The Mitigating Effects of Biostimulant Amendments on the Response of Purslane Plants Grown under Drought Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions and Layout
2.1.1. Drought Stress Levels
- 100% of FC;
- 80% of FC;
- 60% of FC.
2.1.2. Biostimulants
- Control: without soil amendment;
- Plant growth-promoting rhizobacteria (PGPR);
- Mycorrhiza;
- Effective microorganisms (EMs).
2.2. Growth Traits
2.3. Chemical Composition of Plant Foliage
2.3.1. Chlorophyll Content
2.3.2. Total Nitrogen, Phosphorus, Potassium, and Carbohydrate Contents
2.3.3. Ascorbic Acid Content
2.3.4. Proline Content
2.3.5. Nitrate Contents
2.4. Statistical Analysis
3. Results and Discussion
3.1. Vegetative Growth Parameters
3.2. Root Growth Parameters
3.3. Chemical Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carrascosa, A.; Pascual, J.A.; Ros, M.; Petropoulos, S.A.; Alguacil, M. Agronomical Practices and Management for Commercial Cultivation of Portulaca oleracea as a Crop: A Review. Plants 2023, 12, 1246. [Google Scholar] [CrossRef] [PubMed]
- Anastaćio, A.; Carvalho, I.S. Accumulation of fatty acids in purslane grown in hydroponic salt stress conditions. Int. J. Food Sci. Nutr. 2013, 64, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, M.H.; Ghalavand, A.; Boojar, M.M.A.; Modarres-Sanavy, S.A.M.; Mokhtassi-Bidgoli, A. Application of manure and biofertilizer to improve soil properties and increase grain yield, essential oil and ω3 of purslane (Portulaca oleracea L.) under drought stress. Soil Tillage Res. 2021, 205, 104633. [Google Scholar] [CrossRef]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Abdul Hamid, A.; Aslani, F.; Hasan, M.M.; Mohd Zainudin, M.A.; Uddin, M.K. Evaluation of antioxidant compounds, antioxidant activities, and mineral composition of 13 collected purslane (Portulaca oleracea L.) accessions. Biomed Res. Int. 2014, 2014, 296063. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Uddin, K.; Juraimi, A.S.; Hossain, S.; Altaf, M.; Nahar, U.; Ali, E.; Rahman, M.M.; Uddin, M.K.; Juraimi, A.S.; Hossain, M.S.; et al. Purslane weed (Portulaca oleracea): A prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. Sci. World J. 2014, 2014, 951019. [Google Scholar] [CrossRef]
- Jalali, J.; Ghasemzadeh Rahbardar, M. Ameliorative effects of Portulaca oleracea L. (purslane) on the metabolic syndrome: A review. J. Ethnopharmacol. 2022, 299, 115672. [Google Scholar] [CrossRef]
- Naeem, F.; Khan, S.H. Purslane (Portulaca oleracea L.) as phytogenic substance—A review. J. Herbs. Spices Med. Plants 2013, 19, 216–232. [Google Scholar] [CrossRef]
- Gatea, F.; Dumitra Teodor, E.; Maria Seciu, A.; Nagodă, E.; Lucian Radu, G. Chemical constituents and bioactive potential of Portulaca pilosa L. vs. Portulaca oleracea L. Med. Chem. Res. 2017, 26, 1516–1527. [Google Scholar] [CrossRef]
- Carvalho, I.C.; Teixeira, M.; Brodelius, M. Effect of salt stress on purslane and potential health benefits: Oxalic acid and fatty acids profile. In The Proceedings of the International Plant Nutrition Colloquium XVI; University of California, Davis: Davis, CA, USA, 2009; pp. 1–5. Available online: https://escholarship.org/uc/item/4cc78714 (accessed on 12 August 2024).
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Alam, M.Z. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chem. 2015, 169, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Yazici, I.; Türkan, I.; Sekmen, A.H.; Demiral, T. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ. Exp. Bot. 2007, 61, 49–57. [Google Scholar] [CrossRef]
- Jin, R.; Wang, Y.; Liu, R.; Gou, J.; Chan, Z. Physiological and metabolic changes of purslane (Portulaca oleracea L.) in response to drought, heat, and combined stresses. Front. Plant Sci. 2016, 6, 1123. [Google Scholar] [CrossRef] [PubMed]
- Forni, C.; Duca, D.; Glick, B.R. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 2017, 410, 335–356. [Google Scholar] [CrossRef]
