Formulation of a Commercial Quality Index for Avocado Produced in an Inter-Andean Valley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
Genetic Material
2.2. Quality Evaluation Parameters
2.3. Parameter Discrimination
2.4. Formulation of Indices
2.5. Statistical Tools
3. Results
3.1. Discrimination of Parameters
3.2. Parameter Weighting
3.3. Formulation of the Commercial Quality Index
3.4. Application of the Delphi Method in the Proposal of a Commercial Quality Index for Hass and Fuerte Avocado
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Instituto Nacional de Estadística e Informática. Pobreza Monetaria Alcanzó al 30.1% de la Población del País Durante el Año 2020. 2021. Available online: https://m.inei.gob.pe/prensa/noticias/pobreza-monetaria-alcanzo-al-301-de-la-poblacion-del-pais-durante-el-ano-2020-12875/ (accessed on 20 July 2024).
- Instituto Nacional de Estadística e Informática. Avance Económico Departamental, Marzo 2021. 2021. Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1804/apurimac.htm (accessed on 20 July 2024).
- Mamani, J.C.Q.; Pinto, S.L.A.; Quilca, B.E.C.; Portilla, R.M.; Huamán, R.N.T. Factores determinantes de la exportación de palta en Perú, 2008–2020. Alfa Rev. Investig. En Cienc. Agronómicas Y Vet. 2022, 6, 524–536. [Google Scholar]
- Quiroz, A.M. Evaluación de la cadena de valor de la producción del aceite de palta peruana y propuestas competitivas. Ing. Ind. 2021, 41, 151–170. [Google Scholar] [CrossRef]
- Flores-Izquierdo, M.A.; Espinoza-Villanueva, L.E. Situación actual y perspectivas de la producción de palta (Persea americana) peruana en el contexto del comercio internacional. Ing. Ind. 2023, 45, 157–173. [Google Scholar] [CrossRef]
- Choque-Quispe, D.; Diaz-Barrera, Y.; Solano-Reynoso, A.M.; Choque-Quispe, Y.; Ramos-Pacheco, B.S.; Ligarda-Samanez, C.A.; Peralta-Guevara, D.E.; Martínez-Huamán, E.L.; Aguirre Landa, J.P.; Correa-Cuba, O.; et al. Effect of the Application of a Coating Native Potato Starch/Nopal Mucilage/Pectin on Physicochemical and Physiological Properties during Storage of Fuerte and Hass Avocado (Persea americana). Polymers 2022, 14, 3421. [Google Scholar] [CrossRef]
- Condori Salluco, N.F. Eficacia de la Palta como Antibacteriano frente a Mycobacterium Tuberculosis. Gac. Medica Boliv. 2021, 44, 233–239. [Google Scholar] [CrossRef]
- Vivero, S.A.; Valenzuela, B.R.; Valenzuela, B.A.; Morales, G. Palta: Compuestos bioactivos y sus potenciales beneficios en salud. Rev. Chil. De Nutr. 2019, 46, 491–498. [Google Scholar] [CrossRef]
- Zafar, T.; Sidhu, J.S. Avocado Production, Processing, and Nutrition. In Handbook of Vegetables and Vegetable Processing; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Conceição, A.R.; Fraiz, G.M.; Rocha, D.M.U.P.; Bressan, J. Can avocado intake improve weight loss in adults with excess weight? A systematic review and meta-analysis of randomized controlled trials. Nutr. Res. 2022, 102, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.A.; Amanze, J.C.; Oni, A.I.; Grant, S.; Iyobhebhe, M.; Elebiyo, T.C.; Rotimi, D.; Asogwa, N.T.; Oyinloye, B.E.; Ajiboye, B.O.; et al. Antidiabetic activity of avocado seeds (Persea americana Mill.) in diabetic rats via activation of PI3K/AKT signaling pathway. Sci. Rep. 2022, 12, 2919. [Google Scholar] [CrossRef]
