. Pap.-Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2003, 23, 863–870. [Google Scholar]
- Jain, N.; Jain, R.; Jain, V.; Jain, S. A review on: Abelmoschus esculentus. Pharmacia 2012, 1, 84–89. [Google Scholar]
- VarmuDy, V. Need to boost okra exports. Facts You 2011, 31, 21–23. [Google Scholar]
- FAOSTAT. Food and Agricultural Organization Statistics. Available online: https://www.fao.org/food-agriculture-statistics/resources/en (accessed on 5 June 2024).
- Indian Horticultural Database. Available online: http://www.nhb.gov.in (accessed on 5 June 2024).
- Adelakun, O.E.; Oyelade, O.J.; Ade-Omowaye, B.I.O.; Adeyemi, I.A.; Van de Venter, M. Chemical composition and the antioxidative properties of Nigerian Okra Seed (Abelmoschus esculentus Moench) Flour. Food Chem. Toxicol. 2009, 47, 1123–1126. [Google Scholar] [CrossRef]
- Thöle, C.; Brandt, S.; Ahmed, N.; Hensel, A. Acetylated rhamnogalacturonans from immature fruits of Abelmoschus esculentus inhibit the adhesion of Helicobacter pylori to human gastric cells by interaction with outer membrane proteins. Molecules 2015, 20, 16770–16787. [Google Scholar] [CrossRef] [PubMed]
- Kemiklioglu, E.; Ozen, O. Design of a sensor to detect fruit freshness. Int. J. Sci. Technol. Res. 2018, 4, 1–6. [Google Scholar]
- Culpepper, C.W.; Moon, H.H. The Growth and Composition of the Fruit of Okra in Relation to its Eating Quality; Nº 595; US Department of Agriculture: Washington, DC, USA, 1941.
- Sistrunk, W.A.; Jones, L.G.; Miller, J.C. Okra pod growth habits. Proc. Am. Soc. Hortic. Sci. Am. Soc. Hortic. Sci. Alex. United States Am. 1960, 76, 486–491. [Google Scholar]
- Singh, P.; Tripathi, R.D.; Singh, H.N. Effect of age of picking on the chemical composition of the fruits of okra. Indian. J. Agric. Sci. 1974, 44, 22. [Google Scholar]
- Diaz, F.A.; Ortegon, M.A.S.; Loera, G.J. Fruit characteristics and yield of new okra hybrids. Subtrop. Plant Sci. 1997, 49, 8–11. [Google Scholar]
- Liu, J.; Yuan, Y.; Wu, Q.; Zhao, Y.; Jiang, Y.; John, A.; Wen, L.; Li, T.; Jian, Q.; Yang, B. Analyses of quality and metabolites levels of okra during postharvest senescence by 1H-high resolution NMR. Postharvest Biol. Technol. 2017, 132, 171–178. [Google Scholar] [CrossRef]
- Li, H.; Xie, L.; Ma, Y.; Zhang, M.; Zhao, Y.; Zhao, X. Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. Lwt 2019, 101, 630–638. [Google Scholar] [CrossRef]
- Man, J.; Chen, G.; Chen, J. Recent progress of biomimetic tactile sensing technology based on magnetic sensors. Biosensors 2022, 12, 1054. [Google Scholar] [CrossRef]
- Mineo, C.; Herbert, D.; Morozov, M.; Pierce, S.G.; Nicholson, P.I.; Cooper, I. Robotic non-destructive inspection. In Proceedings of the 51st Annual Conference of the British Institute of Non-Destructive Testing, Northamptonshire, UK, 11–13 September 2012; pp. 345–352. [Google Scholar]
- El-Mesery, H.S.; Mao, H.; Abomohra, A.E.F. Applications of non-destructive technologies for agricultural and food products quality inspection. Sensors 2019, 19, 846. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Defraeye, T.; De Ketelaere, B.; Herremans, E.; Hertog, M.L.; Saeys, W.; Torricelli, A.; Vandendriessche, T.; Verboven, P. Nondestructive measurement of fruit and vegetable quality. Annu. Rev. Food Sci. Technol. 2014, 5, 285–312. [Google Scholar] [CrossRef]
- Xuan, G.; Gao, C.; Shao, Y.; Wang, X.; Wang, Y.; Wang, K. Maturity determination at harvest and spatial assessment of moisture content in okra using Vis-NIR hyperspectral imaging. Postharvest Biol. Technol. 2021, 180, 111597. [Google Scholar] [CrossRef]
- Mineo, C. Advancements in robotic-enabled sensing: A European perspective. Open Res. Eur. 2024, 4, 39. [Google Scholar] [CrossRef]
