The Fate of Soil-Applied Nitrogen in the Fig Tree
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto Brasileiro de Geografia e Estatística. Lavoura Permanente: Ano de 2011. Available online: http://www.ibge.gov.br/estadosat/temas.php?sigla=mg&tema=lavourapermanente2021> (accessed on 26 April 2021).
- Baram, S.; Couvreur, V.; Harter, T.; Read, M.; Brown, P.H.; Kandelous, M.; Smart, D.R.; Hopmans, J.W. Estimating nitrate leaching to groundwater from orchards: Comparing crop nitrogen excess, deep vadose zone data-driven estimates, and HYDRUS modeling. Vadose Zone J. 2017, 15, 1–13. [Google Scholar] [CrossRef]
- Brunetto, G.; Ceretta, C.A.; Melo, G.W.B.; Girotto, E.; Ferreira, P.A.A.; Lourenzi, C.R.; Couto, R.; Tassinari, A.; Hammerschmitt, R.K.; Silva, L.O.S.; et al. Contribution of nitrogen from urea applied at different rates and times on grapevine nutrition. Sci. Hortic. 2016, 207, 1–6. [Google Scholar] [CrossRef]
- Gómez, M.B.; Escotilha, D.J.; Bol, R.; García-Ruiz, R. Nutrient dynamics during decomposition of the residues from a sown legume or ruderal plant cover in an olive oil orchard. Agric. Ecosyst. Environ. 2014, 184, 115–123. [Google Scholar] [CrossRef]
- Verdenal, T.; Dienes-Nagy, A.; Spangenberg, J.E.; Zufferey, V.; Spring, J.L.; Viret, O.; Van Leeuwen, C. Understanding and managing nitrogen nutrition in grapevine: A review. OENO One 2021, 55, 1–43. [Google Scholar] [CrossRef]
- Leonel, S.; Damatto Junior, E.R. Root distribution of fig trees cultivated with organic manure. Rev. Bras. Frutic. 2007, 29, 1. [Google Scholar] [CrossRef]
- Brizola, R.M.D.O.; Leonel, S.; Tecchio, M.A.; Hora, R.C.D. Teores de macronutrientes em pecíolos e folhas de figueira (Ficus carica L.) em função da adubação potássica. Ciência Agrotécnica 2005, 29, 610–616. [Google Scholar] [CrossRef]
- Brunetto, G.; Ceretta, C.A.; Kaminski, J.; de Melo, G.W.B.; Welter, P.D.; Girotto, E.; Lorenzi, C.R.; Vieira, R.C.B.; De Conti, L.; Tiecher, T.L. Annual Urea Nitrogen Contribution to the Nutrition of Cabernet Sauvignon Grapevine Grown in Sandy and Clayey Soil. Agronomy 2024, 14, 101. [Google Scholar] [CrossRef]
- Tan, B.Z.; Close, D.; Quin, P.R.; Swarts, N.D. Nitrogen Use Efficiency, Allocation, and Remobilization in Apple Trees: Uptake Is Optimized with Pre-harvest N Supply. Front. Plant Sci. Sec. Plant Nutr. 2021, 12, 657070. [Google Scholar] [CrossRef] [PubMed]
- De Paula, B.V.; Vitto, B.B.; Sete, P.B.; Trapp, T.; Zalamena, J.; Melo, G.W.B.; Baldi, E.; Toselli, M.; Rozane, D.E.; Brunetto, G. Annual and residual urea nitrogen contribution to the nutrition of peach trees (Prunus persica L.) grown under subtropical climate. Sci. Hortic. 2021, 284, 110099. [Google Scholar] [CrossRef]
- Muhammad, S.; Sanden, B.L.; Lampinen, B.D.; Smart, D.R.; Saa, S.; Shackel, K.A.; Brown, P.H. Nutrient Storage in the Perennial Organs of Deciduous Trees and Remobilization in Spring—A Study in Almond (Prunus dulcis) (Mill.) D. A. Webb. Front. Plant Sci. 2020, 11, 658. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Yang, B.; Luo, X.; Qi, G.; Ji, F.; Guo, X.; Yang, T.; Zhao, X.; Li, M.; et al. Nitrogen Application Timing and Levels Affect the Fate and Budget of Fertilizer Nitrogen in the Apple–Soil System. Plants 2024, 13, 813. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.; Guimarães, P.T.; Alvares, V.H. (Eds.) Recomendação Para o Uso de Corretivos e Fertilizantes em Minas Gerais; 5 aproximações; Comissão de Fertilidade do Solo do Estado de Minas Gerais—CFSEMG: Viçosa, Brazil, 1999; 359p. [Google Scholar]