- Nyakang’i, C.O.; Ebere, R.; Marete, E.; Arimi, J.M. Avocado production in Kenya in relation to the world, Avocado by-products (seeds and peels) functionality and utilization in food products. Appl. Food Res. 2023, 3, 100275. [Google Scholar] [CrossRef]
- Bangar, S.P.; Dunno, K.; Dhull, S.B.; Kumar Siroha, A.; Changan, S.; Maqsood, S.; Rusu, A.V. Avocado seed discoveries: Chemical composition, biological properties, and industrial food applications. Food Chem. X. 2022, 16, 100507. [Google Scholar] [CrossRef]
- Monge, A.; Stern, D.; Cortés-Valencia, A.; Catzín-Kuhlmann, A.; Lajous, M.; Denova-Gutiérrez, E. Avocado consumption is associated with a reduction in hypertension incidence in Mexican women. Br. J. Nutr. 2023, 129, 1976–1983. [Google Scholar] [CrossRef]
- Sommaruga, R.; Eldridge, H.M. Avocado Production: Water Footprint and Socio-economic Implications. EuroChoices 2021, 20, 48–53. [Google Scholar] [CrossRef]
- Guevara, W.; Hidalgo-Alcázar, C.; Rojas, J.L. Analysis of the Chilean Avocado (Palta) Agroindustry in the the International Market. Chil. J. Agric. Anim. Sci. 2021, 37, 54–64. [Google Scholar] [CrossRef]
- Cahuana Mosqueira, M.R. Exportaciones de palta Hass y Desarrollo del Agro No Tradicional, Región La Libertad (2010–2016). Neumann Bus. Rev. 2019, 5, 62–77. [Google Scholar] [CrossRef]
- Production Quantities of Avocados by Country; United Nations, F.A.O.: Rome, Italy, 2022.
- Kotler, P.; Armstrong, G. Marketing, 12th ed.; Pearson: Mexico City, México, 2012. [Google Scholar]
- García, Z.T.; Quintanilla, G.J. Análisis del valor agregado: Producción de palta en trozos. Ind. Data 2014, 6, 12. [Google Scholar] [CrossRef]
- Rodríguez, P.; Soto, I.; Villamizar, J.; Rebolledo, A. Fatty Acids and Minerals as Markers Useful to Classify Hass Avocado Quality: Ripening Patterns, Internal Disorders, and Sensory Quality. Horticulturae 2023, 9, 460. [Google Scholar] [CrossRef]
- CXS197-1995; Codex Alimentairus CXS197-1995 Norma para el Aguacate. FAO: Rome, Italy, 2013.
- NTP 011.018; Norma Técnica Peruana de la Palta. INDECOPI: San Borja, Perú, 2014.
- Stanford, L. Construyendo la calidad: La economía política de los estándares en la industria del aguacate en México. Agric. Y Valores Hum. 2022, 19, 293–310. [Google Scholar] [CrossRef]
- Gómez Ugarte, M.; Escalera Cruz, D.Á.; Rojas Navi, P.; Andrade Valeriano, M.; Lopez Rojas, A.F.; Muruchi Suarez, A. Beneficios de la semilla de Persea americana Millo (Palta). Rev. Investig. E Inf. En Salud 2017, 12, 38–43. [Google Scholar] [CrossRef]
- Robson, A.J.; Petty, J.; Joyce, D.C.; Marques, J.R.; Hofman, P.J. High resolution remote sensing, GIS and Google Earth for avocado fruit quality mapping and tree number au-diting. Acta Hortic. 2016, 1130, 589–596. [Google Scholar] [CrossRef]
- Lena-Acebo, F.J. Aplicación del método Delphi en el diseño de una investigación cuantitativa sobre el fenómeno FABLABS. Empiria 2018, 40, 129–166. [Google Scholar]
- Galanis, P. The Delphi method. Arch. Hell. Med. 2018, 35, 564–570. [Google Scholar]
- Skulmoski, G.J.; Hartman, F.T.; Krahn, J. The Delphi Method for Graduate Research. J. Inf. Technol. Educ. Res. 2007, 6, 1–21. [Google Scholar] [CrossRef]
