The Impact of Climatic Warming on Earlier Wine-Grape Ripening in Northeastern Slovenia
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Climate Parameters and Grapevine Growing
2.3. Evaluated Varieties of Vitis vinifera L.
2.4. Monitoring of Grapevine Ripening
2.5. Data Evaluation and Statistical Analyses
3. Result and Discussion
3.1. Climatic Structure and Temperatures Trends
3.2. Grapevine Reactions to Climate Changes in the Podravje Wine-Growing Region
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, P.D.; Conway, D. Precipitation in the British Isles: An analysis of area-average data updated to 1995. Int. J. Climatol. 1997, 17, 427–438. [Google Scholar] [CrossRef]
- Salinger, M.J. Climate variability and change: Past, present and future—An overview. Clim. Chang. 2005, 70, 9–29. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A.; Parry, M.L.; Porter, J.R. The effects of climate change on agriculture and horticulture in Europe. Eur. J. Agron. 1993, 2, 243–246. [Google Scholar] [CrossRef]
- Chloupek, O.; Hrstkova, P.; Schweigert, P. Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crops Res. 2004, 85, 167–190. [Google Scholar] [CrossRef]
- Maracchi, G.; Sirotenko, O.; Bindi, M. Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Clim. Chang. 2005, 70, 117–135. [Google Scholar] [CrossRef]
- Jones, G.V. Climate change in the western United States grape growing regions. Acta Hortic. 2005, 689, 41–60. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B.; Cahill, K.N.; Bonfils, C. Impacts of future climate change on Californian perennial crop yields: Model projections with climate and crop uncertainties. Agric. For. Meteorol. 2006, 141, 208–218. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Ramos, M.C.; Jones, G.V.; Martínez-Casasnovas, J.A. Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim. Res. 2008, 38, 1–15. [Google Scholar] [CrossRef]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Casasnovas, J.A.; Ramos, M.C.; Ribes-Dasi, M. Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 2002, 105, 125–140. [Google Scholar] [CrossRef]
- Michael, A.; Schmidt, J.; Enke, W.; Deutschländer, T.H.; Malitz, G. Impact of expected increase in precipitation intensities on soil loss—Results of comparative model simulations. Catena 2005, 61, 155–164. [Google Scholar] [CrossRef]
- Vršič, S.; Ivančič, A.; Pulko, B.; Valdhuber, J. Effect of soil management systems on erosion and nutrition loss in vineyards on steep slopes. J. Environ. Biol. 2011, 32, 289–294. [Google Scholar] [PubMed]
- Mosedale, J.R.; Wilson, R.J.; Maclean, I.M.D. Climate change and crop exposure to adverse weather: Changes to frost risk and grapevine flowering conditions. PLoS ONE 2015, 10, e0141218. [Google Scholar] [CrossRef] [PubMed]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine Responses to Heat Stress and Global Warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2013, 1, 94–110. [Google Scholar] [CrossRef]
- Palliotti, A.; Tombesi, S.; Silvestroni, O.; Lanari, V.; Gatti, M.; Poni, S. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Sci. Hortic. 2014, 178, 43–54. [Google Scholar] [CrossRef]
- Jones, G.V.; Duchêne, E.; Tomasi, D.; Yuste, J.; Braslavska, O.; Schultz, H.; Martinez, C.; Boso, S.; Langellier, F.; Perucho, C.; et al. Changes in European winegrape phenology and relationships with climate. In Proceedings of the GESCO 2005, Geisenheim, Germany, 23–27 August 2005; pp. 55–61. [Google Scholar]
- Kast, W.K.; Rupp, D. Effects of climate change on phenology and ripening conditions of grapevine. Mitt. Klosterneubg. 2009, 59, 3–7. [Google Scholar]
- Cook, B.; Wolkovich, E. Climate change decouples drought from early wine grape harvests in France. Nat. Clim. Chang. 2016, 6, 715–719. [Google Scholar] [CrossRef]
- Seguin, B.; de Cortazar, I.G. Climate warming: Consequences for viticulture and the notion of ‘terroirs’ in Europe. Acta Hortic. 2005, 689, 61–69. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Observed trends in winegrape maturity in Australia. Glob. Chang. Biol. 2011, 17, 2707–2719. [Google Scholar] [CrossRef]