- Walker, H.V.; Swarts, N.D.; Jones, J.E.; Kerslake, F. Nitrogen use efficiency, partitioning, and storage in cool climate potted Pinot Noir vines. Sci. Hortic. 2022, 291, 110603. [Google Scholar] [CrossRef]
- Jiang, H.; Li, H.; Zhao, M.; Mei, X.; Kang, Y.; Dong, C.; Xu, Y. Strategies for timing nitrogen fertilization of pear trees based on the distribution, storage, and remobilization of 15N from seasonal application of (15NH4)2SO4. J. Integr. Agric. 2020, 19, 1340–1353. [Google Scholar] [CrossRef]
- Liu, Z.; Xing, Y.; Wu, X.; Tian, G.; Zhu, Z.; Ge, S.; Jiang, Y. Effects of nitrogen application position on fine root distribution, nitrogen absorption, yield and quality of dwarfing interstock apple trees. Acta Hortic. Sin. 2021, 48, 219–232. [Google Scholar] [CrossRef]
- Boaretto, R.M.; Mattos Junior, D.; Quaggio, J.A.; Trivelin, P.C.O. Absorption of 15NH3 volatilized from urea by Citrus trees. Plant Soil 2013, 365, 283–290. [Google Scholar] [CrossRef]
- Rufat, J.; Villar, J.M.; Pascual, M.; Falguera, V.; Arbonés, A. Productive and vegetative response to different irrigation and fertilization strategies of an Arbequina olive orchard grown under super-intensive conditions. Agric. Water Manag. 2014, 144, 33–41. [Google Scholar] [CrossRef]
- EMBRAPA-CNPS-CNPS. Manual de Métodos de Análise de Solos; EMBRAPA: Rio de Janeiro, Brazil, 1997; 212p. [Google Scholar]
- Tedesco, M.J.; Gianello, C.; Bissani, C.; Bohnen, H.; Volkweiss, S.J. Análise de Solo, Plantas e Outros Materiais; UFRGS/FA/DS: Porto Alegre, Brazil, 1995; 174p. [Google Scholar]
- IAEA-International Atomic Energy Agency. A Guide to the Use of Nitrogen-15 and Radioisotopes in Studies of Plant Nutrition: Calculations and Interpretation of Date; IAEA: Vienna, Austria, 1983. [Google Scholar]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciência Agrotecnologia 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-NRCS: Washington, DC, USA, 2014.
- Gaaliche, B.; Lauri, P.-E.; Trad, M.; Costes, E.; Mars, M. Interactions between vegetative and generative growth and between crop generations in fig trees (Ficus carica L.). Sci. Hortic. 2011, 13, 22–28. [Google Scholar] [CrossRef]
- Zanin, L.; Nerva, L.; Alessandrini, M.; Tomasi, D.; Pinton, R.; Lucchetta, M.; Chitarra, W.; Gaiotti, F. Effects of the Fractionation of the Nitrogen Fertilization on Root Nitrate Uptake and Vine Agronomic Performance in Pinot Gris Grapevines in a Temperate Climate. J. Soil Sci. Plant Nutr. 2022, 22, 4996–5008. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.; Qin, W.; Feng, J. Measures for reducing nitrate leaching in orchards: A review. Environ. Pollut. 2020, 263 Pt B, 114553. [Google Scholar] [CrossRef]
- Cardenas, L.M.; Bol, R.; Lewicka-Szczebak, D.; Gregory, A.S.; Matthews, G.P.; Whalley, W.R.; Misselbrook, T.H.; Scholefield, D.; Well, R. Effect of soil saturation on denitrification in a grassland soil. Eur. Geosci. Union 2017, 14, 4691–4710. [Google Scholar] [CrossRef]
- Brunetto, G.; Ventura, M.; Scandellari, F.; Ceretta, C.A.; Kaminski, J.; Melo, G.W.B.; Tagliavini, M. Nutrients release during the decomposition of mowed perennial ryegrass and white clover and its contribution to nitrogen nutrition of grapevine. Nutr. Cycl. Agroecosyst. 2011, 90, 299–308. [Google Scholar] [CrossRef]
- Carranca, C.; Brunetto, G.; Tagliavini, M. Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants 2018, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Patrick, A.E.; Smith, R.; Keck, K.; Berry, A.M. Grapevine uptake of 15N labeled nitrogen derived from a winter-annual leguminous cover-crop mix. Am. J. Enol. Vitic. 2004, 55, 187–190. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Fox, R.H.; Rayner, J.H. Interactions between fertilizer nitrogen and soil nitrogen—The so-called “priming” effect. J. Soil. Sci. 1985, 36, 425–444. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhu, T.; Müller, C.; Cai, Z. Effect of orchard age on soil nitrogen transformation in subtropical China and implications. J. Environ. Sci. 2015, 34, 10–19. [Google Scholar] [CrossRef]