- Jacques, C.; Salon, C.; Barnard, R.L.; Vernoud, V.; Prudent, M. Drought stress memory at the plant cycle level: A review. Plants 2021, 10, 1873. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef] [PubMed]
- Pilon, C.; Snider, J.L.; Sobolev, V.; Chastain, D.R.; Sorensen, R.B.; Meeks, C.D.; Massa, A.N.; Walk, T.; Singh, B.; Earl, H.J. Assessing stomatal and non-stomatal limitations to carbon assimilation under progressive drought in peanut (Arachis hypogaea L.). J. Plant Physiol. 2018, 231, 124–134. [Google Scholar] [CrossRef]
- Ali, S.; Liu, Y.; Ishaq, M.; Shah, T.; Abdullah; Ilyas, A.; Din, I.U. Climate change and its impact on the yield of major food crops: Evidence from pakistan. Foods 2017, 6, 39. [Google Scholar] [CrossRef]
- Bashir, S.S.; Hussain, A.; Hussain, S.J.; Wani, O.A.; Zahid Nabi, S.; Dar, N.A.; Baloch, F.S.; Mansoor, S. Plant drought stress tolerance: Understanding its physiological, biochemical and molecular mechanisms. Biotechnol. Biotechnol. Equip. 2021, 35, 1912–1925. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Y.; Liu, T.; Shi, R.; Xu, X.; Song, Z.; Wang, Y. Comparison of the Differences in Tolerance to Drought Stress across Five Clematis Species Based on Seed Germination and Seedling Growth. Horticulturae 2024, 10, 288. [Google Scholar] [CrossRef]
- Ozturk, M.; Altay, V.; Güvensen, A. Portulaca oleracea: A Vegetable from Saline Habitats. In Handbook of Halophytes; Springer: Cham, Switzerland, 2020; pp. 2319–2332. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Liava, V.; Chaski, C.; Añibarro-Ortega, M.; Pereira, A.; Pinela, J.; Barros, L.; Petropoulos, S.A. The Effect of Biostimulants on Fruit Quality of Processing Tomato Grown under Deficit Irrigation. Horticulturae 2023, 9, 1184. [Google Scholar] [CrossRef]
- Cunha, I.d.C.M.d.; Silva, A.V.R.d.; Boleta, E.H.M.; Pellegrinetti, T.A.; Zagatto, L.F.G.; Zagatto, S.d.S.S.; Chaves, M.G.d.; Mendes, R.; Patreze, C.M.; Tsai, S.M.; et al. The interplay between the inoculation of plant growth-promoting rhizobacteria and the rhizosphere microbiome and their impact on plant phenotype. Microbiol. Res. 2024, 283, 127706. [Google Scholar] [CrossRef] [PubMed]
- Grammenou, A.; Petropoulos, S.A.; Thalassinos, G.; Rinklebe, J.; Shaheen, S.M.; Antoniadis, V. Biostimulants in the Soil–Plant Interface: Agro-environmental Implications—A Review. Earth Syst. Environ. 2023, 7, 583–600. [Google Scholar] [CrossRef]
- Zhang, T.; Jian, Q.; Yao, X.; Guan, L.; Li, L.; Liu, F.; Zhang, C.; Li, D.; Tang, H.; Lu, L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Heliyon 2024, 10, e31553. [Google Scholar] [CrossRef]
- Munns, R. Plant Adaptations to Salt and Water Stress. Differences and Commonalities, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2011; Volume 57, ISBN 9780123876928. [Google Scholar]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 871, 1473. [Google Scholar] [CrossRef]
- Poria, V.; Dębiec-Andrzejewska, K.; Fiodor, A.; Lyzohub, M.; Ajijah, N.; Singh, S.; Pranaw, K. Plant Growth-Promoting Bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands. Front. Plant Sci. 2022, 13, 999866. [Google Scholar] [CrossRef]
- Kumar, A.; Anju, T.; Kumar, S.; Chhapekar, S.S.; Sreedharan, S.; Singh, S.; Choi, S.R.; Ramchiary, N.; Lim, Y.P. Integrating omics and gene editing tools for rapid improvement of traditional food plants for diversified and sustainable food security. Int. J. Mol. Sci. 2021, 22, 8093. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Iriti, M.; Scarafoni, A.; Pierce, S.; Castorina, G.; Vitalini, S. Soil application of effective microorganisms (EM) maintains leaf photosynthetic efficiency, increases seed yield and quality traits of bean (Phaseolus vulgaris L.) plants grown on different substrates. Int. J. Mol. Sci. 2019, 20, 2327. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Dresler, S.; Stasińska-Jakubas, M.; Wójciak, M.; Sowa, I.; Matraszek-Gawron, R. Nacl-induced elicitation alters physiology and increases accumulation of phenolic compounds in Melissa officinalis L. Int. J. Mol. Sci. 2021, 22, 6844. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef] [PubMed]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P.P. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, A.; Aggarwal, A.; Parkash, V. Effect of bioinoculants and superphosphate fertilizer on the growth and yield of broccoli (Brassica oleracea L. var. italica Plenck). N. Z. J. Crop Hortic. Sci. 2014, 42, 288–302. [Google Scholar] [CrossRef]
- Giovannini, L.; Palla, M.; Agnolucci, M.; Avio, L.; Sbrana, C.; Turrini, A.; Giovannetti, M. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: Research strategies for the selection of the best performing inocula. Agronomy 2020, 10, 106. [Google Scholar] [CrossRef]
- Sbrana, C.; Avio, L.; Giovannetti, M. Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 2014, 35, 1535–1546. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef]
- Bitterlich, M.; Rouphael, Y.; Graefe, J.; Franken, P. Arbuscular mycorrhizas: A promising component of plant production systems provided favorable conditions for their growth. Front. Plant Sci. 2018, 9, 1329. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Jackson, M.L., Ed.; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Black, C.A.; Evans, D.O.; Ensminger, L.E.; White, J.L.; Clark, F.E.; Dinauer, R.C. Chemical and Microbiological Properties. In Methods of Soil Analysis; Page, A.L., Ed.; American Society of Agronomy, Inc. Soil Science Society of America, Inc.: Madison, WI, USA, 1965; pp. 34–41. ISBN 9780891180722. [Google Scholar]
- Bernard, J.M. Forest Floor Moisture Capacity of the New Jersey Pine Barrens. Ecology 1963, 44, 574–576. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2019; ISBN 0935584773. [Google Scholar]
- Pregl, F. Quantitative Organic Microanalysis, 4th ed.; Chundril: London, UK, 1961. [Google Scholar]
- Brown, J.; Lilliland, O. Rapid determination of potassium and sodium in plant materials and soil extracts by flame photometry. Proc. Am. Soc. Hortic. Sci. 1946, 48, 341–346. [Google Scholar]
- Herbert, D.; Phipps, P.J.; Strange, R.E. Chemical Analysis of Microbial Cells. Methods Microbiol. 1971, 5B, 209–344. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.H.; Ghalavand, A.; Mashhadi-Akbar-Boojar, M.; Modarres-Sanavy, S.A.M.; Mokhtassi-Bidgoli, A. Increased Medicinal Contents of Purslane by Nitrogen and Arbuscular Mycorrhiza under Drought Stress. Commun. Soil Sci. Plant Anal. 2020, 51, 118–135. [Google Scholar] [CrossRef]
- Saheri, F.; Barzin, G.; Pishkar, L.; Boojar, M.M.A.; Babaeekhou, L. Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia 2020, 75, 2189–2200. [Google Scholar] [CrossRef]
- Jin, R.; Shi, H.; Han, C.; Zhong, B.; Wang, Q.; Chan, Z. Physiological changes of purslane (Portulaca oleracea L.) after progressive drought stress and rehydration. Sci. Hortic. 2015, 194, 215–221. [Google Scholar] [CrossRef]
- Vetrano, F.; Miceli, C.; Angileri, V.; Frangipane, B.; Moncada, A.; Miceli, A. Effect of bacterial inoculum and fertigation management on nursery and field production of lettuce Plants. Agronomy 2020, 10, 1477. [Google Scholar] [CrossRef]
- Tahiri, A.-i.; Raklami, A.; Bechtaoui, N.; Anli, M.; Boutasknit, A.; Oufdou, K.; Meddich, A. Beneficial Effects of Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Compost on Lettuce (Lactuca sativa) Growth Under Field Conditions. Gesunde Pflanz. 2022, 74, 219–235. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Abd El-Mageed, T.A.; Mohamed, I.A.A.; Semida, W.M.; Al-Elwany, O.A.A.I.; Ibrahim, I.M.; Hemida, K.A.; El-Saadony, M.T.; AbuQamar, S.F.; El-Tarabily, K.A.; et al. Soil application of effective microorganisms and nitrogen alleviates salt stress in hot pepper (Capsicum annum L.) plants. Front. Plant Sci. 2023, 13, 1079260. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.A.; Yousef, A.F.; Ali, M.M.; Ahmed, A.I.; Lamlom, S.F.; Strobel, W.R.; Kalaji, H.M. Exogenously applied nitrogenous fertilizers and effective microorganisms improve plant growth of stevia (Stevia rebaudiana Bertoni) and soil fertility. AMB Express 2021, 11, 133. [Google Scholar] [CrossRef]