- Vršič, S.; Vodovnik-Plevnik, T. Reactions of vines varieties to climate changes in NE Slovenia. Plant Soil Environ. 2012, 58, 34–41. [Google Scholar]
- Webb, L.B.; Whetton, P.H.; Bhend, J.; Darbyshire, R.; Briggs, P.R.; Barlow, E.W.R. Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat. Clim. Chang. 2012, 2, 259–264. [Google Scholar] [CrossRef]
- Duchêne, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Bernáth, S.; Paulen, O.; Šiška, B.; Kusá, Z.; Tóth, F. Influence of Climate Warming on Grapevine (Vitis vinifera L.) Phenology in Conditions of Central Europe (Slovakia). Plants 2021, 10, 1020. [Google Scholar] [CrossRef]
- Huglin, P. Biologie et Écologie de La Vigne; Lavoisier: Paris, France, 1986; p. 372. [Google Scholar]
- Coombe, B.G. Influence of temperature on composition and quality of grapes. Acta Hortic. 1987, 206, 23–35. [Google Scholar] [CrossRef]
- Stanchi, S.; Zecca, O.; Hudek, C.; Pintaldi, E.; Viglietti, D.; D’Amico, M.E.; Colombo, N.; Goslino, D.; Letey, M.; Freppaz, M. Effect of Soil Management on Erosion in Mountain Vineyards (N-W Italy). Sustainability 2021, 13, 1991. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; García de Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Chang. 2018, 8, 29–37. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Töpfer, R.; Trapp, O. A cool climate perspective on grapevine breeding: Climate change and sustainability are driving forces for changing varieties in a traditional market. Theor. Appl. Gen. 2022, 135, 3947–3960. [Google Scholar] [CrossRef] [PubMed]
- Godden, P.; Wilkes, E.; Johnson, D. Trends in the composition of Australian wine 1984–2014: Composition of Australian wine 1984–2014. Aust. J. Grape Wine Res. 2015, 21, 741–753. [Google Scholar] [CrossRef]
- Suter, B.; Destrac Irvine, A.; Gowdy, M.; Dai, Z.; van Leeuwen, C. Adapting Wine Grape Ripening to Global Change Requires a Multi-Trait Approach. Front. Plant Sci. 2021, 12, 624867. [Google Scholar] [CrossRef] [PubMed]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Souza, M.J.; Agasse, A.; Delrot, S.; Geros, H. Biochemical changes throughout grape berry development and fruit and wine quality. Food 2007, 1, 1–22. [Google Scholar]
- Brandt, M.; Scheidweiler, M.; Rauhut, D.; Patz, C.D.; Will, F.; Zorn, H.; Stoll, M. The influence of temperature and solar radiation on phenols in berry skin and maturity parameters of Vitis vinifera L. cv. Riesling. Oeno One 2019, 53. [Google Scholar] [CrossRef]
- Vršič, S.; Pulko, B.; Perko, A. Climate change trends in the wine-growing regions of Slovenia. In Proceedings of 6th Slovenian Viticulture and Wine Congress, Ptuj, Slovenia, 21–22 April 2023; Vršič, S., Ed.; Agricultural Forestry Institute Ptuj: Ptuj, Slovenia, 2023; pp. 97–111. [Google Scholar]
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture; University of California Press: Berkeley, CA, USA, 1974. [Google Scholar]
- Huglin, M.P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus Séances L’acad. D’agric. De. Fr. 1978, 64, 1117–1126. [Google Scholar]
- Navrátilová, M.; Beranová, M.; Severová, L.; Šrédl, K.; Svoboda, R.; Abrhám, J. The Impact of Climate Change on the Sugar Content of Grapes and the Sustainability of their Production in the Czech Republic. Sustainability 2021, 13, 222. [Google Scholar] [CrossRef]
- Salinari, F.; Giosuè, S.; Tubiello, F.N.; Rettori, A.; Rossi, V.; Spanna, F.; Rosenzweig, C.; Gullino, M.L. Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Glob. Chang. Biol. 2006, 12, 1299–1307. [Google Scholar]
- Hirsch, R.M.; Alexander, R.B.; Smith, R.A. Selection of methods for the detection and estimation of trends in water quality. Water Resour. Res. 1991, 27, 803–813. [Google Scholar] [CrossRef]
- McLeod, A.I.; McLeod, M.A. Package ‘Kendall’. R Software: London, UK, 2015.