- Fathullah, M.A.; Subbarao, A.; Muthaiyah, S. Methodological Investigation: Traditional and Systematic Reviews as Preliminary Findings for Delphi Technique. Int. J. Qual. Methods 2023, 22, 1–7. [Google Scholar] [CrossRef]
- Mukherjee, N.; Hugé, J.; Sutherland, W.J.; Mcneill, J.; Van Opstal, M.; Dahdouh-Guebas, F.; Koedam, N. The Delphi technique in ecology and biological conservation: Applications and guidelines. Methods Ecol. Evol. 2015, 6, 1097–1109. [Google Scholar] [CrossRef]
- García Valdés, M.; Suárez Marín, M. El método Delphi para la consulta a expertos en la investigación científica. Rev. Cuba. Salud Pública 2013, 39, 253–267. [Google Scholar]
- Sankaran, S.; Ang, K.; Hase, S. Delphi Method. J. Syst. Think. 2023, 3, 1–15. [Google Scholar] [CrossRef]
- Niederberger, M.; Köberich, S. Coming to consensus: The Delphi technique. Eur. J. Cardiovasc. Nurs. 2021, 20, 692–695. [Google Scholar] [CrossRef]
- Hasson, F.; Keeney, S.; McKenna, H. Research guidelines for the Delphi survey technique. J. Adv. Nurs. 2000, 32, 1008–1015. [Google Scholar] [CrossRef]
- López Gómez, E. El método Delphi en la investigación actual en educación: Una revisión teórica y metodológica. Educ. XX1 2018, 21, 17–40. [Google Scholar] [CrossRef]
- McMillan, S.S.; King, M.; Tully, M.P. How to use the nominal group and Delphi techniques. International Journal of Clinical Pharmacy. Int. J. Clin. Pharm. 2016, 38, 655–662. [Google Scholar]
- Schmalz, U.; Spinler, S.; Ringbeck, J. Lessons Learned from a Two-Round Delphi-based Scenario Study. MethodsX 2021, 8, 101179. [Google Scholar] [CrossRef]
- Anand, V.; Gupta, S.; Gupta, D.; Gulzar, Y.; Xin, Q.; Juneja, S.; Shah, A.; Shaikh, A. Weighted Average Ensemble Deep Learning Model for Stratification of Brain Tumor in MRI Images. Diagnostics 2023, 13, 1320. [Google Scholar] [CrossRef]
- Tapia Rodríguez, A.; Ramírez Dávila, J.F.; Salgado Siclán, M.L.; Castañeda Vildózola, Á.; Maldonado Zamora, F.I.; Lara Díaz, A.V. Spatial distribution of anthracnose (Colletotrichum gloeosporioides Penz) in avocado in the State of Mexico, Mexico. Rev. Argent. Microbiol. 2020, 52, 72–81. [Google Scholar]
- Martínez-Martínez, N.; Ramírez-Dávila, J.F.; Mejía-Carranza, J.; Vera-Noguez, S.; Ramírez-Chimal, J. Ahuacatl: Mobile application to determine the spatial distribution of phytosanitary problems in avocado. Rev. Mex. Cienc. Agric. 2023, 14, 471–476. [Google Scholar]
- Fischer, I.H.; Moraes, M.F.D.; Palharini, M.C.D.A.; Fileti, M.D.S.; Cruz, J.C.S.; Firmino, A.C. Efeito de produtos convencionais e alternatives no controle de doenças pós-colheita do abacate. Rev. Bras. Frutic. 2018, 40, e-408. [Google Scholar]
- Everett, K.R. Avocado diseases affecting fruit quality. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2020, 15. [Google Scholar] [CrossRef]
- Exteriores, M.d.R. Perfil Del Mercado De Palta Hass En Estados Unidos; Oficina de Promoción Comercial e Inversiones del Perú: Los Ángeles, CA, USA, 2011. [Google Scholar]
- Álvarez-Herrera, J.G.; Jaime-Guerrero, M.; Reyes-Medina, A.J. Effect of maturity accelerants on the postharvest behavior of avocado (Persea americana Mill.) cv. Lorena. Rev. Colomb. De Cienc. Hortic. 2021, 15, e13131. [Google Scholar] [CrossRef]
