Unlocking Rapid and User-Friendly Strategies to Improve Horticultural Crop Qualities
Abstract
:1. Introduction
2. Potential Uses of Microbial Endophytes in Horticulture
2.1. Microbial Endophytes and Their Function
2.2. Mechanism of Action of Endophytes
2.2.1. Direct Mechanism
2.2.2. Indirect Mechanism
2.3. Endophytes as Bionematicides
2.4. Use of Metabolites from Endophytes
3. Nanotechnology in Crop Production
4. Application of Strigolactone in Horticulture
5. CRISPR Technology in Horticultural Crop Production
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y. Envirotyping for deciphering environmental impacts on crop plants. Theor. Appl. Genet. 2016, 129, 653–673. [Google Scholar] [CrossRef] [PubMed]
- Aliniaeifard, S.; Van Meeteren, U. Natural genetic variation in stomatal response can help to increase acclimation of plants to dried environments. Acta Hortic. 2016, 1190, 71–76. [Google Scholar] [CrossRef]
- Kalhor, M.S.; Aliniaeifard, S.; Seif, M.; Asayesh, E.J.; Bernard, F.; Hassani, B.; Li, T. Enhanced salt tolerance and photosynthetic performance: Implication of 7-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. Plant Physiol. Biochem. 2018, 130, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Tanveer, M. Salt and Drought Stress Tolerance in Plants Signaling Networks and Adaptive Mechanisms: Signaling Networks and Adaptive Mechanisms; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Athar, H.U.; Zulfiqar, F.; Moosa, A.; Ashraf, M.; Zafar, Z.U.; Zhang, L.; Ahmed, N.; Kalaji, H.M.; Nafees, M.; Hossain, M.A.; et al. Salt stress proteins in plants: An overview. Front. Plant Sci. 2022, 13, 999058. [Google Scholar] [CrossRef]
- Helaly, A. Strategies for Improvement of Horticultural Crops against Abiotic Stresses. J. Hortic. 2017, 4, 1–2. [Google Scholar]
- Xiao, B.; Huang, Y.; Tang, N.; Xiong, L. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor. Appl. Genet. 2007, 115, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Shirasawa, K.; Takabe, T.; Takabe, T.; Kishitani, S. Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann. Bot. 2006, 98, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Venema, J.H.; Dijk, B.; Bax, J.; van Hasselt, P.R.; Elzenga, J.T. Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ. Exp. Bot. 2008, 63, 359–367. [Google Scholar] [CrossRef]
- Suchoff, D.H.; Perkins-Veazie, P.; Sederoff, H.W.; Schultheis, J.R.; Kleinhenz, M.D.; Louws, F.J.; Gunter, C.C. Grafting the indeterminate tomato cultivar moneymaker onto multifort rootstock improves cold tolerance. HortScience 2018, 53, 1610–1617. [Google Scholar] [CrossRef]
- Wang, Z.L.; Xue, T.T.; Gao, F.F.; Zhang, L.; Han, X.; Wang, Y.; Hui, M.; Wu, D.; Li, H.; Wang, H. Intraspecific recurrent selection in V. vinifera: An effective method for breeding of high quality, disease-, cold-, and drought-resistant grapes. Euphytica 2021, 217, 111. [Google Scholar] [CrossRef]
- Glick, B.R.; Gamalero, E. Recent developments in the study of plant microbiomes. Microorganisms 2021, 9, 1533. [Google Scholar] [CrossRef] [PubMed]
- Bora, P.; Bora, L.C.; Begum, M. Eco-friendly management of soil borne diseases in brinjal through application of antagonistic microbial population. J. Biol. Control. 2013, 27, 29–34. [Google Scholar]
- Hardoim, P.R.; Van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Numan, M.; Bashir, S.; Khan, Y.; Mumtaz, R.; Shinwari, Z.K.; Khan, A.L.; Khan, A.; AL-Harrasi, A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol. Res. 2018, 209, 21–32. [Google Scholar] [CrossRef]
- Compant, S.; Cambon, M.C.; Vacher, C.; Mitter, B.; Samad, A.; Sessitsch, A. The plant endosphere world–bacterial life within plants. Environ. Microbiol. 2021, 23, 1812–1829. [Google Scholar] [CrossRef] [PubMed]
- Bora, P.; Bora, L. Disease management in horticulture crops through microbial interventions: An overview. Indian J. Agric. Sci. 2020, 90, 1389–1396. [Google Scholar] [CrossRef]
- Garipova, S.R. Prospects of using endophytic bacteria for bioremediation of arable soils polluted by residual amounts of pesticides and xenobiotics. Uspekhi. Sovremennoi. Pleiades Publishing, Ltd. Biol. Bull. Rev. 2014, 4, 300–310. [Google Scholar] [CrossRef]
- Khan, A.A.; Wang, T.; Hussain, T.; Ali, F.; Shi, F.; Latef, A.A.H.A.; Ali, O.M.; Hayat, K.; Mehmood, S. Halotolerant-Koccuria rhizophila (14asp)-induced amendment of salt stress in pea plants by limiting Na+ uptake and elevating production of antioxidants. Agronomy 2021, 11, 1907. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Wang, Y.; Zhang, J.; Wan, S.; Huang, Y.; Yun, T.; Xie, J.; Wang, W. Biocontrol potential of endophytic Streptomyces malaysiensis 8ZJF-21 from medicinal plant against banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4. Front. Plant Sci. 2022, 11, 874819. [Google Scholar] [CrossRef] [PubMed]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Szyma ’nska, S.; Tyburski, J.; Piernik, A.; Sikora, M.; Mazur, J.; Katarzyna, H. Raising beet tolerance to salinity through bioaugmentation with halotolerant endophytes. Agronomy 2020, 10, 1571. [Google Scholar] [CrossRef]
- Neelipally, R.T.K.R.; Anoruo, A.O.; Nelson, S. Effect of Co-inoculation of Bradyrhizobium and Trichoderma on growth, development, and yield of Arachis hypogaea L. (peanut). Agronomy 2020, 10, 1415. [Google Scholar] [CrossRef]
- Kaushal, M. Microbes in cahoots with plants: MIST to hit the jackpot of agricultural productivity during drought. Int. J. Mol. Sci. 2019, 20, 1769. [Google Scholar] [CrossRef] [PubMed]