- Jones, G. Climate change and wine: Observations, impacts and future implications. Wine Ind. J. 2006, 21, 21–26. [Google Scholar]
- Blanco-Ward, D.; Garcia-Queijeiro, J.M.; Jones, G.V. Spatial climate variability and viticulture in the Miño River Valley of Spain. Vitis 2007, 46, 63–70. [Google Scholar]
- Jones, G.V.; Duff, A.A.; Hall, A.; Myers, J. Spatial analysis of climate in winegrape growing regions in the western United States. Am. J. Enol. Vitic. 2010, 61, 313–326. [Google Scholar] [CrossRef]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine Phenology and Climate Change: Relationships and Trends in the Veneto Region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Petrie, P.R.; Sadras, V.O. Advancement of grapevine maturity in Australia between 1993 and 2006: Putative causes, magnitude of trends and viticultural consequences. Aust. J. Grape Wine Res. 2008, 14, 33–45. [Google Scholar] [CrossRef]
- Vršič, S.; Breznik, M.; Pulko, B.; Rodrigo-Comino, J. Earthworm Abundance Changes Depending on Soil Management Practices in Slovenian Vineyards. Agronomy 2021, 11, 1241. [Google Scholar] [CrossRef]
Parameter | Parameter Description |
---|---|
Tavg | Average annual temperature, °C |
Tmax | Average annual maximum temperature, °C |
Tmin | Average annual minimum temperature, °C |
GSTavg | Average growing season temperature (1 April to 31 October), °C |
GSTmax | Average growing season maximum temperature (1 April to31 October), °C |
GSTmin | Average growing season minimum temperature (1 April to 31 October), °C |
TMJ | Average temperature May–October, °C |
HI | Huglin index (1 April to 30 September) °C units |
GDD | Growing degree days °C units |
NDT30 | Number of days with maximum temperature > 30 °C |
NDF | Number of days with a minimum temperature <0 °C (frost occurrence) |
NDFF | Number of days between the last frost and the first frost (length of frost-free period) |
AP | Total annual precipitation, mm/m2 |
GSP | Total growing season precipitations (April to October), mm/m2 |
Station/Period | Maribor 1952–2022 | Maribor 1980–2022 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Variables | |||||||||
Parameters | Mean | SD | Trend | Tau | p | Mean | SD | Trend | Tau | p |
yr−1 | yr−1 | |||||||||
Tavg | 10.3 | 0.99 | 0.037 | 0.628 | 0.001 | 10.8 | 0.82 | 0.048 | 0.524 | 0.001 |
Tmax | 15.5 | 1.14 | 0.038 | 0.542 | 0.001 | 16.0 | 1.09 | 0.064 | 0.561 | 0.001 |
Tmin | 5.7 | 1.06 | 0.042 | 0.66 | 0.001 | 6.4 | 0.71 | 0.034 | 0.420 | 0.001 |
GSTavg | 15.8 | 0.99 | 0.037 | 0.589 | 0.001 | 16.4 | 0.80 | 0.044 | 0.482 | 0.001 |