Soil Characteristics | Value |
---|---|
Clay (pipette method) (g kg−1) [19] | 37 |
Organic matter (Walkey–Black method) (g kg−1) [20] | 1.80 |
pH in H2O (1:1 ratio) [20] | 5.5 |
Exchangeable Al (extractor KCl 1 mol L−1) (cmolc kg−1) [20] | 0.00 |
Exchangeable Mg (extractor KCl 1 mol L−1) (cmolc kg−1) [20] | 0.10 |
Exchangeable Ca (extractor KCL 1 mol L−1) (cmolc kg−1) [20] | 0.30 |
Availability P (extractor Mehlich-1) (cmolc kg−1) [20] | 29.3 |
Availability K (extractor Mehlich-1) (cmolc kg−1) [20] | 22 |
Year-Month | Rainfall (mm) | Air Temperature (°C) |
---|---|---|
2009 | ||
September | 98.4 | 20.8 |
October | 246.6 | 20.7 |
November | 149.6 | 22.6 |
December | 310.3 | 21.5 |
2010 | ||
January | 273.6 | 22.9 |
Organ | Dry Matter (g plant−1) | Total N | Atom% 15N (Excess in Sample) | Ndff | ||
---|---|---|---|---|---|---|
(%) | (mg plant−1) | (% of Total N in the Organ) | (mg plant−1) | |||
September | ||||||
Leaves | 95.37 ab (1) | 2.49 a | 2298.4 a | 0.1529 a | 7.64 a | 175.71 a |
Fruit | 18.07 c | 1.39 b | 251.2 b | 0.1084 ab | 5.42 ab | 13.61 b |
New shoots | 36.47 b | 0.87 c | 317.3 c | 0.1400 a | 7.00 a | 22.21 b |
Shoots from the previous year | 81.53 ab | 0.51 d | 415.8 c | 0.0533 b | 2.66 b | 11.08 b |
Stem | 131.93 a | 1.46 b | 1926.2 b | 0.0440 b | 2.20 b | 42.38 b |
Total | 363.4 A | - | 5208.9 A | - | - | 264.99 A |
October | ||||||
Leaves | 82.87 c | 1.14 bc | 943.2 b | 0.1993 a | 9.96 a | 93.99 b |
Fruit | 35.53 c | 1.52 b | 541.7 b | 0.2028 a | 10.14 a | 54.93 b |
New shoots | 205.60 b | 2.85 a | 5864.1 a | 0.1370 ab | 6.85 ab | 401.69 a |
Shoots from the previous year | 362.50 a | 0.49 d | 1790.9 b | 0.0552 b | 2.76 b | 49.43 b |
Stem | 208.50 b | 0.74 cd | 1545.1 b | 0.0547 b | 2.73 b | 42.26 b |
Total | 895.0 A | - | 10,685 A | - | - | 642.47 A |
Soil Layer Depth (m) | Application (time) | Total N (%) | 15N Excess (Atom % 15N) | Ndff (% of Supplied N) |
---|---|---|---|---|
0.00–0.10 | September | 0.13 ± 0.01 a | 0.0457 ± 0.0086 a | 2.28 ± 0.42 a |
October | 0.16 ± 0.02 a | 0.0406 ± 0.0100 a | 2.03 ± 0.50 a | |
0.10–0.20 | September | 0.10 ± 0.01 a | 0.0135 ± 0.0036 a | 0.67 ± 0.17 a |
October | 0.09 ± 0.01 a | 0.0377 ± 0.0235 a | 1.88 ± 1.17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunetto, G.; Sete, P.B.; Marcio Norberto, P.; Daiane Welter, P.; Thábata Silva Viana, I.; Paulo Andrade, M. The Fate of Soil-Applied Nitrogen in the Fig Tree. Horticulturae 2024, 10, 609. https://doi.org/10.3390/horticulturae10060609
Brunetto G, Sete PB, Marcio Norberto P, Daiane Welter P, Thábata Silva Viana I, Paulo Andrade M. The Fate of Soil-Applied Nitrogen in the Fig Tree. Horticulturae. 2024; 10(6):609. https://doi.org/10.3390/horticulturae10060609
Chicago/Turabian StyleBrunetto, Gustavo, Paula Beatriz Sete, Paulo Marcio Norberto, Paola Daiane Welter, Ingrid Thábata Silva Viana, and Marco Paulo Andrade. 2024. "The Fate of Soil-Applied Nitrogen in the Fig Tree" Horticulturae 10, no. 6: 609. https://doi.org/10.3390/horticulturae10060609
APA StyleBrunetto, G., Sete, P. B., Marcio Norberto, P., Daiane Welter, P., Thábata Silva Viana, I., & Paulo Andrade, M. (2024). The Fate of Soil-Applied Nitrogen in the Fig Tree. Horticulturae, 10(6), 609. https://doi.org/10.3390/horticulturae10060609