In Vitro and Molecular Docking Studies of Antiglycation Potential of Phenolic Compounds in Date Palm (Phoenix dactylifera L.) Fruit: Exploring Local Varieties in the Food Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sample Preparation
2.3. Phenolic Compound Analysis by HPLC-UV-VIS
2.4. In Vitro Glycation Inhibition Test
2.5. Molecular Docking Studies
2.5.1. Ligand Preparation
2.5.2. Preparation of the Target Protein
2.5.3. Molecular Docking between Ligand and Protein
2.6. Statistical Analysis
3. Results
3.1. Antiglycation Activity
3.2. Phenolic Compound Profile by HPLC-UV-VIS
3.3. Correlation and Principal Component Analysis (PCA)
3.4. Molecular Docking Study of Identified Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Farsi, M.A.; Lee, C.Y. Nutritional and functional properties of dates: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2021. Available online: https://www.fao.org/faostat/fr/#rankings/commodities_by_country (accessed on 27 December 2023).
- El Hadrami, A.; Al-Khayri, J.M. Socioeconomic and traditional importance of date palm. Emir. J. Food Agric. 2012, 24, 371–385. [Google Scholar]
- Johnson, D.V. Introduction: Date Palm Biotechnology from Theory to Practice. Date Palm Biotechnol. 2011, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Alahyane, A.; Harrak, H.; Ayour, J.; Elateri, I.; Ait-Oubahou, A.; Benichou, M. Bioactive compounds and antioxidant activity of seventeen Moroccan date varieties and clones (Phoenix dactylifera L.). S. Afr. J. Bot. 2019, 121, 402–409. [Google Scholar] [CrossRef]
- Haimoud, S.A.; Allem, R. Algerian date palm (Phoenix dactylifera L.) fruit cultivars: HPLC fingerprinting and antibacterial activity. Foods Raw Mater. 2023, 11, 17–24. [Google Scholar] [CrossRef]
- Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int. 2011, 44, 1812–1822. [Google Scholar] [CrossRef]
- Qadir, A.; Shakeel, F.; Ali, A.; Faiyazuddin, M. Phytotherapeutic potential and pharmaceutical impact of Phoenix dactylifera (date palm): Current research and future prospects. J. Food Sci. Technol. 2020, 57, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Tahraoui, A.; El-hilaly, J.; Israili, Z.H.; Lyoussi, B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J. Ethnopharmacol. 2007, 110, 105–117. [Google Scholar] [CrossRef]
- Selvam, A.B.D. Inventory of vegetable crude drug samples housed in botanical survey of India, Howrah. Pharmacogn. Rev. 2008, 2, 61. [Google Scholar]
- Javed, A.; Annu, K.; Khan, M.N.; Medam, S.K. Evaluation of the combinational antimicrobial effect of Annona squamosa and Phoenix dactylifera seeds methanolic extract on standard microbial strains. Int. Res. J. Biol. Sci. 2013, 2, 68–73. [Google Scholar]
- Ammar, N.M.; Lamia, T.; Abou, E.; Nabil, H.S.; Lalita, M.C.; Tom, J.M. Flavonoid Constituents and Antimicrobial Activity of Date (Phoenix dactylifera L.) Seeds Growing in Egypt. Med. Arom. Plant Sci. Biotechnol 2009, 3, 1–5. [Google Scholar]
- El Sohaimy, S.A.; Abdelwahab, A.E.; Brennan, C.S. Phenolic Content, Antioxidant and Antimicrobial activities of Egyptian Date Palm (Phoenix dactylifera L.) Fruits. Aust. J. Basic Appl. Sci. 2015, 9, 141–147. [Google Scholar]