GSTmax | 21.5 | 1.15 | 0.038 | 0.491 | 0.001 | 22.1 | 1.09 | 0.063 | 0.526 | 0.001 |
GSTmin | 10.6 | 1.02 | 0.041 | 0.615 | 0.001 | 11.3 | 0.66 | 0.024 | 0.300 | 0.005 |
TMJ | 17.0 | 1.28 | 0.038 | 0.48 | 0.001 | 17.34 | 1.25 | 0.054 | 0.471 | 0.001 |
HI | 1839 | 206 | 7.03 | 0.559 | 0.001 | 1947 | 187 | 10.08 | 0.491 | 0.001 |
GDD | 1325 | 186 | 6.88 | 0.599 | 0.001 | 1432 | 154 | 8.10 | 0.480 | 0.001 |
NDT30 | 13.2 | 11.8 | 0.57 | 0.502 | 0.001 | 18 | 12.5 | 0.68 | 0.540 | 0.001 |
NDF | 95 | 19 | −0.56 | −0.411 | 0.001 | 87 | 15.1 | −0.39 | −0.221 | 0.040 |
NDFF | 206 | 22 | 0.53 | 0.340 | 0.310 | 214 | 20.8 | 0.30 | 0.118 | 0.272 |
AP | 998 | 150 | −2.88 | −0.252 | 0.002 | 973 | 148 | −5.8 | −0.344 | 0.001 |
GSP | 700 | 124 | −1.68 | −0.214 | 0.008 | 685 | 127 | −3.9 | −0.268 | 0.012 |
Murska Sobota, 1952–2022 | Murska Sobota, 1980–2022 | |||||||||
Tavg | 9.9 | 0.99 | 0.034 | 0.565 | 0.001 | 10.4 | 0.9 | 0.059 | 0.601 | 0.001 |
Tmax | 15.3 | 1.16 | 0.036 | 0.520 | 0.001 | 15.8 | 1.1 | 0.066 | 0.528 | 0.001 |
Tmin | 4.8 | 1.05 | 0.038 | 0.599 | 0.001 | 5.4 | 0.9 | 0.057 | 0.566 | 0.001 |
GSTavg | 15.5 | 1.0 | 0.033 | 0.511 | 0.001 | 16.0 | 0.9 | 0.051 | 0.530 | 0.001 |
GSTmax | 21.6 | 1.2 | 0.038 | 0.446 | 0.001 | 22.2 | 1.1 | 0.058 | 0.464 | 0.001 |
GSTmin | 9.7 | 1.0 | 0.037 | 0.576 | 0.001 | 10.3 | 0.8 | 0.048 | 0.585 | 0.001 |
TMJ | 16.8 | 1.25 | 0.037 | 0.475 | 0.001 | 17.48 | 1.28 | 0.058 | 0.375 | 0.001 |
HI | 1831 | 213 | 6.43 | 0.478 | 0.001 | 1933 | 199.2 | 10.5 | 0.455 | 0.001 |
GDD | 1278 | 186 | 6.21 | 0.532 | 0.001 | 1373 | 166.5 | 9.6 | 0.530 | 0.001 |
NDT30 | 14.1 | 12.1 | 0.37 | 0.447 | 0.001 | 19.1 | 12.5 | 0.55 | 0.428 | 0.001 |
NDF | 110 | 18 | −0.43 | −0.374 | 0.050 | 105 | 17.4 | −0.84 | −0.431 | 0.001 |
NDFF | 188 | 18 | 0.41 | 0.359 | 0.111 | 194 | 15.9 | 0.61 | 0.362 | 0.001 |
AP | 801 | 112 | −0.17 | 0.021 | 0.800 | 801 | 111.0 | −0.07 | 0.013 | 0.908 |
GSP | 574 | 94 | 0.28 | 0.037 | 0.655 | 576 | 92.5 | 0.52 | 0.069 | 0.523 |
Parameters | Total Acidity g/L | Day in Year | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variety/Variable | Mean ± SD | Trend yr−1 | Tau | p | Mean ± SD | Trend yr−1 | Tau | p | ||
‘Bouvier’ | 7.5 | ±1.10 | −0.040 | −0.273 | 0.010 | 247 | ±16.3 | −0.99 | −0.498 | 0.001 |
‘Müller Thurgau’ | 7.1 | ±1.16 | −0.056 | −0.421 | 0.001 | 258 | ±13.0 | −0.65 | −0.415 | 0.001 |
‘Muscat Ottonel’ * | 6.0 | ±0.88 | −0.035 | −0.304 | 0.014 | 256 | ±13.5 | −0.79 | −0.364 | 0.003 |