- Getahun, A.; Muleta, D.; Assefa, F.; Kiros, S. Field application of rhizobial inoculants in enhancing faba bean production in acidic soils: An innovative strategy to improve crop productivity. Salt Stress Microbes Plant Interact. Causes Solut. 2019, 1, 147–180. [Google Scholar]
- Maitra, S.; Pramanick, B.; Dey, P.; Bhadra, P.; Shankar, T.; Anand, K. Thermotolerant soil microbes and their role in mitigation of heat stress in plants. Soil Microbiomes Sustain. Agric. Funct. Annot. 2021, 27, 203–242. [Google Scholar]
- Sheikh, A.A.; Rehman, N.Z.; Kumar, R. Diverse adaptations in insects: A review. J. Entomol. Zool. Stud. 2017, 5, 343–350. [Google Scholar]
- Oukala, N.; Aissat, K.; Pastor, V. Bacterial Endophytes: The Hidden Actor in Plant Immune Responses against Biotic Stress. Plants 2021, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- Sturz, A.V.; Christie, B.R.; Nowak, J. Bacterial Endophytes: Potential Role in Developing Sustainable Systems of Crop Production. Crit. Rev. Plant Sci. 2000, 19, 1–30. [Google Scholar] [CrossRef]
- Watts, D.; Palombo, E.A.; Jaimes Castillo, A.; Zaferanloo, B. Endophytes in Agriculture: Potential to Improve Yields and Tolerances of Agricultural Crops. Microorganisms 2023, 11, 1276. [Google Scholar] [CrossRef]
- Bhoi, A.; Yadu, B.; Chandra, J.; Keshavkant, S. Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta 2021, 254, 28. [Google Scholar] [CrossRef]
- Pandey, A.; Sharma, M.; Pandey, G.K. Emerging roles of strigolactones in plant responses to stress and development. Front. Plant Sci. 2016, 7, 434. [Google Scholar] [CrossRef] [PubMed]
- Vasileva, E.N.; Akhtemova, G.A.; Zhukov, V.A.; Tikhonovich, I.A. Endophytic microorganisms in fundamental research and agriculture. Ecol. Genet. 2019, 17, 19–32. [Google Scholar] [CrossRef]
- Olmo, R.; Wetzels, S.U.; Armanhi, J.S.L.; Arruda, P.; Berg, G.; Cernava, T.; Cotter, P.D.; Araujo, S.C.; de Souza, R.S.C.; Ferrocino, I.; et al. Microbiome research as an effective driver of success stories in agrifood systems—A selection of case studies. Front. Microbiol. 2022, 13, 834622. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Beneficial Plant-Bacterial Interactions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–383. [Google Scholar]
- Gamalero, E.; Bona, E.; Glick, B.R. Current techniques to study beneficial plant-microbe interactions. Microorganisms 2022, 10, 1380. [Google Scholar] [CrossRef] [PubMed]
- Madbouly, A.K. Endophytic Fungi as sources of novel natural compounds. In Plant Mycobiome: Diversity, Interactions and Uses; Rashad, Y.M., Baka, Z.A.M., Moussa, T.A.A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 339–373. [Google Scholar]
- Sharma, D.; Gahtyari, N.C.; Chhabra, R.; Kumar, D. Role of microbes in improving plant growth and soil health for sustainable agriculture. In Advances in Plant Microbiome and Sustainable Agriculture: Diversity and Biotechnological Applications; Yadav, A.N., Rastegari, A.A., Yadav, N., Kour, D., Eds.; Springer: Singapore, 2020; pp. 207–256. [Google Scholar]
- Sikora, R.A.; Schafer, K.; Dababat, A.A. Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Aust. Plant Pathol. 2007, 36, 124–134. [Google Scholar] [CrossRef]
- Rana, K.L.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.N.; Yadav, N.; Dhaliwal, H.S.; Saxena, A.K. Endophytic microbes: Biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 2020, 113, 1075–1107. [Google Scholar] [CrossRef]
- Lastochkina, O.; Baymiev, A.; Shayahmetova, A.; Garshina, D.; Koryakov, I.; Shpirnaya, I.; Pusenkova, L.; Mardanshin, I.; Kasnak, C.; Palamutoglu, R. Effects of Endophytic Bacillus Subtilis and Salicylic Acid on Postharvest Diseases (Phytophthora infestans, Fusarium oxysporum) Development in Stored Potato Tubers. Plants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Rabbee, M.F.; Ali, M.S.; Choi, J.; Hwang, B.S.; Jeong, S.C.; Baek, K.H. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 2019, 24, 1046. [Google Scholar] [CrossRef] [PubMed]
- Lastochkina, O.; Pusenkova, L.; Garshina, D.; Kasnak, C.; Palamutoglu, R.; Shpirnaya, I.; Mardanshin, I.; Maksimov, I. Improving the biocontrol potential of endophytic bacteria Bacillus subtilis with salicylic acid against Phytophthora infestans-caused postharvest potato tuber late blight and impact on stored tubers quality. Horticulturae 2022, 8, 117. [Google Scholar] [CrossRef]
- Ameen, M.; Mahmood, A.; Sahkoor, A.; Zia, M.A.; Ullah, M.S. The Role of Endophytes to Combat Abiotic Stress in Plants. Plant Stress. 2024, 15, 100435. [Google Scholar] [CrossRef]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed]
- Fadiji, A.E.; Babalola, O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 2020, 8, 467. [Google Scholar] [CrossRef] [PubMed]
- Schouten, A. Mechanisms involved in nematode control by endophytic fungi. Annu. Rev. Phytopathol. 2016, 54, 121–142. [Google Scholar] [CrossRef] [PubMed]
- De Lamo, F.J.; Takken, F.L.W. Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. Front. Plant Sci. 2020, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Yadav, K. Exploring the potential of endophytes in agriculture: A minireview. Adv. Plants Agric. Res. 2017, 6, 00221. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.D.C.; Rocha-Granados, M.D.C.; Glick, B.R.; Santoyo, G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 2018, 208, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.R.; Yesmin, L. Sulfur–Oxidizing Plant Growth Promoting Rhizobacteria for Enhanced Canola Performance; Google Patents: San Francisco, CA, USA, 2009. [Google Scholar]