- Temitope, I.A.; Osarumwense Igiehon, O.; Ezekiel, A.A.; Idowu, S. Dates palm fruits: A review of their nutritional components, bioactivities and functional food applications. AIMS Agric. Food 2020, 5, 734–755. [Google Scholar] [CrossRef]
- Hussain, M.I.; Farooq, M.; Syed, Q.A. Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.)—A review. Food Biosci. 2020, 34, 100509. [Google Scholar] [CrossRef]
- Mharchi, S.; Maamri, A. Prevalence and Risk Factors for Diabetic Complications: 8-Year Retrospective Report from a Single Regional Diabetes Center to the Eastern Region of Morocco. Med. Mod. Mod. Med. 2022, 29, 75–87. [Google Scholar] [CrossRef]
- Prasad, M.; Jayaraman, S.; Eladl, M.A.; El-sherbiny, M. A Comprehensive Review on Therapeutic Perspectives of Phytosterols in Insulin Resistance: A Mechanistic Approach. Molecules 2022, 27, 1595. [Google Scholar] [CrossRef]
- Pelosof, L.C.; Gerber, D.E. Paraneoplastic Syndromes: An Approach to Diagnosis and Treatment. Mayo Clin. Proc. 2010, 85, 838–854. [Google Scholar] [CrossRef] [PubMed]
- Chinchansure, A.A.; Korwar, A.M.; Kulkarni, M.J.; Joshi, S.P. Recent development of plant products with anti-glycation activity: A review. RSC Adv. 2015, 5, 31113–31138. [Google Scholar] [CrossRef]
- Rabbani, N.; Xue, M.; Thornalley, P.J. Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj. J. 2016, 33, 513–525. [Google Scholar] [CrossRef]
- Yao, Q.; Liang, Y.; Yong, S.; Bian, W.; Fu, H.; Xu, J.; Liu, S.; Yao, B.; Li, M. Advanced glycation end product concentrations in follicular fluid of women undergoing IVF / ICSI with a GnRH agonist protocol. Reprod. Biomed. Online 2018, 36, 20–25. [Google Scholar] [CrossRef]
- Berrou, J.; Tostivint, I.; Verrecchia, F.; Berthier, C.; Boulanger, E.; Mauviel, A.; Marti, H.P.; Wautier, M.P.; Wautier, J.L.; Rondeau, E.; et al. Advanced glycation end products regulate extracellular matrix protein and protease expression by human glomerular mesangial cells. Int. J. Mol. Med. 2009, 23, 521–527. [Google Scholar]
- Grimm, S.; Ott, C.; Hörlacher, M.; Weber, D.; Höhn, A.; Grune, T. Advanced-glycation-end-product-induced formation of immunoproteasomes: Involvement of RAGE and Jak2/STAT1. Biochem. J. 2012, 448, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Wautier, M.P.; Tessier, F.J.; Wautier, J.L. Advanced glycation end products: A risk factor for human health. Ann. Pharm. Fr. 2014, 72, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Meenatchi, P.; Purushothaman, A.; Maneemegalai, S. Antioxidant, antiglycation and insulinotrophic properties of Coccinia grandis (L.) in vitro: Possible role in prevention of diabetic complications. J. Tradit. Complement. Med. 2017, 7, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Jain, S.M.; Johnson, D.V. Date Palm Genetic Resources and Utilization, Volume 1: Africa and the Americas; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1. [Google Scholar]
- Ouamnina, A.; Alahyane, A.; Elateri, I.; Abderrazik, M. Phenolic composition, antioxidant capacity, and antiglycation potential of select Moroccan date varieties: Promising sources for functional food development. Euro-Mediterr. J. Environ. Integr. 2024, 9, 745–760. [Google Scholar] [CrossRef]