- Abdi, N.; Van Biljon, A.; Steyn, C.; Labuschagne, M. Arbuscular mycorrhizal fungi impact on yield attributes, protein quantity and quality in bread wheat (Triticum aestivum L.) grown under drought stress. Arid Land Res. Manag. 2024, 1–15. [Google Scholar] [CrossRef]
- Bárzana, G.; Aroca, R.; Ruiz-Lozano, J.M. Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell Environ. 2015, 38, 1613–1627. [Google Scholar] [CrossRef] [PubMed]
- Kung’u, J.B.; Lasco, R.D.; Cruz, L.U.D.; Cruz, R.E.D.; Husain, T. Effect of vesicular arbuscular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistance of Senna spectabilis. Pakistan J. Bot. 2008, 40, 2217–2224. [Google Scholar]
- Yin, N.; Zhang, Z.; Wang, L.; Qian, K. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ. Sci. Pollut. Res. 2016, 23, 17840–17849. [Google Scholar] [CrossRef]
- Basyal, B.; Walker, B.J. Arbuscular mycorrhizal fungi enhance yield and photosynthesis of switchgrass (Panicum virgatum L.) under extreme drought and alters the biomass composition of the host plant. Biomass Bioenergy 2023, 177, 106936. [Google Scholar] [CrossRef]
- Tripathi, A.; Pandey, V.K.; Jain, D.; Singh, G.; Brar, N.S.; Taufeeq, A.; Pandey, I.; Dash, K.K.; Samrot, A.V.; Rustagi, S. An updated review on significance of PGPR-induced plant signalling and stress management in advancing sustainable agriculture. J. Agric. Food Res. 2024, 16, 101169. [Google Scholar] [CrossRef]
- Wasaya, A.; Zhang, X.; Fang, Q.; Yan, Z. Root phenotyping for drought tolerance: A review. Agronomy 2018, 8, 241. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, X.; Nie, Y.; Bai, S.H.; Zhou, L.; Shao, J.; Cheng, W.; Wang, J.; Hu, F.; Fu, Y. Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell Environ. 2018, 41, 2589–2599. [Google Scholar] [CrossRef]
- Hasan, R.; Setiawati, T.; Sukirman, D.; Nurzaman, M. The arbuscular mycorrhizal fungi inoculation affects plant growth and flavonoid content in tomato plant (Lycopersicum esculentum Mill.). J. Appl. Biol. Biotechnol. 2024, 12, 95–101. [Google Scholar] [CrossRef]
- Vacheron, J.; Desbrosses, G.; Bouffaud, M.L.; Touraine, B.; Moënne-Loccoz, Y.; Muller, D.; Legendre, L.; Wisniewski-Dyé, F.; Prigent-Combaret, C. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 2013, 4, 356. [Google Scholar] [CrossRef]
- Kothari, S.K.; Marschner, H.; George, E. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol. 1990, 116, 303–311. [Google Scholar] [CrossRef]
- Pratiwi, A.; Maghfoer, M.D.; Widaryanto, E.; Aini, N. Protective Role of Plant Growth Promoting Rhizobacteria Inoculation in the Development of Drought Tolerance in Shallot: Effects on Hydroxygen Peroxide Production, Lipid Peroxidation, and Secondary Metabolite Production. Trop. J. Nat. Prod. Res. 2024, 8, 6940–6947. [Google Scholar] [CrossRef]
- Zaidi, A.; Ahmad, E.; Khan, M.S.; Saif, S.; Rizvi, A. Role of plant growth promoting rhizobacteria in sustainable production of vegetables: Current perspective. Sci. Hortic. 2015, 193, 231–239. [Google Scholar] [CrossRef]
- Alami, Y.; Achouak, W.; Marol, C.; Heulin, T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 2000, 66, 3393–3398. [Google Scholar] [CrossRef] [PubMed]
- Rakkammal, K.; Maharajan, T.; Antony, S.; Manikandan, C. Biostimulants and their role in improving plant growth under drought and salinity. Cereal Res. Commun. 2023, 51, 61–74. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, Q.; Zaman, S.; Anwar, A.; Li, S. The transcriptomic analysis revealed the molecular mechanism of Arbuscular Mycorrhizal Fungi (AMF) inoculation in watermelon. Sci. Hortic. 2024, 332, 113184. [Google Scholar] [CrossRef]