- Gwinn, K.D.; Bernard, E.C. Interactions of endophyte infected grasses with the nematodes Meloidogyn marylandi and Pratylenchus scribneri. In Proceedings of the 2nd international symposium Acremonium/grass interact Plenary Papers, Plamerston North, New Zealand, 25–28 March 1993. [Google Scholar]
- Hasky-Gunther, K.; Sikora, R.A. Induced resistance: A mechanism induced systemically throughout the root system by rhizosphere bacteria towards the potato cyst nematode Globodera pallida. Nematologica 1995, 41, 306. [Google Scholar]
- Schafer, K. Dissecting Rhizobacteria-Induced Systemic Resistance in Tomato against Meloidogyne incognita: The First Step Using Molecular Tools. Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany, 2007. [Google Scholar]
- Nifakos, K.; Tsalgatidou, P.C.; Thomloudi, E.E.; Skagia, A.; Kotopoulis, D.; Baira, E.; Delis, C.; Papadimitriou, K.; Markellou, E.; Venieraki, A.; et al. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvel1: A biocontrol agent against Botrytis cinerea causing Bunch Rot in post-harvest table grapes. Plants 2021, 10, 1716. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Chen, D.; Jin, R.; Li, E.; Li, P. Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape. BMC Microbiol. 2022, 22, 170. [Google Scholar] [CrossRef]
- Veselova, S.V.; Sorokan, A.V.; Burkhanova, G.F.; Rumyantsev, S.D.; Cherepanova, E.A.; Alekseev, V.Y.; Sarvarova, E.R.; Kasimova, A.R.; Maksimov, I.V. By modulating the hormonal balance and ribonuclease activity of tomato plants Bacillus subtilis induces defense response against potato Virus X and potato Virus Y. BioMolecules 2022, 12, 288. [Google Scholar] [CrossRef]
- Rashad, Y.M.; Abdalla, S.A.; Sleem, M.M. Endophytic Bacillus subtilis SR22 triggers defense responses in tomato against rhizoctonia root rot. Plants 2022, 11, 2051. [Google Scholar] [CrossRef]
- Pusenkova, L.I.; Il’yasova, E.Y.; Lastochkina, O.V.; Maksimov, I.V.; Leonova, S.A. Changes in the species composition of the rhizosphere and phyllosphere of sugar beet under the impact of biological preparations based on endophytic bacteria and their metabolites. Eurasian Soil Sci. 2016, 49, 1136–1144. [Google Scholar] [CrossRef]
- Lastochkina, O.V.; Pusenkova, L.I.; Il’yasova, E.Y.; Aliniaeifard, S. Effect of Bacillus subtilis based biologicals on physiological and biochemical parameters of sugar beet (Beta vulgaris L.) plants infected with Alternaria alternata. Agrobiology 2018, 53, 958–968. [Google Scholar]
- Maksimov, I.V.; Abizgil’dina, R.R.; Pusenkova, L.I. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 2011, 47, 333–345. [Google Scholar] [CrossRef]
- Riley, M.A.; Wertz, J.E. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol. 2002, 56, 117–137. [Google Scholar] [CrossRef]
- Xu, G.; Yang, S.; Meng, L.; Wang, B.G. The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Sci. Rep. 2018, 8, 6504. [Google Scholar] [CrossRef]
- Lastochkina, O.V. Adaptation and tolerance of wheat plants to drought mediated by natural growth regulators Bacillus spp.: Mechanisms and practical importance. Agric. Biol. 2021, 56, 843–867. [Google Scholar] [CrossRef]
- Mercado-Blanco, J.; Lugtenberg, B. Biotechnological applications of bacterial endophytes. Curr. Biotechnol. 2014, 3, 60–75. [Google Scholar] [CrossRef]
- Rostami, S.; Azhdarpoor, A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere 2019, 220, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Palomares-Rius, J.E.; Escobar, C.; Cabrera, J.; Vovlas, A.; Castillo, P. Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Front. Plant Sci. 2017, 8, 1987. [Google Scholar] [CrossRef] [PubMed]
- Caboni, P.; Aissani, N.; Demurtas, M.; Ntalli, N.; Onnis, V. Nematicidal activity of acetophenones and chalcones against Meloidogyne incognita, and structure–activity considerations. Pest Manag. Sci. 2016, 72, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zou, C.; Xu, J.; Ji, X.; Niu, X.; Yang, J.; Huang, X.; Zhang, K.-Q. Molecular mechanisms of nematode-nematophagous microbe interactions: Basis for biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 2015, 53, 67–95. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.N. Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci. Agric. 2019, 3, 91–93. [Google Scholar]
- Kumar, K.K.; Dara, S.K. Fungal and Bacterial Endophytes as Microbial Control Agents for Plant-Parasitic Nematodes. Int. J. Environ. Res. Public Health 2021, 18, 4269. [Google Scholar] [CrossRef]
- Niere, B.I. Significance of Non-Pathogenic Isolates of Fusarium oxysporum Schlecht: Fries for the Biological Control of the Burrowing Nematode Radopholus similis (Cobb) Thorne on Tissue Cultured Banana. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2001. [Google Scholar]
- Dubois, T.; Gold, C.S.; Coyne, D.; Paparu, P.; Mukwaba, E.; Athman, S.; Kapindu, S.; Adipala, E. Merging biotechnology with biological control: Banana Musa tissue culture plants enhanced by endophytic fungi. Uganda J. Agric. Sci. 2004, 9, 445–451. [Google Scholar]
- Mendoza, A.R.; Sikora, R.A. Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. Biocontrol 2009, 54, 263–272. [Google Scholar] [CrossRef]
- Pocasangre, L. Biological Enhancement of Banana Tissue Culture Plantlets with Endophytic Fungi for the Control of the Burrowing Nematode Radopholus similis and the Panama Disease (Fusarium oxysporum f. sp. cubense). Ph.D. Thesis, University of Bonn, Bonn, Germany, 2000. [Google Scholar]
- Felde, A.Z.; Pocasangre, L.E.; Carnizares Monteros, C.A.; Sikora, R.A.; Rosales, F.E.; Riveros, A.S. Effect of combined inoculations of endophytic fungi on the biocontrol of Radopholus similis. InfoMusa 2006, 15, 12–18. [Google Scholar]