- Patthamakanokporn, O.; Puwastien, P.; Nitithamyong, A.; Sirichakwal, P.P. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. J. Food Compos. Anal. 2008, 21, 241–248. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Bonifácio-Lopes, T.; Vilas Boas, A.A.; Coscueta, E.R.; Costa, E.M.; Silva, S.; Campos, D.; Teixeira, J.A.; Pintado, M. Bioactive extracts from brewer’s spent grain. Food Funct. 2020, 11, 8963–8977. [Google Scholar] [CrossRef] [PubMed]
- Vit, P.; Soler, C.; Tomás-Barberán, F.A. Profiles of phenolic compounds of Apis mellifera and Melipona spp. honeys from Venezuela. Eur. Food Res. Technol. 1997, 204, 43–47. [Google Scholar] [CrossRef]
- Ouamnina, A.; Alahyane, A.; Elateri, I.; Boutasknit, A.; Abderrazik, M. Relationship between Phenolic Compounds and Antioxidant Activity of Some Moroccan Date Palm Fruit Varieties (Phoenix dactylifera L.): A Two-Year Study. Plants 2024, 13, 1119. [Google Scholar] [CrossRef]
- Fernando, K.S.S.P.; Abeysekera, A.M.; Choudhary, M.I.; Goonathilake, A.K.E.; Padumadasa, C.; Thadani, V.M.; Chandrika, U.G. In vitro antioxidant, antiglycation and a-glucosidase inhibitory activities of the ethyl acetate soluble fraction of water extract of Artocarpus heterophyllus Lam. leaves. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 290, 290. [Google Scholar]
- Lin, R.Y.; Choudhury, R.P.; Cai, W.; Lu, M.; Fallon, J.T.; Fisher, E.A.; Vlassara, H. Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 2003, 168, 213–220. [Google Scholar] [CrossRef]
- Birlouez-Aragon, I.; Saavedra, G.; Tessier, F.J.; Galinier, A.; Ait-Ameur, L.; Lacoste, F.; Niamba, C.N.; Alt, N.; Somoza, V.; Lecerf, J.M. A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am. J. Clin. Nutr. 2010, 91, 1220–1226. [Google Scholar] [CrossRef]
- Tessier, F.J.; Birlouez-Aragon, I. Health effects of dietary Maillard reaction products: The results of ICARE and other studies. Amino Acids 2012, 42, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Lipworth, L.; Sonderman, J.S.; Tarone, R.E.; McLaughlin, J.K. Review of epidemiologic studies of dietary acrylamide intake and the risk of cancer. Eur. J. Cancer Prev. 2012, 21, 375–386. [Google Scholar] [CrossRef]
- Xi, M.; Hai, C.; Tang, H.; Chen, M.; Fang, K.; Liang, X. Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2008, 22, 228–237. [Google Scholar] [CrossRef]
- Ravichandran, G.; Lakshmanan, D.K.; Murugesan, S.; Elangovan, A.; Rajasekaran, N.S.; Thilagar, S. Attenuation of protein glycation by functional polyphenolics of dragon fruit (Hylocereus polyrhizus); an in vitro and in silico evaluation. Food Res. Int. 2021, 140, 110081. [Google Scholar] [CrossRef]
- Purnamasari, V.; Estiasih, T.; Sujuti, H.; Widjanarko, S.B. Identification of phenolic acids of Pandan anggur (Sararanga sinuosa Hemsley) fruits and their potential antiglycation through molecular docking study. J. Appl. Pharm. Sci. 2021, 11, 126–134. [Google Scholar]
- Anguizola, J.; Matsuda, R.; Barnaby, O.S.; Hoy, K.; Wa, C.; Debolt, E.; Koke, M.; Hage, D.S. Glycation of human serum albumin. Clin. Chim. Acta 2013, 425, 64–76. [Google Scholar] [CrossRef]