‘Pinot Blanc’ ** | 8.9 | ±1.23 | −0.036 | −0.192 | 0.109 | 255 | ±14.5 | −0.83 | −0.414 | 0.001 |
‘Chardonnay’ | 10.2 | ±1.47 | −0.072 | −0.377 | 0.001 | 256 | ±15.5 | −0.85 | −0.482 | 0.001 |
‘Pinot Gris’ | 9.2 | ±1.57 | −0.084 | −0.458 | 0.001 | 253 | ±14.8 | −0.76 | −0.451 | 0.001 |
‘Sylvaner’ *** | 8.6 | ±1.31 | −0.029 | −0.162 | 0.145 | 263 | ±16.7 | −0.98 | −0.490 | 0.001 |
‘Sauvignon Blanc’ | 10.3 | ±1.42 | −0.053 | −0.198 | 0.062 | 258 | ±16.2 | −0.82 | −0.455 | 0.001 |
‘Traminer’ | 8.2 | ±1.09 | −0.035 | −0.245 | 0.021 | 254 | ±15.7 | −0.79 | −0.469 | 0.001 |
‘Yellow Muscat’ | 8.3 | ±1.69 | −0.095 | −0.464 | 0.001 | 264 | ±17.5 | −0.96 | −0.502 | 0.001 |
‘Kerner’ **** | 9.0 | ±1.32 | −0.046 | −0.180 | 0.138 | 255 | ±12.9 | −0.76 | −0.394 | 0.001 |
‘Blaufränkisch’ | 9.4 | ±1.08 | −0.019 | −0.057 | 0.601 | 266 | ±14.9 | −0.83 | −0.488 | 0.001 |
‘Welschriesling’ | 8.7 | ±1.39 | −0.077 | −0.508 | 0.001 | 271 | ±18.2 | −1.05 | −0.527 | 0.001 |
‘Riesling’ | 11.0 | ±1.76 | −0.068 | −0.270 | 0.011 | 271 | ±15.1 | −0.85 | −0.496 | 0.001 |
‘Furmint’ | 10.5 | ±1.88 | −0.088 | −0.412 | 0.001 | 279 | ±17.9 | −1.06 | −0.514 | 0.001 |
Location- Variety | Variables/ Period | GSTavg ±SD | GSP ±SD | Total Acid. g/L ±SD | Day in yr ±SD | ||||
---|---|---|---|---|---|---|---|---|---|
Maribor | 1980–2022 | 16.4 | ±0.80 | 685 | ±127 | ||||
1980–1990 | 15.7 | ±0.56 | 727 | ±90 | |||||
1991–2000 | 16.2 | ±0.75 | 739 | ±142 | 1 April to 31 October | ||||
2001–2010 | 16.7 | ±0.48 | 693 | ±97 | |||||
2011–2022 | 17.0 | ±0.57 | 591 | ±129 | |||||
‘Bouvier’ 1 April to 76°Oe | 1980–2022 | 17.4 | ±0.89 | 499 | ±150 | 7.5 | ±1.1 | 247 | ±16.3 |
1980–1990 | 16.5 | ±0.73 | 577 | ±91 | 8.7 | ±1.1 | 262 | ±9.1 | |
1991–2000 | 17.3 | ±0.66 | 567 | ±170 | 7.0 | ±0.9 | 255 | ±11.2 | |
2001–2010 | 18.0 | ±0.65 | 495 | ±148 | 6.8 | ±0.3 | 243 | ±15.0 | |
2011–2022 | 18.0 | ±0.48 | 375 | ±83 | 7.3 | ±0.8 | 230 | ±8.0 | |
‘Chardonnay’ 1 April to 76°Oe | 1980–2022 | 17.5 | ±0.98 | 534 | ±163 | 10.2 | ±1.5 | 256 | ±15.5 |
1980–1990 | 16.4 | ±0.60 | 613 | ±116 | 11.8 | ±1.1 | 270 | ±11.2 | |
1991–2000 | 17.3 | ±0.75 | 591 | ±180 | 10.6 | ±1.3 | 260 | ±12.4 | |
2001–2010 | 18.0 | ±0.78 | 529 | ±148 | 9.5 | ±0.6 | 251 | ±14.9 | |
2011–2022 | 18.1 | ±0.60 | 418 | ±133 | 9.2 | ±1.0 | 243 | ±9.3 | |
‘Sauvignon Blanc’ 1 April to 76°Oe | 1980–2022 | 17.4 | ±1.04 | 547 | ±164 | 10.3 | ±1.4 | 258 | ±16.2 |
1980–1990 | 16.3 | ±0.83 | 640 | ±118 | 11.8 | ±1.3 | 272 | ±13.3 | |
1991–2000 | 17.3 | ±0.79 | 603 | ±175 | 10.1 | ±1.5 | 264 | ±8.4 | |
2001–2010 | 18.0 | ±0.76 | 520 | ±145 | 9.5 | ±0.6 | 251 | ±14.5 | |