- Tremocoldi, M.A.; Daiuto, E.R.; De Alencar, S.M.; Vieites, R.L. Effect of hydrothermally “Hass” avocado about antioxidant capacity, total phenolic content and coloration. Semin. Cienc. Agrar. 2014, 35, 1279. [Google Scholar] [CrossRef]
- Díaz Vásquez, J.C.; Ardila López, C.; Guerra Aranguren, M.A. Estudio de caso sobre la admisibilidad del aguacate Hass colombiano en el mercado estadounidense: Oportunidades en el Este de Asia. Rev. Mundo Asia Pacífico 2019, 8, 5–27. [Google Scholar] [CrossRef]
- Álvarez Flores, J.J.; Vite Cevallos, H.; Garzón Montealegre, V.J.; Carvajal Romero, H. Analysis of avocado production in Ecuador for export to international markets from 2008 to 2018. Rev. Metrop. Cienc. Apl. 2021, 4, 164–172. [Google Scholar]
- Pachón, Y.V.; Balaguera-López, H.E.; Florez-Velasco, N. Postharvest behavior and chilling injury in avocado (Persea americana Mill) fruit cv. Hass treated with 1-methylcyclopropene, ethylene, and intermittent warming. Rev. Fac. Nac. De Agron. Medellin 2022, 75, 9895–9907. [Google Scholar] [CrossRef]
- Mendieta, B.; Olaeta, J.A.; Pedreschi, R.; Undurraga, P. Reduction of cold damage during cold storage of Hass avocado by a combined use of pre-conditioning and waxing. Sci. Hortic. 2016, 200, 119–124. [Google Scholar] [CrossRef]
- Fischer, I.H.; Tozze Júnior, H.J.; Arruda, M.C.; Massola Júnior, N.S. Pós-colheita de abacates ‘Fuerte’ e ‘Hass’: Características físicas e químicas, danos e controle de doenças. Semin. Ciências Agrárias 2011, 32, 209. [Google Scholar] [CrossRef]
- Palomino-Camargo, C.; González-Muñoz, Y.; Pérez-Sira, E.; Aguilar, V.H. Delphi methodology in food safety management and foodborne disease prevention. Rev. Peru. Med. Exp. Y Salud Pública 2018, 35, 483–490. [Google Scholar] [CrossRef]
- Bazzani, C.; Canavari, M. Forecasting a scenario of the fresh tomato market in Italy and in Germany using the Delphi method. Br. Food J. 2013, 115, 448–459. [Google Scholar] [CrossRef]
- Zickafoose, A.; Lu, P.; Baker, M. Forecasting food innovations with a Delphi Study. Foods 2022, 11, 3723. [Google Scholar] [CrossRef]
- Ameyaw, E.E.; Hu, Y.; Shan, M.; Chan AP, C.; Le, Y. Application of Delphi method in construction engineering and management research: A quantitative perspective. J. Civ. Eng. Manag. 2016, 22, 991–1000. [Google Scholar] [CrossRef]
- Dang, J.; Lal, A.; Montgomery, A.; Flurin, L.; Litell, J.; Gajic, O.; Rabinstein, A.; Cervantes-Arslanian, A.; Marcellino, C.; Robinson, C.; et al. Developing DELPHI expert consensus rules for a digital twin model of acute stroke care in the neuro critical care unit. BMC Neurol. 2023, 23, 161. [Google Scholar] [CrossRef]
- Jiang, R.; Kleer, R.; Piller, F.T. Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030. Technol. Forecast. Soc. Change 2017, 117, 84–97. [Google Scholar] [CrossRef]
Parameters | Definition | Score | % | Result |
---|---|---|---|---|
Being whole | The fruit must not be broken | 8 | 18.18 | NA |
To be Healthy | The fruit must not be deteriorated | 6 | 13.64 | NA |
Maintain property | The fruit must maintain the physiological characteristic | 38 | 86.36 | A |