- Parengkuan, L.; Yagi, M.; Matsushima, M.; Ogura, M.; Hamada, U.; Yonei, Y. Anti-glycation activity of various fruits. Anti-Aging Med. 2013, 10, 70–76. [Google Scholar]
- Anu, M.; Hetalkumar, P.; Patel, V. H Analysis of edible fruits against glycolytic enzymes and glycation: In vitro approaches with in silico validation. Food Sci. Res. J. 2019, 10, 123–134. [Google Scholar]
- Kaewnarin, K.; Niamsup, H.; Shank, L.; Rakariyatham, N. Antioxidant and Antiglycation Activities of Some Edible and Medicinal Plants. Chiang Mai J. Sci. 2014, 41, 105–116. [Google Scholar]
- Yeh, W.J.; Hsia, S.M.; Lee, W.H.; Wu, C.H. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J. Food Drug Anal. 2017, 25, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Umadevi, S.; Gopi, V.; Vellaichamy, E. Inhibitory Effect of Gallic Acid on Advanced Glycation End Products Induced Up-Regulation of Inflammatory Cytokines and Matrix Proteins in H9C2 (2-1) Cells. Cardiovasc. Toxicol. 2013, 13, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Umadevi, S.; Gopi, V.; Elangovan, V. Regulatory mechanism of gallic acid against advanced glycation end products induced cardiac remodeling in experimental rats. Chem. Biol. Interact. 2014, 208, 28–36. [Google Scholar] [CrossRef]
- Anwar, S.; Younus, H. Antiglycating potential of ellagic acid against glucose and methylglyoxal-induced glycation of superoxide dismutase. J. Proteins Proteom. 2017, 8, 1–12. [Google Scholar]
- Wondrak, G.T.; Cervantes-Laurean, D.; Roberts, M.J.; Qasem, J.G.; Kim, M.; Jacobson, E.L.; Jacobson, M.K. Identification of α-dicarbonyl scavengers for cellular protection against carbonyl stress. Biochem. Pharmacol. 2002, 63, 361–373. [Google Scholar] [CrossRef]
- Alhadid, A.; Bustanji, Y.; Harb, A.; Al-Hiari, Y.; Abdalla, S. Vanillic Acid Inhibited the Induced Glycation Using In vitro and In vivo Models. Evid. Based Complement. Altern. Med. 2022, 2022, 7119256. [Google Scholar] [CrossRef]
- González, I.; Morales, M.; Rojas, A. Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Res. Int. 2020, 129, 108843. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, S.; Almatroudi, A.; Ali, A.; Mohammed, K. A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds. Mol. Biol. Rep. 2021, 48, 787–805. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Bahkali, A.H. Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology—Review. Saudi J. Biol. Sci. 2013, 20, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Mahmood Khan, I.; Pasha, I.; Rasheed, S.; Niazi, S.; Ahmad, S.; Shoaib, M. Date Palm: Composition, Health Claim and Food Applications. Int. J. Public Health Health Syst. 2017, 2, 9–17. [Google Scholar]
- Bedeir, S.H. Evaluation of pan bread and pies made by partial substitution with dates syrup (Dibs). Egypt. J. Agric. Res. 2014, 92, 1029–1044. [Google Scholar] [CrossRef]
- El-Sharnouby, G.A.; Aleid, S.M.; Al-Otaibi, M.M. Liquid Sugar Extraction from Date Palm (Phoenix dactylifera L.) Fruits. J. Food Process. Technol. 2014, 5, 402. [Google Scholar]