- Mwaura, P.; Dubois, T.; Losenge, T.; Coyne, D.; Kahangi, E. Effect of endophytic Fusarium oxysporum on paralysis and mortality of Pratylenchus goodeyi. Afr. J. Biotechnol. 2010, 9, 1130–1134. [Google Scholar]
- Van Dessel, P.; Coyne, D.; Dubois, T.; Waele, D.D.; Franco, J. In vitro nematicidal effect of endophytic Fusarium oxysporum against Radopholus similis, Pratylenchus goodeyi and Helicotylenchus multicinctus. Nematropica 2011, 41, 154–160. [Google Scholar]
- Su, L.; Shen, Z.; Ruan, Y.; Tao, C.; Chao, Y.; Li, R.; Shen, Q. Isolation of antagonistic endophytes from banana roots against Meloidogyne javanica and their effects on soil nematode community. Front. Microbiol. 2017, 8, 2070. [Google Scholar] [CrossRef]
- Menjivar, R.D.; Hagemann, M.H.; Kranz, J.; Cabrera, J.A.; Dababat, A.A.; Sikora, R.A. Biological control of Meloidogyne incognita on cucurbitaceous crops by the non-pathogenic endophytic fungus Fusarium oxysporum strain 162. Int. J. Pest Manag. 2011, 57, 249–253. [Google Scholar] [CrossRef]
- Muhae-ud-Din, G.; Moosa, A.; Ghummen, U.F.; Jabran, M.; Abbas, A.; Naveed, M.; Jabbar, A.; Ali, M.A. Host status of commonly planted ornamentals to Meloidogyne incognita and management through endophytic bacteria. Pak. J. Zool. 2018, 50, 1393–1402. [Google Scholar] [CrossRef]
- Zhou, W.; Starr, J.L.; Krumm, J.L.; Sword, G.A. The fungal endophyte Chaetomium globosum negatively affects both above-and belowground herbivores in cotton. FEMS Microbiol. Ecol. 2016, 92, fiw158. [Google Scholar] [CrossRef] [PubMed]
- Padgham, J.L.; Sikora, R.A. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Protect. 2007, 26, 971–977. [Google Scholar] [CrossRef]
- Le, H.T.T.; Padgham, J.L.; Sikora, R.A. Biological control of the rice rootknot nematode Meloidogyne graminicola on rice, using endophytic and rhizosphere fungi. Int. J. Pest Manag. 2009, 55, 31–36. [Google Scholar] [CrossRef]
- Le, H.T.T.; Padgham, J.L.; Hagemann, M.H.; Sikora, R.A.; Schouten, A. Developmental and behavioural effects of the endophytic Fusarium moniliforme Fe14 towards Meloidogyne graminicola in rice. Ann. Appl. Biol. 2016, 169, 134–143. [Google Scholar] [CrossRef]
- Trifonova, Z.; Tsvetkov, I.; Bogatzevska, N.; Batchvarova, R. Efficiency of Pseudomonas spp. for biocontrol of the potato cyst nematode Globodera rostochiensis (Woll.). Bulg. J. Agric. Sci. 2014, 20, 666–669. [Google Scholar]
- Hallmann, J.; Quadt-Hallmann, A.; Miller, W.G.; Sikora, R.A.; Lindow, S.E. Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 2001, 91, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Vetrivelkalai, P.; Sivakumar, M.; Jonathan, E.I. Biocontrol potential of endophytic bacteria on Meloidogyne incognita and its effect on plant growth in bhendi. J. Biopestic. 2010, 3, 452–457. [Google Scholar] [CrossRef]
- Dababat, A.E.F.A.; Sikora, R.A. Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 2007, 9, 771–776. [Google Scholar] [CrossRef]
- Martinuz, A.; Schouten, A.; Sikora, R.A. Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. BioControl 2013, 58, 95–104. [Google Scholar] [CrossRef]
- Bogner, C.W.; Kariuki, G.M.; Elashry, A.; Sichtermann, G.; Buch, A.K.; Mishra, B.; Thines, M.; Grundler, F.M.W.; Schouten, A. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol. Progress 2016, 15, 30. [Google Scholar] [CrossRef]
- Hu, H.; Chen, Y.; Wang, Y.; Tang, Y.; Chen, S.; and Yan, S. Endophytic Bacillus cereus effectively controls Meloidogyne incognita on tomato plants through rapid rhizosphere occupation and repellent action. Plant Dis. 2017, 101, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Amin, N. The use of fungal endophytes Gliocladium spp. in different concentration to control of root-knot nematode Meloidogyne spp. Acad. Res. Int. 2014, 5, 91–95. [Google Scholar]
- Munif, A.; Hallmann, J.; Sikora, R.A. Evaluation of the biocontrol activity of endophytic bacteria from tomato against Meloidogyne incognita. Meded. Fac. Landbouwkund. EnToegepaste Biol. Wet. Univ. Gent. 2000, 65, 471–480. [Google Scholar]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; De Bruijn, I.; Nybroe, O.; Ongena, M. Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol. Rev. 2010, 34, 1037–1062. [Google Scholar] [CrossRef]
- Korkina, L.G. Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cell. Mol. Biol. 2007, 53, 15–25. [Google Scholar]
- Ding, L.; Maier, A.; Fiebig, H.H.; Lin, W.H.; Hertweck, C. A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org. Biomol. Chem. 2011, 9, 4029–4031. [Google Scholar] [CrossRef]
- Inahashi, Y.; Iwatsuki, M.; Ishiyama, A.; Namatame, M.; Nishihara-Tsukashima, A.; Matsumoto, A.; Shiomi, K. Spoxazomicins A–C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460T. J. Antibiot. 2011, 64, 303–307. [Google Scholar] [CrossRef]
- Miller, K.I.; Qing, C.; Sze, D.M.; Neilan, B.A. Investigation of the biosynthetic potential of endophytes in traditional Chinese anticancer herbs. PLoS ONE 2012, 7, e35953. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, W.; Zhang, P.; Ruan, W.; Zhu, X. Nematicidal activity of chaetoglobosin A poduced by Chaetomium globosum NK102 against Meloidogyne incognita. J. Agric. Food Chem. 2013, 61, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, M.; Köpcke, B.; Weber, R.W.; Sterner, O.; Anke, H. 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 2004, 65, 2239–2245. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.R.; Son, S.W.; Han, H.R.; Choi, G.J.; Jang, K.S.; Choi, Y.H.; Lee, S.; Sung, N.-D.; Kim, J.C. Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus. Plant Pathol. J. 2007, 23, 318–321. [Google Scholar] [CrossRef]