- Tisserant, E.; Kohler, A.; Dozolme-Seddas, P.; Balestrini, R.; Benabdellah, K.; Colard, A.; Croll, D.; da Silva, C.; Gomez, S.K.; Koul, R.; et al. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol. 2012, 193, 755–769. [Google Scholar] [CrossRef]
- Nazeri, N.K.; Lambers, H.; Tibbett, M.; Ryan, M.H. Moderating mycorrhizas: Arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant Cell Environ. 2014, 37, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Bago, B.; Pfeffer, P.; Shachar-Hill, Y. Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol. 2001, 149, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, J.; Xu, G.; Zhou, L.; Li, Y. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New For. 2019, 50, 593–604. [Google Scholar] [CrossRef]
- Ortiz, N.; Armada, E.; Duque, E.; Roldán, A.; Azcón, R. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. J. Plant Physiol. 2015, 174, 87–96. [Google Scholar] [CrossRef]
- Berg, G.; Zachow, C.; Müller, H.; Philipps, J.; Tilcher, R. Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 2013, 3, 648–656. [Google Scholar] [CrossRef]
- Rolli, E.; Marasco, R.; Vigani, G.; Ettoumi, B.; Mapelli, F.; Deangelis, M.L.; Gandolfi, C.; Casati, E.; Previtali, F.; Gerbino, R.; et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ. Microbiol. 2015, 17, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; He, X.; Shi, R.; Zi, S.; Xi, C.; Li, X.; Liu, T. Mycorrhizal fungi reduce the photosystem damage caused by drought stress on Paris polyphylla var. yunnanensis. PLoS ONE 2024, 19, e0294394. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, Q.; Ding, C.; Huang, Y.; Liao, J.; Chen, T.; Feng, S.; Zhou, L.; Zhang, Z.; Chen, Y.; et al. Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. Int. J. Mol. Sci. 2020, 21, 1390. [Google Scholar] [CrossRef] [PubMed]
- Kaboosi, E.; Rahimi, A.; Abdoli, M.; Ghabooli, M. Comparison of Serendipita indica Inoculums and a Commercial Biofertilizer Effects on Physiological Characteristics and Antioxidant Capacity of Maize Under Drought Stress. J. Soil Sci. Plant Nutr. 2023, 23, 900–911. [Google Scholar] [CrossRef]
- Pinior, A.; Grunewaldt-Stöcker, G.; Von Alten, H.; Strasser, R.J. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 2005, 15, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Sheng, M.; Wang, C.Y.; Chen, H.; Li, Z.; Tang, M. Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 2015, 53, 250–258. [Google Scholar] [CrossRef]
- Ouhaddou, R.; Ech-chatir, L.; Anli, M.; Ben-Laouane, R.; Boutasknit, A.; Meddich, A. Secondary Metabolites, Osmolytes and Antioxidant Activity as the Main Attributes Enhanced by Biostimulants for Growth and Resilience of Lettuce to Drought Stress. Gesunde Pflanz. 2023, 75, 1737–1753. [Google Scholar] [CrossRef]
- Pratiwi, I.; Susilowati, A.; Pangastuti, A. Incorporation of purslane extract (Portulaca oleracea) to chitosan edible film as a packaging material to prevent damage of mozzarella cheese during storage. IOP Conf. Ser. Earth Environ. Sci. 2021, 828, 012026. [Google Scholar] [CrossRef]
- Bhanse, P.; Kumar, M.; Singh, L.; Awasthi, M.K.; Qureshi, A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. Chemosphere 2022, 303, 134954. [Google Scholar] [CrossRef]
Months | 2022 | ||
---|---|---|---|
Maximum Temperature (°C) | Minimum Temperature (°C) | Relative Humidity (%) | |
April | 29 | 15 | 49.2 |
May | 32 | 18 | 53.8 |
Jun | 36 | 21 | 60.2 |
July | 38 | 23 | 65.5 |
2023 | |||
April | 31 | 15 | 49.5 |
May | 32 | 17 | 55.2 |
Jun | 36 | 21 | 65.4 |
July | 37 | 22 | 72.5 |
Physical Parameters | Chemical Parameters | ||||
---|---|---|---|---|---|
Cations | Anions | ||||
Coarse sand | 7.1% | Ca2+ | 6.26 mEq/L | CO3− | 0.00 mEq/L |
Fine sand | 17.3% | Mg2+ | 3.02 mEq/L | HCO3− | 3.92 mEq/L |