- Mandil, W.; Rajendran, V.; Nazari, K.; Ghalamzan-Esfahani, A. Tactile-sensing technologies: Trends, challenges and outlook in agri-food manipulation. Sensors 2023, 23, 7362. [Google Scholar] [CrossRef]
- Mayol-Cuevas, W.W.; Juarez-Guerrero, J.; Munoz-Gutierrez, S. A first approach to tactile texture recognition. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, 14 October 1998; Volume 5, pp. 4246–4250, Cat. No. 98CH36218. [Google Scholar]
- De Ketelaere, B.; Howarth, M.S.; Crezee, L.; Lammertyn, J.; Viaene, K.; Bulens, I.; De Baerdemaeker, J. Postharvest firmness changes as measured by acoustic and low-mass impact devices: A comparison of techniques. Postharvest Biol. Technol. 2006, 41, 275–284. [Google Scholar] [CrossRef]
- Delwiche, M.J.; McDonald, T.; Bowers, S.V. Determination of peach firmness by analysis of impact forces. Trans. ASAE 1987, 30, 249–0254. [Google Scholar] [CrossRef]
- Shmulevich, I.; Galili, N.; Howarth, M.S. Nondestructive dynamic testing of apples for firmness evaluation. Postharvest Biol. Technol. 2003, 29, 287–299. [Google Scholar] [CrossRef]
- Ragni, L.; Berardinelli, A.; Guarnieri, A. Impact device for measuring the flesh firmness of kiwifruits. J. Food Eng. 2010, 96, 591–597. [Google Scholar] [CrossRef]
- Ortiz, C.; Blanes, C.; Gonzalez-Planells, P.; Rovira-Más, F. Non-Destructive Evaluation of White-Flesh Dragon Fruit Decay with a Robot. Horticulturae 2023, 9, 1286. [Google Scholar] [CrossRef]
- Scimeca, L.; Maiolino, P.; Cardin-Catalan, D.; del Pobil, A.P.; Morales, A.; Iida, F. Non-destructive robotic assessment of mango ripeness via multi-point soft haptics. In Proceedings of the IEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 1821–1826. [Google Scholar]
- Sun, J.; Ma, B.; Dong, J.; Zhu, R.; Zhang, R.; Jiang, W. Detection of internal qualities of hami melons using hyperspectral imaging technology based on variable selection algorithms. J. Food Process Eng. 2017, 40, e12496. [Google Scholar] [CrossRef]
- Zhu, H.; Chu, B.; Fan, Y.; Tao, X.; Yin, W.; He, Y. Hyperspectral imaging for predicting the internal quality of kiwifruits based on variable selection algorithms and chemometric models. Sci. Rep. 2017, 7, 7845. [Google Scholar] [CrossRef]
- Munera, S.; Amigo, J.M.; Aleixos, N.; Talens, P.; Cubero, S.; Blasco, J. Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine. Food Control 2018, 86, 1–10. [Google Scholar] [CrossRef]
Actual Category | Group Size | Predicted (Acquired) | Predicted (Stored) |
---|---|---|---|
Acquired | 59 | 50 (84.7%) | 9 (15.25%) |
Stored | 59 | 16 (27.12%) | 43 (72.88%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arolkar, N.M.; Ortiz, C.; Dapurkar, N.; Blanes, C.; Gonzalez-Planells, P. Automated Tenderness Assessment of Okra Using Robotic Non-Destructive Sensing. Horticulturae 2024, 10, 930. https://doi.org/10.3390/horticulturae10090930
Arolkar NM, Ortiz C, Dapurkar N, Blanes C, Gonzalez-Planells P. Automated Tenderness Assessment of Okra Using Robotic Non-Destructive Sensing. Horticulturae. 2024; 10(9):930. https://doi.org/10.3390/horticulturae10090930
Chicago/Turabian StyleArolkar, Neha M., Coral Ortiz, Nikita Dapurkar, Carlos Blanes, and Pablo Gonzalez-Planells. 2024. "Automated Tenderness Assessment of Okra Using Robotic Non-Destructive Sensing" Horticulturae 10, no. 9: 930. https://doi.org/10.3390/horticulturae10090930
APA StyleArolkar, N. M., Ortiz, C., Dapurkar, N., Blanes, C., & Gonzalez-Planells, P. (2024). Automated Tenderness Assessment of Okra Using Robotic Non-Destructive Sensing. Horticulturae, 10(9), 930. https://doi.org/10.3390/horticulturae10090930