- Koepcke, B.; Johansson, M.; Sterner, O.; Anke, H. Biologically active secondary metabolites from the ascomycete A111-95 1. Production, isolation and biological activities. J. Antibiot. 2002, 55, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Li, G.; Wang, X.; Pan, W.; Li, L.; Hua, L.; Liu, F.; Dang, L.; Mo, M.; Zhang, K. Nematicidal endophytic bacteria obtained from plants. Ann. Microbiol. 2008, 58, 569–572. [Google Scholar] [CrossRef]
- Liarzi, O.; Bucki, P.; Braun Miyara, S.; Ezra, D. Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS ONE 2016, 11, e0168437. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.; Yan, W.; Wei, S.; Wang, Z.; Zhao, S.; Cao, L.; Rajput, N.A.; Ye, Y. Nematicidal metabolites from endophytic fungus Chaetomium globosum YSC5. FEMS Microbiol. Lett. 2019, 366, 169. [Google Scholar] [CrossRef]
- Li, G.H.; Yu, Z.F.; Li, X.; Wang, X.B.; Zheng, L.J.; Zhang, K.Q. Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem. Biodivers. 2007, 4, 1520–1524. [Google Scholar] [CrossRef]
- Bogner, C.W.; Kamdem, R.S.T.; Sichtermann, G.; Matthäus, C.; Hölscher, D.; Popp, J.; Proksch, P.; Grundler, F.M.W.; Schouten, A. Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb. Biotechnol. 2017, 10, 175–188. [Google Scholar] [CrossRef]
- Mali, S.C.; Raj, S.; Trivedi, R. Nanotechnology a novel approach to enhance crop productivity. BB Rep. 2020, 24, 100821. [Google Scholar]
- Liu, C.; Zhou, H.; Zhou, J. The applications of nanotechnology in crop production. Molecules 2021, 26, 7070. [Google Scholar] [CrossRef] [PubMed]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem. 2017, 64, 1447–1483. [Google Scholar] [CrossRef] [PubMed]
- Rana, R.A.; Siddiqui, M.N.; Skalicky, M.; Brestic, M.; Hossain, A.; Kayesh, E.; Popov, M.; Hejnak, V.; Gupta, D.R.; Mahmud, N.U.; et al. Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Horticulturae 2021, 7, 332. [Google Scholar] [CrossRef]
- Patel, A.; Tiwari, S.; Parihar, P.; Singh, R.; Prasad, S.M. Carbon nanotubes as plant growth regulators: Impacts on growth, reproductive system, and soil microbial community. In Nanomaterials in Plants, Algae and Microorganism; Academic Press: Cambridge, MA, USA, 2019; pp. 23–42. [Google Scholar]
- Singh, N.B.; Jain, P.; De, A.; Tomar, R. Green synthesis and applications of nanomaterials. Curr. Pharm. Biotechnol. 2021, 22, 1705–1747. [Google Scholar] [CrossRef] [PubMed]
- Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.-N.; Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 2015, 7, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Orre-Roche, R.D.L.; Hawthorne, J.; Deng, Y.; Xing, B.; Cai, W.; Newman, L.A.; White, J.C. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ. Sci. Technol. 2013, 47, 12539–12547. [Google Scholar] [CrossRef] [PubMed]
- Cańas, J.E.; Long, M.; Nations, S.; Vadan, R.; Dai, L.; Luo, M.; Olszyk, D. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 2008, 27, 1922–1931. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.; da Silva, J.A.T. The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J. Crop Sci. Biotechnol. 2014, 17, 201–208. [Google Scholar] [CrossRef]
- Semida, W.M.; Abdelkhalik, A.; Mohamed, G.F.; Abd El-Mageed, T.A.; Abd El-Mageed, S.A.; Rady, M.M.; Ali, E.F. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 2021, 10, 421. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Yang, X.; Zhang, Y.; Hui, H.; Zhang, D.; Shu, J. Multi-walled carbon nanotubes enhanced the antioxidative system and alleviated salt stress in grape seedlings. Sci. Hortic. 2022, 293, 110698. [Google Scholar] [CrossRef]
- Hong, F.; Yang, F.; Liu, C.; Gao, Q.; Wan, Z.; Gu, F.; Wu, C.; Ma, Z.; Jhou, Z.; Yang, P. Influences of nanoTiO2 on the chloroplast aging of spinach under light. Biol. Trace Elem. Res. 2005, 104, 249–260. [Google Scholar] [CrossRef]
- Yang, F.; Hong, F.; You, W.; Liu, C.; Gao, F.; Wu, C.; Yang, P. Influences of nano anatase TiO2 on nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 2006, 110, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alla, M.H.; Nafady, N.A.; Khalaf, D.M. Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule. Agric. Ecosyst. Environ. 2016, 218, 163–177. [Google Scholar]
- Zuverza-Mena, N.; Armendariz, R.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value. Front. Plant. Sci. 2016, 7, 90. [Google Scholar] [CrossRef]
- Elatafi, E.; Fang, J. Effect of silver nitrate (AgNO3) and nano-silver (Ag-NPs) on Physiological characteristics of grapes and quality during storage period. Horticulturae 2022, 8, 419. [Google Scholar] [CrossRef]
- Mannozzi, C.; Tylewicz, U.; Chinnici, F.; Siroli, L.; Rocculi, P.; Dalla Rosa, M.; Romany, S. Effects of chitosan-based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chem. 2018, 251, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.M.C.; Silva, W.B.; Medeiros, D.B.; Salvador, A.R.; Cordeiro, M.H.M.; da Silva, N.M.; Santana, D.B.; Mizobutsi, G.P. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage. Food Chem. 2017, 237, 372–378. [Google Scholar] [CrossRef]
- Silva, W.B.; Silva, G.M.C.; Santana, D.B.; Salvador, A.R.; Medeiros, D.B.; Belghith, I.; da Silva, N.M.; Cordeiro, M.H.M.; Misobutsi, G.P. Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chem. 2018, 242, 232–238. [Google Scholar] [CrossRef]