Silt | 22.3% | Na+ | 5.36 mEq/L | Cl− | 4.42 mEq/L |
Clay | 53.3% | K+ | 0.93 mEq/L | SO4− | 7.38 mEq/L |
Clay loam | |||||
Soil pH | 7.72 | Available N | 26.4 mg/kg | ||
E.C | 1.48 dS/m | Available P | 8.73 mg/kg | ||
Organic matter | 1.59% | Available K | 119.9 mg/kg |
Treatments | Height (cm) | Shoots/Plant | Fresh Weight/Plant (g) | Dry Weight/Plant (g) | |||||
---|---|---|---|---|---|---|---|---|---|
Drought | Biofertilizer | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
100% FC | 31.6 ± 0.39 a * | 30.1 ± 0.44 a | 13.1 ± 0.27 a | 14.0 ± 0.21 a | 270 ± 2.87 a | 278 ± 1.85 a | 40.8 ± 0.46 a | 44.2 ± 0.40 a | |
80% FC | 29.2 ± 0.39 b | 27.9 ± 0.44 b | 11.3 ± 0.27 b | 12.1 ± 0.21 b | 240 ± 2.87 b | 248 ± 1.85 b | 35.9 ± 0.46 b | 39.2 ± 0.40 b | |
60% FC | 23.7 ± 0.39 c | 22.8 ± 0.44 c | 9.3 ± 0.37 c | 9.3 ± 0.21 c | 186 ± 2.87 c | 198 ± 1.85 c | 27.2 ± 0.46 c | 30.9 ± 0.40 c | |
Control | 25.8 ± 0.45 c | 24.8 ± 0.5 c | 9.9 ± 0.31 c | 10.0 ± 0.24 d | 213 ± 3.3 c | 221 ± 2.1 d | 31.6 ± 0.5 c | 34.4 ± 0.46 d | |
Mycorrhiza | 29.3 ± 0.45 ab | 27.6 ± 0.5 ab | 12.2 ± 0.31 a | 13.2 ± 0.24 a | 250 ± 3.3 a | 260 ± 2.1 a | 37.4 ± 0.5 a | 41.1 ± 0.46 a | |
PGPR | 29.4 ± 0.45 a | 28.8 ± 0.5 a | 11.5 ± 0.31 ab | 12.4 ± 0.24 b | 236 ± 3.3 b | 247 ± 2.1 b | 35.2 ± 0.5 b | 39.2 ± 0.46 b | |
EM | 27.5 ± 0.45 b | 26.9 ± 0.5 b | 11.1 ± 0.31 b | 11.5 ± 0.24 c | 262 ± 3.3 b | 238 ± 2.1 c | 34.2 ± 0.5 b | 37.6 ± 0.46 c | |
100% FC | Control | 29.7 ± 0.8 bc | 28.6 ± 0.96 b | 11.7 ± 0.5 bcd | 12.1 ± 0.44 d | 257 ± 6.0 bc | 262 ± 3.6 d | 38.7 ± 0.9 bc | 41.8 ± 0.74 d |
Mycorrhiza | 32.9 ± 0.8 a | 30.7 ± 0.96 ab | 14.6 ± 0.5 a | 15.4 ± 0.44 a | 284 ± 6.0 a | 293 ± 3.6 a | 42.9 ± 0.9 a | 46.3 ± 0.74 a | |
PGPR | 33.2 ± 0.8 a | 32.3 ± 0.96 a | 13.2 ± 0.5 ab | 14.9 ± 0.44 ab | 271 ± 6.0 ab | 281 ± 3.6 b | 40.8 ± 0.9 ab | 44.6 ± 0.74 ab | |
EM | 31.6 ± 0.8 ab | 29.8 ± 0.96 ab | 12.7 ± 0.5 bc | 13.6 ± 0.44 bc | 267 ± 6.0 ab | 276 ± 3.6 bc | 40.6 ± 0.9 ab | 43.9 ± 0.74 bc | |
80% FC | Control | 26.4 ± 0.8 de | 25.3 ± 0.96 cd | 9.8 ± 0.5 ef | 10.1 ± 0.44 e | 219 ± 6.0 ef | 224 ± 3.6 f | 32.1 ± 0.9 e | 35.4 ± 0.74 f |
Mycorrhiza | 30.4 ± 0.8 abc | 28.6 ± 0.96 b | 12.2 ± 0.5 bc | 13.8 ± 0.44 bc | 261 ± 6.0 bc | 267 ± 3.6 cd | 39.5 ± 0.9 bc | 42.2 ± 0.74 cd | |
PGPR | 31.7 ± 0.8 ab | 29.8 ± 0.96 ab | 11.8 ± 0.5 bcd | 12.6 cd | 246 ± 6.0 cd | 259 ± 3.6 d | 36.7 ± 0.9 cd | 41.1 ± 0.74 d | |
EM | 28.4 ± 0.8 cd | 27.8 ± 0.96 bc | 11.2 ± 0.5 cde | 11.8 ± 0.44 d | 235 ± 6.0 de | 243 ± 3.6 e | 35.1 ± 0.9 d | 38.2 ± 0.74 e | |
60% FC | Control | 21.3 ± 0.8 f | 20.4 ± 0.96 e | 8.2 ± 0.5 f | 7.9 ± 0.66 f | 162 ± 6.0 i | 176 ± 3.6 h | 23.9 ± 0.9 g | 26.0 ± 0.74 h |
Mycorrhiza | 24.6 ± 0.8 e | 23.4 ± 0.96 d | 9.9 ± 0.5 def | 10.3 ± 0.66 e | 204 ± 6.0 fg | 219 ± 3.6 f | 29.7 ± 0.9 ef | 34.7 ± 0.74 f | |
PGPR | 25.1 ± 0.8 e | 24.3 ± 0.96 d | 9.6 ± 0.5 ef | 9.6 ± 0.66 e | 192 ± 6.0 gh | 202 ± 3.6 g | 28.1 ± 0.9 f | 32.0 ± 0.74 g | |
EM | 23.6 ± 0.8 ef | 23.0 ± 0.96 de | 9.3 ± 0.5 ef | 9.2 ± 0.66 ef | 184 ± 6.0 h | 194 ± 3.6 g | 27.0 ± 0.9 f | 30.8 ± 0.74 g |
Treatments | Roots Fresh Weight/Plant (g) | Roots Dry Weight/Plant (g) | |||
---|---|---|---|---|---|
Drought | Biofertilizers | 2022 | 2023 | 2022 | 2023 |
100% FC | 51.0 ± 0.43 a * | 51.9 ± 0.64 a | 8.61 ± 0.11 a | 9.25 ± 0.10 a | |
80% FC | 44.7 ± 0.43 b | 45.6 ± 0.64 b | 7.48 ± 0.11 b | 8.12 ± 0.10 b | |
60% FC | 33.6 ± 0.43 c | 35.7 ± 0.64 c | 5.58 ± 0.11 c | 6.34 ± 0.10 c | |
Control | 39.1 ± 0.50 d | 40.0 ± 0.74 c | 6.55 ± 0.13 c | 7.12 ± 0.12 c | |
Mycorrhiza | 46.8 ± 0.50 a | 48.0 ± 0.74 a | 7.84 ± 0.13 a | 8.59 ± 0.12 a | |
PGPR | 44.3 ± 0.50 b | 45.3 ± 0.74 b | 7.42 ± 0.13 b | 8.03 ± 0.12 b | |
EM | 42.1 ± 0.50 c | 43.8 ± 0.74 b | 7.08 ± 0.13 b | 7.86 ± 0.12 b | |
100% FC | Control | 46.2 ± 0.87 c | 48.6 ± 1.3 bcd | 7.81 ± 0.24 cd | 8.62 ± 0.21 cd |
Mycorrhiza | 54.3 ± 0.87 a | 56.9 ± 1.3 a | 9.18 ± 0.24 a | 10.11 ± 0.21 a | |