- Al Harthi, S.S.; Mavazhe, A.; Al Mahroqi, H.; Khan, S.A. Quantification of phenolic compounds, evaluation of physicochemical properties and antioxidant activity of four date (Phoenix dactylifera L.) varieties of Oman. J. Taibah Univ. Med. Sci. 2015, 10, 346–352. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Özcan, M.M.; Adiamo, O.Q.; Alsawmahi, O.N.; Ghafoor, K.; Babiker, E.E. Effect of date varieties on physico-chemical properties, fatty acid composition, tocopherol contents, and phenolic compounds of some date seed and oils. J. Food Process. Preserv. 2018, 42, e13584. [Google Scholar] [CrossRef]
- Lue, L.F.; Walker, D.G.; Jacobson, S.; Sabbagh, M. Receptor for advanced glycation end products: Its role in Alzheimer’s disease and other neurological diseases. Future Neurol. 2009, 4, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Wautier, M.P.; Khodabandehlou, T.; Le Dévéhat, C.; Wautier, J.L. Modulation of RAGE expression influences the adhesion of red blood ceUs from diabetic patients. Clin. Hemorheol. Microcirc. 2006, 35, 379–386. [Google Scholar]
- Al-Farsi, M.; Alasalvar, C.; Al-Abid, M.; Al-Shoaily, K.; Al-Amry, M.; Al-Rawahy, F. Compositional and functional characteristics of dates, syrups, and their by-products. Food Chem. 2007, 104, 943–947. [Google Scholar] [CrossRef]
- Amira, E.A.; Behija, S.E.; Beligh, M.; Lamia, L.; Manel, I.; Mohamed, H.; Lotfi, A. Effects of the ripening stage on phenolic profile, phytochemical composition and antioxidant activity of date palm fruit. J. Agric. Food Chem. 2012, 60, 10896–10902. [Google Scholar] [CrossRef]
- Kchaou, W.; Abbès, F.; Blecker, C.; Attia, H.; Besbes, S. Effects of extraction solvents on phenolic contents and antioxidant activities of Tunisian date varieties (Phoenix dactylifera L.). Ind. Crops Prod. 2013, 45, 262–269. [Google Scholar] [CrossRef]
- Mansouri, A.; Embarek, G.; Kokkalou, E.; Kefalas, P. Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem. 2005, 89, 411–420. [Google Scholar] [CrossRef]
- Odeh, I.; Al-Rimawi, F.; Abbadi, J.; Obeyat, L.; Qabbajeh, M.; Hroub, A. Effect of Harvesting Date and Variety of Date Palm on Antioxidant Capacity, Phenolic and Flavonoid Content of Date Palm (Phoenix dactylifera). J. Food Nutr. Res. 2014, 2, 499–505. [Google Scholar]
- El Abed, H.; Chakroun, M.; Abdelkafi-Koubaa, Z.; Drira, N.; Marrakchi, N.; Mejdoub, H.; Khemakhem, B. Antioxidant, Anti-Inflammatory, and Antitumoral Effects of Aqueous Ethanolic Extract from Phoenix dactylifera L. Parthenocarpic Dates. BioMed Res. Int. 2018, 2018, 1542602. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Angeles, M.; Gonza, E. Phenolic compounds in fruits and beverages consumed as part of the Mediterranean diet: Their role in prevention of chronic diseases. Phytochem. Rev. 2015, 15, 405–423. [Google Scholar] [CrossRef]
- Rahimmalek, M.; Afshari, M.; Sarfaraz, D.; Miroliaei, M. Using HPLC and multivariate analyses to investigate variations in the polyphenolic compounds as well as antioxidant and antiglycative activities of some Lamiaceae species native to Iran. Ind. Crops Prod. 2020, 154, 112640. [Google Scholar] [CrossRef]