- Chiralt, A.; Menzel, C.; Hernandez-García, E.; Collazo, S.; Gonzalez-Martinez, C. Use of by-products in edible coatings and biodegradable packaging materials for food preservation. In Sustainability of the Food System: Sovereignty, Waste, and Nutrients Bioavailability; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 101–127. [Google Scholar]
- Zagzog, O.A.; Gad, M.M.; Hafez, N.K. Effect of nano-chitosan on vegetative growth, fruiting and resistance of malformation of mango. Trends Hortic Res. 2017, 7, 11–18. [Google Scholar]
- Zahedi, S.M.; Karimi, M.; da Silva, J.A.T. The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 2020, 100, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Sabir, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazici, M.A.; Goksu, N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hort. 2014, 175, 1–8. [Google Scholar] [CrossRef]
- Banerjee, P.; Bhadra, P. Mini Review on Strigolactones: Newly Discovered Plant Hormones. Biosc. Biotech. Res. Comm. 2020, 13, 1–7. [Google Scholar] [CrossRef]
- Bürger, M.; Chory, J. The Many Models of Strigolactone Signaling. Trends Plant Sci. 2020, 25, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Lastochkina, O.; Aliniaeifard, S.; SeifiKalhor, M.; Bosacchi, M.; Maslennikova, D.; Lubyanova, A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. Horticulturae 2022, 8, 910. [Google Scholar] [CrossRef]
- Kohlen, W.; Charnikhova, T. The tomato Carotenoid Cleavage Dioxygenase 8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 2012, 196, 535–547. [Google Scholar] [CrossRef]
- Xu, M.; Xue, Z. Enhancement of the photosynthetic and removal performance for microalgae-based technologies by co-culture strategy and strigolactone induction. Bioresour. Technol. 2021, 339, 125579. [Google Scholar] [CrossRef] [PubMed]
- Kopta, T.; Antal, M. The influence of synthetic strigolactones and plant extracts on the morphological parameters of onion (Allium cepa). Adv. Hort. Sci. 2017, 31, 235–240. [Google Scholar]
- Kang, S.W. Developmental control of horticultural plants using strigolactone to improve marketability. Tsukuba J. Agric. For. 2017, 5, 1–8. [Google Scholar]
- Roumeliotis, E.; Kloosterman, B. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. J. Exp. Bot. 2012, 63, 4539–4548. [Google Scholar] [CrossRef]
- Pasare, S.A.; Ducreux, L.J.M. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol. 2013, 198, 1108–1120. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, Y. Strigolactone maintains strawberry quality by regulating phenylpropanoid, NO, and H2S metabolism during storage. Postharvest Biol. Technol. 2021, 178, 111546. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L. Exogenous strigolactones alleviate the photosynthetic inhibition and oxidative damage of cucumber seedlings under salt stress. Sci. Hortic. 2022, 297, 110962. [Google Scholar] [CrossRef]
- Wang, W.N.; Min, Z. Physiological and transcriptomic analysis of Cabernet Sauvginon (Vitis vinifera L.) reveals the alleviating effect of exogenous strigolactones on the response of grapevine to drought stress. Plant Physiol. Biochem. 2021, 167, 400–409. [Google Scholar] [CrossRef] [PubMed]
- De Cuyper, C.; Fromentin, J. From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J. Exp. Bot. 2015, 66, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Pandey, D.K.; Goutam, U.; Kumar, V. CRISPR/Cas9-mediated genome editing is revolutionizing the improvement of horticultural crops: Recent advances and future prospects. Sci. Hortic. 2021, 289, 110476. [Google Scholar] [CrossRef]
- Ito, Y.; Nishizawa-Yokoi, A.; Endo, M.; Mikami, M.; Toki, S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun. 2015, 467, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Li, D.; Liu, X.; Qi, J.; Gao, D.; Zhao, S.; Huang, S.; Sun, J.; Li, Y. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol. Plant 2017, 10, 1575–1578. [Google Scholar] [CrossRef]
- Nishitani, C.; Hirai, N.; Komori, S.; Wada, M.; Okada, K.; Osakabe, K.; Yamamoto, T.; Osakabe, Y. Efficient genome editing in apple using a CRISPR/Cas9 system. Sci. Rep. 2016, 6, 31481. [Google Scholar] [CrossRef]
- Kui, L.; Chen, H.; Zhang, W.; He, S.; Xiong, Z.; Zhang, Y.; Yan, L.; Zhong, C.; He, F.; Chen, J.; et al. Building a genetic manipulation tool box for orchid biology: Identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Front. Plant Sci. 2017, 7, 2036. [Google Scholar] [CrossRef]
- Čermák, T.; Baltes, N.J.; Čegan, R.; Zhang, Y.; Voytas, D.F. High-frequency, precise modification of the tomato genome. Genome boil 2015, 16, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Filler Hayut, S.; Melamed Bessudo, C.; Levy, A.A. Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat. Comm. 2017, 8, 1–9. [Google Scholar]
- Sun, C.; Deng, L.; Du, M.; Zhao, J.; Chen, Q.; Huang, T.; Jiang, H.; Li, C.B.; Li, C. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Mol. Plant 2020, 13, 42–58. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Wang, H.; Sun, C.; Li, Q.; Jiang, H.; Du, M.; Li, C.B.; Li, C. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J. Genet Genom. 2018, 45, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Klimek-Chodacka, M.; Oleszkiewicz, T.; Lowder, L.G.; Qi, Y.; Baranski, R. Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep. 2018, 37, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Oda-Yamamizo, C.; Sage-Ono, K.; Ohmiya, A.; Ono, M. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Res. 2018, 27, 25–38. [Google Scholar] [CrossRef]