PGPR | 52.6 ± 0.87 ab | 51.7 ± 1.3 b | 8.82 ± 0.24 ab | 9.17 ± 0.21 b | |
EM | 51.0 ± 0.87 b | 50.2 ± 1.3 bc | 8.64 ± 0.24 ab | 9.08 ± 0.21 bc | |
80% FC | Control | 41.6 ± 0.87 d | 40.3 ± 1.3 e | 6.92 ± 0.24 e | 7.21 ± 0.21 e |
Mycorrhiza | 48.3 ± 0.87 c | 49.7 ± 1.3 bc | 8.14 ± 0.24 bc | 8.84 ± 0.21 bc | |
PGPR | 46.2 ± 0.87 c | 46.9 ± 1.3 cde | 7.72 ± 0.24 cd | 8.31 ± 0.21 d | |
EM | 42.6 ± 0.87 d | 45.3 ± 1.3 de | 7.14 ± 0.24 de | 8.11 ± 0.21 d | |
60% FC | Control | 29.4 ± 0.87 g | 31.2 ± 1.3 g | 4.93 ± 0.24 h | 5.54 ± 0.21 g |
Mycorrhiza | 37.9 ± 0.87 e | 38.4 ± 1.3 f | 6.21 ± 0.24 f | 6.82 ± 0.21 ef | |
PGPR | 34.2 ± 0.87 f | 37.2 ± 1.3 f | 5.72 ± 0.24 fg | 6.62 ± 0.21 f | |
EM | 32.8 ± 0.87 f | 36.0 ± 1.3 f | 5.46 ± 0.24 gh | 6.39 ± 0.21 f |
Treatments | N% | P% | K% | Total Carbohydrates% | |||||
---|---|---|---|---|---|---|---|---|---|
Drought | Biofertilizer | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
100% FC | 1.55 ± 0.05 a * | 1.50 ± 0.40 a | 0.242 ± 0.02 a | 0.231 ± 0.02 a | 1.40 ± 0.02 a | 1.45 ± 0.02 a | 17.8 ± 0.29 a | 19.2 ± 0.34 a | |
80% FC | 1.48 ± 0.05 ab | 1.44 ± 0.40 ab | 0.224 ± 0.02 b | 0.211 ± 0.02 b | 1.25 ± 0.02 b | 1.27 ± 0.02 b | 15.7 ± 0.29 b | 16.9 ± 0.34 b | |
60% FC | 1.31 ± 0.05 b | 1.24 ± 0.40 a | 0.199 ± 0.02 c | 0.188 ± 0.02 c | 1.03 ± 0.02 c | 1.05 ± 0.02 c | 11.8 ± 0.29 c | 12.8 ± 0.34 c | |
Control | 1.27 ± 0.06 b | 1.22 ± 0.4 b | 0.199 ± 0.03 d | 0.186 ± 0.03 c | 1.02 ± 0.02 c | 1.12 ± 0.02 c | 13.3 ± 0.34 b | 14.2 ± 0.40 c | |
Mycorrhiza | 1.56 ± 0.06 a | 1.53 ± 0.4 a | 0.244 ± 0.03 a | 0.243 ± 0.03 a | 1.31 ± 0.02 a | 1.27 ± 0.02 b | 16.8 ± 0.34 a | 17.8 ± 0.40 a | |
PGPR | 1.51 ± 0.06 a | 1.44 ± 0.4 a | 0.216 ± 0.03 c | 0.203 ± 0.03 b | 1.33 ± 0.02 a | 1.37 ± 0.02 a | 15.9 ± 0.34 a | 17.2 ± 0.40 a | |
EM | 1.44 ± 0.06 ab | 1.38 ± 0.4 ab | 0.226 ± 0.03 b | 0.210 ± 0.03 b | 1.22 ± 0.02 b | 1.26 ± 0.02 b | 14.3 ± 0.34 b | 15.9 ± 0.40 b | |
100% FC | Control | 1.37 ± 0.12 ab | 1.32 ± 0.81 ab | 0.214 ± 0.05 de | 0.203 ± 0.05 de | 1.16 ± 0.04 de | 1.24 ± 0.05 de | 15.8 ± 0.63 cd | 16.4 ± 0.69 def |
Mycorrhiza | 1.69 ± 0.12 a | 1.64 ± 0.81 a | 0.273 ± 0.05 a | 0.261 ± 0.05 a | 1.43 ± 0.04 b | 1.48 ± 0.05 ab | 19.8 ± 0.63 a | 20.5 ± 0.69 ab | |
PGPR | 1.62 ± 0.12 a | 1.56 ± 0.81 a | 0.234 ± 0.05 bc | 0.2250.05 c | 1.59 ± 0.04 a | 1.62 ± 0.05 a | 18.7 ± 0.63 ab | 21.2 ± 0.69 a | |
EM | 1.51 ± 0.12 ab | 1.48 ± 0.81 ab | 0.246 ± 0.05 b | 0.236 ± 0.05 bc | 1.41 ± 0.04 b | 1.45 ± 0.05 b | 16.9 ± 0.63 bc | 18.7 ± 0.69 bc | |
80% FC | Control | 1.32 ± 0.12ab | 1.29 ± 0.81ab | 0.203 ± 0.05ef | 0.191 ± 0.05ef | 1.08 ± 0.04e | 1.18 ± 0.05def | 13.8d ± 0.63ef | 14.9 ± 0.69 efg |
Mycorrhiza | 1.57 ± 0.12 a | 1.58 ± 0.81 a | 0.246 ± 0.05 b | 0.249 ± 0.05 ab | 1.36 ± 0.04 bc | 1.26 ± 0.05 d | 17.3 ± 0.63 bc | 18.5 ± 0.69 bcd | |
PGPR | 1.54 ± 0.12 a | 1.46 ± 0.81 a | 0.219 ± 0.05 cde | 0.201 ± 0.05 def | 1.32 ± 0.04 bc | 1.36 ± 0.05 bc | 16.9 ± 0.63 bc | 17.2 ± 0.69 cd | |
EM | 1.49 ± 0.12 ab | 1.42 ± 0.81 ab | 0.226 ± 0.05 cd | 0.204 ± 0.05 de | 1.24 ± 0.04 cd | 1.29 ± 0.05 cd | 14.7 ± 0.63 de | 16.8 ± 0.69 cde | |
60% FC | Control | 1.12 ± 0.12 b | 1.04 ± 0.81 b | 0.181 ± 0.05 g | 0.164 ± 0.05 g | 0.86 ± 0.04 f | 0.94 ± 0.05 g | 10.2 ± 0.63 h | 11.4 ± 0.69 i |
Mycorrhiza | 1.42 ± 0.12 ab | 1.38 ± 0.81 ab | 0.214 ± 0.05 de | 0.218 ± 0.05 cd | 1.14 ± 0.04 de | 1.08 ± 0.05 efg | 13.4 ± 0.63 efg | 14.3 ± 0.69 fgh | |
PGPR | 1.38 ± 0.12 ab | 1.31 ± 0.81 ab | 0.195 ± 0.05 fg | 0.182 ± 0.05 f | 1.08 ± 0.04 e | 1.14 ± 0.05 def | 12.1 ± 0.63 fgh | 13.1 ± 0.69 ghi | |
EM | 1.32 ± 0.12 ab | 1.23 ± 0.81 b | 0.206 ± 0.05 ef | 0.189 ± 0.05 ef | 1.02 ± 0.04 e | 1.03 ± 0.05 fg | 11.4 ± 0.63 gh | 12.3 ± 0.69 hi |
Treatments | Total Chlorophyll Content (mg/100 g f.w) | Vitamin C Content (mg/100 g f.w) | Nitrate Content (mg/g f.w) | Proline Content (μg/g f.w) | |||||
---|---|---|---|---|---|---|---|---|---|