Be clean | The fruit must be free of visible foreign matter | 30 | 68.18 | A |
Free of damage | The fruit must be free of pests | 28 | 63.64 | A |
Free of any odor | The fruit must maintain the characteristic odor | 13 | 29.55 | NA |
Free from foreign taste | The fruit must maintain its characteristic flavor | 13 | 29.55 | NA |
Temperature damage | The fruit must not be damaged by high or low temperature | 28 | 63.64 | A |
Peduncle | Small branch supporting the fruit | 31 | 70.45 | A |
Harvest of the product | Fruit harvesting | 28 | 63.64 | A |
Maturity physiological | State of the fruit that allows the culmination of the ripening process | 8 | 18.18 | NA |
Dry matter content | Solid matter remaining after dehydration of the fruit | 38 | 86.36 | A |
Surface appearance | Defects affecting the general appearance of the fruit | 25 | 56.82 | A |
Discoloration | Loss of natural color of the fruit | 29 | 65.91 | A |
Injury | Injuries caused by fruit handling | 24 | 54.55 | A |
Contaminants | Agent, matter or substance that impairs the safety of the fruit | 32 | 72.73 | A |
Frost damage | Loss of the natural color of the fruit due to intense cold | 28 | 63.64 | A |
Sunburn | Loss of the natural color of the fruit due to excessive sunlight | 26 | 59.09 | A |
Open wound | Injury to the fruit involving the pulp | 11 | 25.00 | NA |
Rot | Damage to skin or pulp caused by microorganisms | 13 | 29.55 | NA |
Preservation | The fruit does not have any deterioration of the skin or flesh | 26 | 59.09 | A |
Avocado caliber 2 | Weight over 1220 g | 0 | 0.00 | NA |
Avocado caliber 4 | Weight between 781 and 1220 g | 3 | 6.82 | NA |
Avocado caliber 6 | Weight between 576 and 780 g | 5 | 11.36 | NA |
Avocado caliber 8 | Weight between 456 and 576 g | 6 | 13.64 | NA |
Avocado caliber 10 | Weight between 364 and 462 g | 3 | 6.82 | NA |
Avocado caliber 12 | Weight between 300 and 371 g | 6 | 13.64 | NA |
Avocado caliber 14 | Weight between 258 and 313 g | 23 | 52.27 | A |
Avocado caliber 16 | Weight between 227 and 274 g | 11 | 25.00 | NA |
Avocado caliber 18 | Weight between 203 and 243 g | 13 | 29.55 | NA |
Avocado caliber 20 | Weight between 184 and 217 g | 28 | 63.64 | A |
Avocado caliber 22 | Weight between 165 and 196 g | 10 | 22.73 | NA |
Avocado caliber 24 | Weight between 151 and 175 g | 5 | 11.36 | NA |
Avocado caliber 26 | Weight between 144 and 157 g | 26 | 59.09 | A |
Avocado caliber 28 | Weight between 134 and 147 g | 25 | 56.82 | A |
Avocado caliber 30 | Weight between 123 and 137 g | 10 | 22.73 | NA |
Avocado caliber 32 | Weight between 80 and 123 g | 6 | 13.64 | NA |
Avocado caliber S3 | Weight between 80 and 123 g for Hass | 4 | 9.09 | NA |
Parameter (Q) | R2 | Q(x) for 0 | Q(x) for 100 | a | b | c | d |
---|---|---|---|---|---|---|---|
Maintain property | 99.37 | 3.59 | 1.27 | 158.50 | −44.23 | 0.11 | −0.04 |
Be clean | 99.90 | 3.96 | 1.07 | 127.91 | −32.45 | −0.05 | −0.01 |
Free of damage | 99.27 | 3.00 | 1.16 | 205.94 | −68.13 | 0.57 | −0.27 |
Temperature damage | 99.17 | 3.00 | 1.18 | 218.38 | −72.76 | 0.63 | −0.29 |
Peduncle | 99.26 | 2.09 | 1.30 | 148.40 | −51.21 | −0.03 | −0.08 |
Harvest of the product | 99.62 | 3.00 | 1.05 | 127.85 | −42.86 | −0.12 | −0.03 |