- Charrier, A.; Vergne, E.; Dousset, N.; Richer, A.; Petiteau, A.; Chevreau, E. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Front Plant Sci. 2019, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Varkonyi-Gasic, E.; Wang, T.; Voogd, C.; Jeon, S.; Drummond, R.S.; Gleave, A.P.; Allan, A.C. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnol. J. 2019, 17, 869–880. [Google Scholar] [CrossRef]
- Li, T.; Yang, X.; Yu, Y.; Si, X.; Zhai, X.; Zhang, H.; Dong, W.; Gao, C.; Xu, C. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 2018, 36, 1160–1163. [Google Scholar] [CrossRef]
- Kwon, C.T.; Heo, J.; Lemmon, Z.H.; Capua, Y.; Hutton, S.F.; Van Eck, J.; Park, S.J.; Lippman, Z.B. Rapid customization of Solanaceae fruit crops for urban agriculture. Nat. Biotechnol. 2020, 38, 182–188. [Google Scholar] [CrossRef]
- Wang, R.; Tavano, E.C.D.R.; Lammers, M.; Martinelli, A.P.; Angenent, G.C.; de Maagd, R.A. Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Sci. Rep. 2019, 9, 1696. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Samsulrizal, N.H.; Yan, C.; Allcock, N.S.; Craigon, J.; Blanco-Ulate, B.; Ortega-Salazar, I.; Marcus, S.E.; Bagheri, H.M.; Perez Fons, L.; et al. Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol. 2019, 179, 544–557. [Google Scholar] [PubMed]
- Xin, T.; Zhang, Z.; Li, S.; Zhang, S.; Li, Q.; Zhang, Z.H.; Huang, S.; Yang, X. Genetic regulation of ethylene dosage for cucumber fruit elongation. Plant Cell 2019, 31, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Dai, C.; Luo, H.; Han, Y.; Liu, Z.; Kang, C. Reporter gene expression reveals precise auxin synthesis sites during fruit and root development in wild strawberry. J. Exp. Bot. 2019, 70, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Kang, B.C.; Naing, A.H.; Bae, S.J.; Kim, J.S.; Kim, H.; Kim, C.K. CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnol. J. 2020, 18, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Chen, K.; Zhu, H.; Zhang, R.; Zhang, H.; Li, B.; Gao, C. Fine-tuning sugar content in strawberry. Genome Biol. 2020, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhao, S.; Sun, H.; Wang, X.; Wu, S.; Lin, T.; Ren, Y.; Gao, L.; Deng, Y.; Zhang, J.; et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat. Genet. 2019, 51, 1616–1623. [Google Scholar] [CrossRef]
- Kusano, H.; Ohnuma, M.; Mutsuro-Aoki, H.; Asahi, T.; Ichinosawa, D.; Onodera, H.; Asano, K.; Noda, T.; Horie, T.; Fukumoto, K.; et al. Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Sci. Rep. 2018, 8, 13753. [Google Scholar] [CrossRef]
Crop | PPNs Species | Endophytic Organism | Effect on PPNs | Reference |
---|---|---|---|---|
Fruit Crops | ||||
Banana | Radopholus similis | F. oxysporum | ↓ Nematode population density (49–79%) | [72] |
Fusarium spp. (V5w2) | ↓ Nematode reproduction in cultivars, Enyeru (22.9), and Kibuzi (60.6%) | [73] | ||
Nematode reproduction disruption | [74] | |||
Fusarium spp. | ↓ Quantity of J2s per gram root by >80% | [75] | ||
F. oxysporum (S9, P12) | Reduction in R. similis population in root system by 63% | [76] | ||
Pratylenchus goodey | F. oxysporum | ↑ Increased paralysis (17–26%) and mortality of motile stages (62–73%) | [77] | |
R. similis, P. goodeyi, H. multicinctus | F. oxysporum | ↑ Nematode mortality after 24 h exposure to culture filtrates; H. multicinctus was less sensitive to culture filtrates than P. goodeyi and R. similis | [78] | |
M. javanica | Streptomyces sp. | Inhibition rate is >50% in vitro and biocontrol efficiency of 70.7% in sterile soil against J2s | [79] | |
Squash and melon | M. incognita | F. oxysporum (strain 162) | ↓ Early root penetration of J2s in squash (69%), increase early root penetration of J2s in melon (up 73%) | [80] |
Ornamental crops | ||||
Ornamentals | M. incognita | P. putida (MN12), P. agglomerans (MN34) | ↓ Galling index | [81] |
Agricultural crops | ||||
Cotton | M. incognita | Chaetomium globosum TAMU 520 | Seed treatment application decreases root galls up to 30–50%. | [82] |
Rice | Meloidogyne graminicola | Bacillus megaterium | ↓ Nematode penetration and gall formation by >40% | [83] |
Fusarium spp. | ↑ Root weight by 33%, ↓ root-galling by 29–42%. | [84] | ||
Fusarium moniliforme Fe14 | ↓ Penetration of J2 into roots by 55% and ↑ male to female ratio by 9 times | [85] | ||
Tuber crops | ||||
Potato | Globodera rostochiensis | P. putida 3, P. syxantha, P. aurantiacea 13, P. fluorescens | Decrease nematodes (42.2–40.7%) compared to control with P. aurantiacea 13 and putida 3 | [86] |
M. incognita | R. etli (G12) | No. of galls on roots was 34% less than control | [87] | |
Vegetable crops | ||||
Lady finger | M. incognita | Bacillus spp. (EB16, EB18), Methlobacterium spp. (EB19), Pseudomonas spp. (EB3) | ↓ Number of egg masses in adult females and lowered root gall index | [88] |
Tomato | M. incognita | F. oxysporum (strain 162) | ↓ Nematode penetration by 36–56% | [89] |
Rhizobium etli (G12), Fusarium oxysporum (Fo162) | ↓ The number of eggs per female 35 days after nematode inoculation | [90] | ||
Trichoderma asperellum F. oxysporum; F. solani | ↓ Penetration of nematode, T. asperellum, and F. oxysporum isolates decreased nematode egg densities by 35–46% | [91] | ||
Bacillus cereus (BCM2) | ↓ Gall and egg mass indexes | [92] | ||
Meloidogyne incognita | Gliocladium spp. | Reduction in damage intensity to 33% by inoculating conidial suspension at the rate of 106 mL−1 | [93] | |
Cedecea davisae (MK-30), Pantoe agglomerans (MK-29), Pseudomonas putida (MT-19), P. putida (MT-04), Pseudomonas fluorescens (MK-35), Enterobacter intermedius (MK-42) | ↓ Number of galls (27–43%) after soil drench application and reduce nematode infestation as seed treatment | [94] |