2011–2022 | 18.1 | ±0.61 | 437 | ±132 | 9.8 | ±0.9 | 246 | ±11.4 | |
‘Blaufrankisch’ 1 April to 76°Oe | 1980–2022 | 17.4 | ±1.12 | 570 | ±171 | 9.4 | ±1.1 | 266 | ±14.9 |
1980–1990 | 16.2 | ±0.79 | 663 | ±108 | 9.9 | ±1.4 | 279 | ±10.3 | |
1991–2000 | 17.2 | ±0.90 | 614 | ±193 | 9.5 | ±0.9 | 270 | ±11.7 | |
2001–2010 | 17.9 | ±0.92 | 580 | ±156 | 8.8 | ±0.7 | 262 | ±12.4 | |
2011–2022 | 18.2 | ±0.63 | 441 | ±138 | 9.3 | ±0.8 | 252 | ±9.8 | |
‘Welschriesling’ 1 April to 76°Oe | 1980–2022 | 17.3 | ±1.17 | 587 | ±179 | 8.7 | ±1.4 | 271 | ±18.2 |
1980–1990 | 16.0 | ±0.84 | 683 | ±112 | 10.3 | ±1.1 | 289 | ±13.2 | |
1991–2000 | 17.1 | ±0.92 | 630 | ±206 | 9.0 | ±0.8 | 276 | ±14.0 | |
2001–2010 | 17.8 | ±0.96 | 610 | ±166 | 7.8 | ±0.6 | 269 | ±15.1 | |
2011–2022 | 18.2 | ±0.62 | 444 | ±134 | 7.7 | ±0.8 | 254 | ±10.2 | |
‘Furmint’ 1 April to 76°Oe | 1980–2022 | 17.2 | ±1.20 | 608 | ±169 | 10.5 | ±1.9 | 279 | ±17.9 |
1980–1990 | 15.9 | ±0.80 | 689 | ±110 | 12.3 | ±1.7 | 296 | ±13.6 | |
1991–2000 | 16.9 | ±0.98 | 665 | ±200 | 10.3 | ±1.6 | 285 | ±13.6 | |
2001–2010 | 17.6 | ±0.98 | 623 | ±151 | 10.4 | ±1.3 | 275 | ±15.0 | |
2011–2022 | 18.1 | ±0.64 | 473 | ±119 | 9.0 | ±1.0 | 262 | ±7.8 |
Variety/Parameters | GDD* | ±SD | HI* | ±SD |
---|---|---|---|---|
‘Bouvier’ | 1191 | ±87.4 | 1683 | ±106.0 |
‘Chardonnay’ | 1259 | ±84.8 | 1782 | ±96.9 |
‘Sauvignon Blanc’ | 1275 | ±85.7 | 1804 | ±94.3 |
‘Blaufränkisch’ | 1320 | ±99.4 | 1873 | ±103.0 |
‘Welschriesling’ | 1341 | ±99.3 | 1902 | ±114.8 |
‘Furmint’ | 1371 | ±110.3 | 1954 | ±122.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vršič, S.; Pulko, B.; Vodovnik-Plevnik, T.; Perko, A. The Impact of Climatic Warming on Earlier Wine-Grape Ripening in Northeastern Slovenia. Horticulturae 2024, 10, 611. https://doi.org/10.3390/horticulturae10060611
Vršič S, Pulko B, Vodovnik-Plevnik T, Perko A. The Impact of Climatic Warming on Earlier Wine-Grape Ripening in Northeastern Slovenia. Horticulturae. 2024; 10(6):611. https://doi.org/10.3390/horticulturae10060611
Chicago/Turabian StyleVršič, Stanko, Borut Pulko, Tadeja Vodovnik-Plevnik, and Andrej Perko. 2024. "The Impact of Climatic Warming on Earlier Wine-Grape Ripening in Northeastern Slovenia" Horticulturae 10, no. 6: 611. https://doi.org/10.3390/horticulturae10060611
APA StyleVršič, S., Pulko, B., Vodovnik-Plevnik, T., & Perko, A. (2024). The Impact of Climatic Warming on Earlier Wine-Grape Ripening in Northeastern Slovenia. Horticulturae, 10(6), 611. https://doi.org/10.3390/horticulturae10060611