Dry matter content | 99.91 | 1.05 | 3.80 | −121.38 | −118.09 | 0.80 | −0.06 |
Surface appearance | 99.48 | 1.00 | 3.66 | −235.50 | 242.53 | 2.64 | −0.30 |
Discoloration | 99.17 | 3.00 | 1.30 | 355.54 | −117.79 | 1.47 | −0.52 |
Injury | 99.57 | 2.98 | 1.27 | 275.74 | −92.38 | 0.89 | −0.36 |
Contaminants | 99.80 | 3.00 | 1.23 | 147.16 | −49.03 | −0.04 | −0.05 |
Frost damage | 98.80 | 3.00 | 1.16 | 117.65 | −38.73 | −0.26 | 0.03 |
Sunburn | 99.34 | 3.00 | 1.25 | 150.48 | −50.29 | 0.02 | −0.08 |
Preservation | 99.70 | 2.98 | 1.07 | 133.37 | −44.93 | −0.07 | −0.05 |
Caliber | 96.97 | 6.21 | 4.68 | 89.44 | −14.16 | −0.36 | 0.04 |
Parameter (Q) | R2 | Q(x) for 0 | Q(x) for 100 | a | b | c | d |
---|---|---|---|---|---|---|---|
Maintain property | 98.76 | 2.77 | 1.16 | 2989.52 | −107.82 | 1.34 | −0.55 |
Be clean | 99.90 | 3.96 | 1.07 | 127.91 | −32.45 | −0.05 | −0.01 |
Free of damage | 99.27 | 3.00 | 1.16 | 205.94 | −68.13 | 0.57 | −0.27 |
Temperature damage | 99.17 | 3.00 | 1.18 | 218.38 | −72.76 | 0.63 | −0.29 |
Peduncle | 99.26 | 2.09 | 1.30 | 148.40 | −51.21 | −0.03 | −0.08 |
Harvest of the product | 99.62 | 3.00 | 1.05 | 127.85 | −42.86 | −0.12 | −0.03 |
Dry matter content | 99.91 | 1.05 | 3.80 | −121.38 | −118.09 | 0.80 | −0.06 |
Surface appearance | 99.48 | 1.00 | 3.66 | −235.50 | 242.53 | 2.64 | −0.30 |
Discoloration | 99.17 | 3.00 | 1.30 | 355.54 | −117.79 | 1.47 | −0.52 |
Injury | 99.57 | 2.98 | 1.27 | 275.74 | −92.38 | 0.89 | −0.36 |
Contaminants | 99.80 | 3.00 | 1.23 | 147.16 | −49.03 | −0.04 | −0.05 |
Frost damage | 98.80 | 3.00 | 1.16 | 117.65 | −38.73 | −0.26 | 0.03 |
Sunburn | 99.34 | 3.00 | 1.25 | 150.48 | −50.29 | 0.016 | −0.08 |
Preservation | 99.70 | 2.98 | 1.07 | 133.37 | −44.93 | −0.07 | −0.05 |
Caliber | 97.86 | 4.14 | 3.52 | 5068.00 | −1.19 | −0.56 | 0.08 |
Component | Hass Factor | Fuerte Factor |
---|---|---|
Maintain property | 0.07 | 0.07 |
Be clean | 0.07 | 0.07 |
Free of damage | 0.08 | 0.07 |
Temperature damage | 0.06 | 0.06 |
Peduncle | 0.06 | 0.06 |
Harvest of the product | 0.07 | 0.08 |
Dry matter content | 0.07 | 0.07 |
Surface appearance | 0.07 | 0.07 |
Discoloration | 0.06 | 0.06 |
Injury | 0.06 | 0.06 |
Contaminants | 0.07 | 0.06 |
Frost damage | 0.06 | 0.06 |
Sunburn | 0.06 | 0.06 |
Preservation | 0.07 | 0.07 |
Caliber | 0.06 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre-Landa, J.P.; Agreda-Cerna, H.W.; Quispe-Choque, D.; Prado-Canchari, A.; Rodriguez Cardenas, L. Formulation of a Commercial Quality Index for Avocado Produced in an Inter-Andean Valley. Horticulturae 2024, 10, 783. https://doi.org/10.3390/horticulturae10080783
Aguirre-Landa JP, Agreda-Cerna HW, Quispe-Choque D, Prado-Canchari A, Rodriguez Cardenas L. Formulation of a Commercial Quality Index for Avocado Produced in an Inter-Andean Valley. Horticulturae. 2024; 10(8):783. https://doi.org/10.3390/horticulturae10080783
Chicago/Turabian StyleAguirre-Landa, John Peter, Henrry Wilfredo Agreda-Cerna, David Quispe-Choque, Alfredo Prado-Canchari, and Liliana Rodriguez Cardenas. 2024. "Formulation of a Commercial Quality Index for Avocado Produced in an Inter-Andean Valley" Horticulturae 10, no. 8: 783. https://doi.org/10.3390/horticulturae10080783