Fungi/Bacteria | Metabolite | Nematode | Reference |
---|---|---|---|
Chaetomium globosum (NK102) | Chaetoglobosin A | M. incognita | [101] |
Endophytic fungi | 3-Hydroxypropionic acid | M. incognita | [102] |
Fusarium oxysporum (EF119) | Fusaric acid and Bikaverin | B. xylophilus | [103] |
Galiella rufa | Pregaliellalactone | Meloidogyne incognita | [104] |
Brevundimonas diminuta (LCB-3) | (R)-(−)-2-ethylhexan-1-ol | B. xylophilus | [105] |
Daldinia cf. concentrica | 3-methyl-1-butanol, (±)-2-methyl-1-butanol, 4-heptanone, and isoamyl acetate | Meloidogyne javanica | [106] |
C. globosum (YSC5) | Chaetoglobosin A, chaetoglobosin B, and flavipin | M. javanica | [107] |
Geotrichum sp. (AL4) | Chlorinated oxazinane derivate (1-[(2R*,4S*,5S*)- 2-chloro-4-methyl-1,3-oxazinan-5-yl] ethenone) and an epimer of the former (1-[(2R*,4S*,5R*)-2- chloro-4-methyl-1,3-oxazinan-5-yl] ethanone) | Panagrellus redivivus, Bursaphelenchus xylophilus; | [108] |
F. oxysporum | 4-hydroxybenzoic acid, indole3-acetic acid and gibepyr | M. incognita | [109] |
NPs | Plant Species | Effects on Plant | References |
---|---|---|---|
ZNo | Garden pea | Affects root length and nodule formation | [113,116] |
Soyabean | ↑ Nitrate reductase and seed germination | ||
Eggplant | ↑ Fruit quantity, water content photosynthesis | ||
Tomato | ↑ Biomass, leaf surface area, biomolecule content, and protein content | ||
Carbon nanotubes | Grapes | ↑ Root elongation and germination | [117] |
Zucchini, tomato, corn, soybean | No effect on the development of tomato and zucchini, ↓ biomass in corn and soybean | [118] | |
Onion and cucumber | ↑ Root elongation | [119] | |
Turnip | No effect on growth and germination | [120] | |
TiO2 | Spinach | Enhances photosynthesis and growth | [121,122] |
Fe3O4 | Lettuce, spinach, radish, cucumber, tomato, peppers | Seed germination is inhibited | [118] |
Ag | Faba bean, radish | No effect on germination | [123,124] |
AgNO3 NPs and Ag NP | Grapes | ↑ Grapes’ quality, Ag NPs enhanced methylesterase activity | [125] |
Chitosan Nanofilm | Blueberry | ↑ Antioxidant activity, ↓ yeast and mold growth | [126] |
Mango | Retards senescence, inhibits water loss and firmness in fruits | [127] | |
Guava | ↓ Water loss, respiration, ↑ antioxidant process | [128] | |
Coating provides antimicrobial properties and a positive effect on respiration rate and pH | [129] |
Species | Transformation Mode | Targeted Gene | Characteristics of Fruit Quality | Explant | Reference |
---|---|---|---|---|---|
Pigment | |||||
Tomato | Agrobacterium | ANT1promter | Purple fruit color | Cotyledon | [151] |
PSY | Yellow color fruit | [152] | |||
MYBATV | Pink color fruit | [153] | |||
MYB12 | Purple color fruit | [154] | |||
Wishbone flower | Agrobacterium | F3H | Pale blue flower | Leaf | [155] |
Ipomoea nil | CCD4 | ↑ Carotenoids, yellow color | Immature embryo | [156] | |
Regulation of Flowering Time | |||||
Malus domestica | Agrobacterium | Terminal Flower 1 (TFL1), Phytoene Desaturase (PDS) | Early flowering and albino phenotype | Leaf | [157] |
Actinidia chinensis | CEN4, CEN | Generation of a compact plant along with rapid terminal fruit and flower; development precocity | [158] | ||
Fruit Ripening | |||||
Solanum lycopersicum | Agrobacterium | SP5G, SP, SlWUS SlCLV3 | Day-length insensitivity, enlarged fruit size and vitamin C content, plant architecture | Leaf | [159] |
Rapid flowering (SP5G), growth termination (SP), stem length (SlER), shoots | Compact, early-yielding plants suitable for urban agriculture | [160] | |||
Apetala2a (AP2a), fruitful (FUL1/TDR4, FUL2/MBP7) and non-ripening (NOR) | Fruit development and ripening | Cotyledon | [161] | ||
Pectate lyase (PL), beta-galactanase (TBG4), and polygalacturonase 2a (PG2a) | Fruit color, firmness, weight, and cell wall | [162] | |||
Cucumis sativu | ACS2, SF1 (Short Fruit 1) | Ethylene content, fruit shape, and size | Cotyledon | [163] | |
Fragaria vesca | FveYUC10 | Reduction in free auxin | Leaf | [164] | |
Petunia hybrida | ACO1 | Enhanced flower longevity and reduced ethylene synthesis | Protoplast | [165] | |
Acid and Sugar Metabolism | |||||
Fragaria vesca | Agrobacterium | uORF of FvebZIPs1.1 | Increased sugar content; transgene-free mutants contain a continuous sugar content | Leaf | [166] |
Citrullus lanatus | Agrobacterium | AGA2 | Increased raffinose content and low soluble sugar content | Cotyledon | [167] |
Solanum tuberosum | PEG 4000 | GBSS genes | Biosynthesis of starch | Protoplast | [168,169] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, D.; Ruhil, B.; Dubey, A.; Jain, D.; Bhatia, D.; Koubouris, G. Unlocking Rapid and User-Friendly Strategies to Improve Horticultural Crop Qualities. Horticulturae 2024, 10, 779. https://doi.org/10.3390/horticulturae10080779
Sharma D, Ruhil B, Dubey A, Jain D, Bhatia D, Koubouris G. Unlocking Rapid and User-Friendly Strategies to Improve Horticultural Crop Qualities. Horticulturae. 2024; 10(8):779. https://doi.org/10.3390/horticulturae10080779
Chicago/Turabian StyleSharma, Diksha, Bhumi Ruhil, Anubhav Dubey, Divya Jain, Deepika Bhatia, and Georgios Koubouris. 2024. "Unlocking Rapid and User-Friendly Strategies to Improve Horticultural Crop Qualities" Horticulturae 10, no. 8: 779. https://doi.org/10.3390/horticulturae10080779
APA StyleSharma, D., Ruhil, B., Dubey, A., Jain, D., Bhatia, D., & Koubouris, G. (2024). Unlocking Rapid and User-Friendly Strategies to Improve Horticultural Crop Qualities. Horticulturae, 10(8), 779. https://doi.org/10.3390/horticulturae10080779