- Kuo, C.T.; Liu, T.H.; Hsu, T.H.; Lin, F.Y.; Chen, H.Y. Antioxidant and antiglycation properties of different solvent extracts from Chinese olive (Canarium album L.) fruit. Asian Pac. J. Trop. Med. 2015, 8, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Li, Y.; Xia, Q.; Zhang, X.; Huang, Q. Glycosylation of bovine serum albumin via Maillard reaction prevents epigallocatechin-3-gallate-induced protein aggregation. Food Hydrocoll. 2015, 43, 228–235. [Google Scholar] [CrossRef]
- Agustin, A.T.; Safitri, A.; Fatchiyah, F. An in silico approach reveals the potential function of cyanidin-3-o glucoside of red rice in inhibiting the advanced glycation end products (AGES)-receptor (RAGE) signalling pathway. Acta Inform. Medica 2020, 28, 170–179. [Google Scholar] [CrossRef]
- Guenaou, I.; Nait Irahal, I.; Errami, A.; Lahlou, F.A.; Hmimid, F.; Bourhim, N. Bioactive Compounds from Ephedra fragilis: Extraction Optimization, Chemical Characterization, Antioxidant and AntiGlycation Activities. Molecules 2021, 26, 5998. [Google Scholar] [CrossRef]
- Yildirim-Elikoglu, S.; Erdem, Y.K. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Rev. Int. 2018, 34, 665–697. [Google Scholar] [CrossRef]
- Brudzynski, K.; Maldonado-Alvarez, L. Polyphenol-protein complexes and their consequences for the redox activity, structure and function of honey. A current view and new hypothesis–a review. Pol. J. Food Nutr. Sci. 2015, 65, 71–80. [Google Scholar] [CrossRef]
- He, T.; Liang, Q.; Luo, T.; Wang, Y.; Luo, G. Study on interactions of phenolic acid-like drug candidates with bovine serum albumin by capillary electrophoresis and fluorescence spectroscopy. J. Solut. Chem. 2010, 39, 1653–1664. [Google Scholar] [CrossRef]
- Shafreen, R.B.; Dymerski, T.; Namieśnik, J.; Jastrzębski, Z.; Vearasilp, S.; Gorinstein, S. Interaction of human serum albumin with volatiles and polyphenols from some berries. Food Hydrocoll. 2017, 72, 297–303. [Google Scholar] [CrossRef]
- Huang, C.N.; Chan, K.C.; Lin, W.T.; Su, S.L.; Wang, C.J.; Peng, C.H. Hibiscus sabdariffa Inhibits Vascular Smooth Muscle Cell Proliferation and Migration Induced by High Glucose: A Mechanism Involves Connective Tissue Growth Factor Signals. J. Agric. Food Chem. 2009, 57, 3073–3079. [Google Scholar] [CrossRef]
- Rahman, S.; Islam, R. Mammalian Sirt1: Insights on its biological functions. Cell Commun. Signal. 2011, 9, 11. [Google Scholar] [CrossRef]
Khalt Khal | Jdar Lahmer | Rasse Tmar | Majhoul | |||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Gallic acid | 9.26 ± 1.55 a | 23.63 ± 0.05 d | 15.55 ± 0.16 b | 8.29 ± 0.02 a | 15.86 ± 0.11 bc | 18.46 ± 0.52 c | 10.83 ± 3.98 ab | 6.14 ± 0.08 a |
Tyrosol | nd | nd | nd | nd | nd | nd | nd | nd |
Trans-ferulic acid | 2.67 ± 0.10 f | 1.42 ± 0.02 d | 1.29 ± 0.00 d | 0.40 ± 0.04 ab | 0.77 ± 0.002 c | 0.64 ± 0.004 bc | 0.34 ± 0.17 a | 1.89 ± 0.03 e |
4-Hydroxyphenyl-acetic acid | 6.09 ± 1.74 bc | 9.42 ± 0.60 c | 0.83 ± 0.05 a | 1.13 ± 0.75 a | 4.59 ± 0.001 ab | 7.48 ± 0.09 bc | 6.89 ± 2.40 bc | 1.62 ± 0.36 a |
Caffeic acid | 2.26 ± 1.23 bc | 2.18 ± 0.27 abc | 1.28 ± 0.23 abc | 0.81 ± 0.08 ab | 2.89 ± 0.007 c | 0.89 ± 0.001 ab | 1.71 ±0.14 abc | 0.38 ± 0.10 a |
Vanillic acid | 16.12 ± 3.39 c | 24.36 ± 0.42 d | 9.56 ±0.71 b | 7.08 ± 2.02 ab | 4.36 ± 0.22 ab | 3.38 ± 0.20 a | 6.43 ± 1.10 ab | 2.78 ± 0.60 a |
Ellagic acid | 14.63 ± 5.40 d | 27.33 ± 2.86 e | 5.35 ± 1.76 abc | 6.54 ± 0.52 a–d | 12.23 ± 0.23 cd | 9.75 ± 0.23 bcd | 0.44 ± 0.12 a | 2.13 ± 0.02 ab |