Drought | Biofertilizer | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
100% FC | 189 ± 2.08 a * | 200 ± 2.07 a | 77.9 ± 0.67 a | 82.6 ± 0.59 a | 2.43 ± 0.02 c | 2.45 ± 0.03 c | 483 ± 14.0 c | 461 ± 18.2 c | |
80% FC | 179 ± 2.08 b | 180 ± 2.07 b | 73.6 ± 0.67 b | 70.7 ± 0.59 b | 2.57 ± 0.02 b | 2.77 ± 0.03 b | 879 ± 14.0 b | 804 ± 18.2 b | |
60% FC | 146 ± 2.08 c | 131 ± 2.07 c | 57.2 ± 0.67 c | 50.0 ± 0.59 c | 3.14 ± 0.02 a | 3.12 ± 0.03 a | 1245 ± 14.0 a | 1170 ± 18.2 a | |
Control | 136 ± 2.40 c | 134 ± 2.39 c | 65.2 ± 0.77 c | 61.8 ± 0.69 d | 2.97 ± 0.03 a | 3.02 ± 0.04 a | 959 ± 16.2 a | 969 ± 21.1 a | |
Mycorrhiza | 178 ± 2.40 b | 179 ± 2.39 b | 72.9 ± 0.77 a | 73.0 ± 0.69 a | 2.56 ± 0.03 c | 2.62 ± 0.04 c | 810 ± 16.2 d | 702 ± 21.1 d | |
PGPR | 186 ± 2.40 a | 186 ± 2.39 a | 70.9 ± 0.77 ab | 69.4 ± 0.69 b | 2.63 ± 0.03 bc | 2.70 ± 0.04 bc | 842 ± 16.2 c | 761 ± 21.1 c | |
EM | 181 ± 2.40 ab | 181 ± 2.39 b | 69.3 ± 0.77 b | 67.0 ± 0.69 c | 2.70 ± 0.03 b | 2.77 ± 0.04 b | 865 ± 16.2 b | 813 ± 21.1 b | |
100% FC | Control | 154 ± 4.54 cd | 161 ± 2.48 d | 74.3 ± 1.23 cd | 76.8 ± 0.93 d | 2.64 ± 0.05 e | 2.58 ± 0.06 fgh | 514 ± 6.6 g | 496 ± 6.4 i |
Mycorrhiza | 196 ± 4.54 ab | 207 ± 2.48 b | 81.9 ± 1.23 a | 87.9 ± 0.93 a | 2.31 ± 0.05 g | 2.36 ± 0.06 i | 462 ± 6.6 h | 438 ± 6.4 k | |
PGPR | 206 ± 4.54 a | 218 ± 2.48 a | 79.4 ± 1.23 ab | 84.3 ± 0.93 b | 2.36 ± 0.05 g | 2.41 ± 0.06 hi | 471 ± 6.6 h | 447 ± 6.4 jk | |
EM | 199 ± 4.54 ab | 212 ± 2.48 ab | 76.2 ± 1.23 bc | 81.4 ± 0.93 c | 2.42 ± 0.05 fg | 2.46 ± 0.06 ghi | 483 ± 6.6 h | 461 ± 6.4 j | |
80% FC | Control | 141 ± 4.54 d | 134 ± 2.48 e | 71.0 ± 1.23 d | 67.3 ± 0.93 g | 2.82 ± 0.05 d | 2.93 ± 0.06 bc | 926 ± 6.6 d | 1018 ± 6.4 d |
Mycorrhiza | 187 ± 4.54 b | 194 ± 2.48 c | 75.6 ± 1.23 c | 74.2d ± 0.93 e | 2.42 ± 0.05 fg | 2.61 ± 0.06 efg | 818 ± 6.6 f | 684 ± 6.4 h | |
PGPR | 195 ± 4.54 ab | 198 ± 2.48 c | 74.2 ± 1.23 cd | 71.4 ± 0.93 ef | 2.48 ± 0.05 efg | 2.74 ± 0.06 def | 869 ± 6.6 e | 718 ± 6.4 g | |
EM | 191 ± 4.54 b | 193 ± 2.48 c | 73.6 ± 1.23 cd | 70.0f ± 0.93 g | 2.57 ± 0.05 ef | 2.78 ± 0.06 cde | 904 ± 6.6 d | 794 ± 6.4 f | |
60% FC | Control | 113 ± 4.54 e | 108 ± 2.48 f | 50.3 ± 1.23 f | 41.2 ± 0.93 j | 3.46 ± 0.05 a | 3.54 ± 0.06 a | 1436 ± 6.6 a | 1394 ± 6.4 a |
Mycorrhiza | 152 ± 4.54 cd | 136 ± 2.48 e | 61.2 ± 1.23 e | 56.8 ± 0.93 h | 2.94 ± 0.05 cd | 2.89 ± 0.06 cd | 1149 ± 6.6 c | 984 ± 6.4 e | |
PGPR | 164 ± 4.54 c | 142 ± 2.48 e | 59.2 ± 1.23 e | 52.4 ± 0.93 i | 3.05 ± 0.05 bc | 2.96 ± 0.06 bc | 1186 ± 6.6 b | 1117 ± 6.4 c | |
EM | 154 ± 4.54 cd | 139 ± 2.48 e | 58.1 ± 1.23 e | 49.6 ± 0.93 i | 3.12 ± 0.05 b | 3.08 ± 0.06 b | 1208 ± 6.6 b | 1184 ± 6.4 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.H.M.; Ali, M.M.E.; Zewail, R.M.Y.; Liava, V.; Petropoulos, S.A. The Mitigating Effects of Biostimulant Amendments on the Response of Purslane Plants Grown under Drought Stress Conditions. Horticulturae 2024, 10, 858. https://doi.org/10.3390/horticulturae10080858
Mohamed MHM, Ali MME, Zewail RMY, Liava V, Petropoulos SA. The Mitigating Effects of Biostimulant Amendments on the Response of Purslane Plants Grown under Drought Stress Conditions. Horticulturae. 2024; 10(8):858. https://doi.org/10.3390/horticulturae10080858
Chicago/Turabian StyleMohamed, Mostafa H. M., Maha Mohamed Elsayed Ali, Reda M. Y. Zewail, Vasiliki Liava, and Spyridon A. Petropoulos. 2024. "The Mitigating Effects of Biostimulant Amendments on the Response of Purslane Plants Grown under Drought Stress Conditions" Horticulturae 10, no. 8: 858. https://doi.org/10.3390/horticulturae10080858
APA StyleMohamed, M. H. M., Ali, M. M. E., Zewail, R. M. Y., Liava, V., & Petropoulos, S. A. (2024). The Mitigating Effects of Biostimulant Amendments on the Response of Purslane Plants Grown under Drought Stress Conditions. Horticulturae, 10(8), 858. https://doi.org/10.3390/horticulturae10080858