Epicatechin | 5.58 ± 1.34 c | 5.30 ± 0.70 c | 1.16 ± 0.10 ab | 2.06 ± 0.04 ab | 2.81 ± 0.33 b | 1.60 ± 0.02 ab | 1.56 ± 0.40 ab | 0.17 ± 0.01 a |
Catechin | 5.37 ± 1.56 b | 9.28 ± 0.53 c | 2.11 ± 0.36 a | 1.28 ± 0.62 a | 2.31 ± 0.71 ab | 0.60 ± 0.03 a | 2.59 ± 1.13 ab | 0.44 ±0.20 a |
Quercetin | nd | nd | nd | nd | nd | nd | nd | nd |
Vanillin | 1.32 ± 0.20 c | 2.98 ± 0.67 d | 0.26 ± 0.04 ab | 0.20 ± 0.03 ab | 1.04 ± 0.01 bc | 0.34 ± 0.01 abc | nd | nd |
Kaempferol | 0.96 ± 0.10 a | 0.51 ± 0.21 a | 0.99 ± 0.43 a | 0.16 ± 0.05 a | 3.53 ± 0.73 b | 2.72 ± 0.15 b | 0.54 ± 0.03 a | 0.51 ± 0.14 a |
Compounds | Information | Chemical Structure | Docking Score (kcal/mol) | |
---|---|---|---|---|
BSA | RAGE | |||
Gallic acid | MW: 170.12 g/mol MF: C7H6O5 PubChem CID: 370 | −6.1 | −5.4 | |
Trans-ferulic acid | MW: 194.18 g/mol MF: C10H10O4 PubChem CID: 445858 | −6.3 | −5.6 | |
4-Hydroxyphenylacetic acid | MW: 152.15 g/mol MF: C8H8O3 PubChem CID: 127 | −5.8 | −5.1 | |
Caffeic acid | MW: 180.16 g/mol MF: C9H8O4 PubChem CID: 689043 | −6.2 | −5.5 | |
Vanillic acid | MW: 168.15 g/mol MF: C8H8O4 PubChem CID: 8468 | −5.9 | −5.0 | |
Ellagic acid | MW: 302.19 g/mol MF: C14H6O8 PubChem CID: 5281855 | −8.9 | −7.0 | |
Epicatechin | MW: 290.27 g/mol MF: C15H14O6 PubChem CID: 72276 | −8.4 | −6.6 | |
Catechin | MW: 290.27 g/mol MF: C15H14O6 PubChem CID: 9064 | −8.3 | −6.9 | |
Vanillin | MW: 152.15 g/mol MF: C8H8O3 PubChem CID: 1183 | −5.5 | −4.6 | |
Kaempferol | MW: 286.24 g/mol MF: C15H10O6 PubChem CID: 5280863 | −8.6 | −6.7 | |
Pyrraline | MW: 254.28 g/mol MF: C12H18N2O4 PubChem CID: 122228 | −5.3 | ||
Pentosidine | MW: 378.4 g/mol MF: C17H26N6O4 PubChem CID: 119593 | −6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouamnina, A.; Alahyane, A.; Elateri, I.; Ouhammou, M.; Abderrazik, M. In Vitro and Molecular Docking Studies of Antiglycation Potential of Phenolic Compounds in Date Palm (Phoenix dactylifera L.) Fruit: Exploring Local Varieties in the Food Industry. Horticulturae 2024, 10, 657. https://doi.org/10.3390/horticulturae10060657
Ouamnina A, Alahyane A, Elateri I, Ouhammou M, Abderrazik M. In Vitro and Molecular Docking Studies of Antiglycation Potential of Phenolic Compounds in Date Palm (Phoenix dactylifera L.) Fruit: Exploring Local Varieties in the Food Industry. Horticulturae. 2024; 10(6):657. https://doi.org/10.3390/horticulturae10060657
Chicago/Turabian StyleOuamnina, Abdoussadeq, Abderrahim Alahyane, Imane Elateri, Mourad Ouhammou, and Mohamed Abderrazik. 2024. "In Vitro and Molecular Docking Studies of Antiglycation Potential of Phenolic Compounds in Date Palm (Phoenix dactylifera L.) Fruit: Exploring Local Varieties in the Food Industry" Horticulturae 10, no. 6: 657. https://doi.org/10.3390/horticulturae10060657
APA StyleOuamnina, A., Alahyane, A., Elateri, I., Ouhammou, M., & Abderrazik, M. (2024). In Vitro and Molecular Docking Studies of Antiglycation Potential of Phenolic Compounds in Date Palm (Phoenix dactylifera L.) Fruit: Exploring Local Varieties in the Food Industry. Horticulturae, 10(6), 657. https://doi.org/10.3390/horticulturae10060657