Identification of S-RNase Genotypes of 65 Almond [Prunus dulcis (Mill.) D.A. Webb] Germplasm Resources and Close Relatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Leaf Genomic DNA
2.3. Primer
2.4. PCR Amplification of the S-RNase Gene
2.5. Cloning and Sequencing of the S-RNase Gene
2.6. Sequence Analysis
2.7. Construction of the Phylogenetic Tree of the S Gene
2.8. Construction of a Database of Hybridization Combinations
2.9. Field Validation of Cross-Compatibility of Some Almond Cultivars
3. Results
3.1. Identification of S-RNase Alleles
No. | Sample | Fragment Length/bp | Genotype | No. | Sample | Fragment Length/bp | Genotype |
---|---|---|---|---|---|---|---|
1 | Shuangbo | 591/1483 | S5S65 | 34 | Kexi | 1274 | S54 |
2 | Huangshuang | 1634/811 | S22S57 | 35 | Yeerqiang | 591/811 | S5S57 |
3 | Shitou Almond | 2031/811 | S7S57 | 36 | Shache 29 | 1592/797 | S1S55 |
4 | Ku 1 | 977/747 | S10S63 | 37 | A1 | 591/1086 | S5S16 |
5 | Ydl 1 | 977/811 | S10S57 | 38 | Tianren Taobadan | 591/1130 | S5S24 |
6 | Shache 28 | 754/1650 | S6S35 | 39 | Jianzuihuang | 591/2031 | S5S7 |
7 | Jinsha Fruit × XX3 | 1592/1086 | S1S16 | 40 | Badanwang | 591/754 | S5S6 |
8 | Dabadan × XX3 | 1592/811 | S1S57 | 41 | Baiboke | 653/1274 | Sn3S54 |
9 | Taobadan | 1592/811 | S1S57 | 42 | Aitelaisi Badan | 977/1634 | S10S22 |
10 | Xiaokuren Taobadan | 1592/1086 | S1S16 | 43 | Paizhui | 624/1086 | SgS16 |
11 | Threeling Taobadan | 1592/1130 | S1S24 | 44 | Wanhua Taobadan | 1592/821 | S1S2 |
12 | Badanxing | 994/747 | S23S63 | 45 | Wanfeng | 591/2031 | S5S7 |
13 | Shache 79 | 977/811 | S10S57 | 46 | Aifeng | 653/994 | Sn3S23 |
14 | Xinjiang Peach 1 | 1592/821 | S1S2 | 47 | XX1 | 1592/1086 | S1S16 |
15 | Arele Taobadan | 1592/811 | S1S57 | 48 | Houke Taobadan | 977/811 | S10S57 |
10 | Ydl 2 | 977/811 | S10S57 | 49 | Zhipi | 632/811 | Sn3S57 |
17 | Jinsha Fruit | 857/1086 | S6S16 | 50 | Prunus mongolica | 722 | S3 |
18 | Duoguo | 747 | S63 | 51 | Yingzui | 632/1576 | Sn3S1 |
19 | Dabadan | 811 | S57 | 52 | XX2 | 2021/811 | S7S57 |
20 | Amannisha | 591/977 | S5S10 | 53 | Shuangruan | 797/772 | Sn5S63 |
21 | Gongbadan | 591/811 | S5S57 | 54 | Jinbian 2 | 822/993 | S49Sf |
22 | Xiaoshuangren | 1086/811 | S16S57 | 55 | Ku Taobadan | 455/190 | S2S57 |
23 | Shuangguo | 591/1650 | S5S35 | 56 | XX3 | 200/347 | S1S27 |
24 | Kubadan | 591/977 | S5S10 | 57 | Jinbian 1 | 335/419 | S49Sf′ |
25 | Baichang Badan | 591/1274 | S5S54 | 58 | Yeerqiang holy Fruit | 355/408 | S7S8 |
26 | Shache 27 | 1592/591 | S1S5 | 59 | Yuanruan | 1254 | S10 |
27 | Xinjiang Peach 2 | 1592 | S1 | 60 | Make | 1212 | S24 |
28 | Tianrenxiao Taobadan | 1592/811 | S1S57 | 61 | Shache 48 | 1967/1008 | S7S57 |
29 | Taohuaguazi Badan | 977/1130 | S10S24 | 62 | Prunus davidiana | 1231/375 | S1S57 |
30 | Xinjiang Peach 3 | 1592/977 | S1S10 | 63 | Hanfeng | 982 | S61 |
31 | Guazi Badan | 811/1483 | S57S65 | 64 | Prunus triloba | 350/621 | S7S11 |
32 | Changying | 811 | S57 | 65 | Jinbian 3 | 313/419 | Sn1Sf′ |
33 | Baishuang | 994 | S23 |
3.2. Structural Analysis of the Amino Acid Sequences of Different S-RNase Genes
3.3. Phylogenetic Analysis of the S Gene in Rosaceae Prunoideae
3.4. Analysis of S-RNase Genes and Gene Frequencies
3.5. Establishment of Almond Hybrid Incompatibility Groups
3.6. Field Identification and Analysis of Some Almond Cultivars
4. Discussion
4.1. Analysis of the Results of S-RNase Allele Identification
4.2. Analysis of the S Genotype
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L. Chinese Peach Genetic Resources, 1st ed.; China Agriculture Press: Beijing, China, 2012. [Google Scholar]
- Martinez-Gomez, P.; Sanchez-Perez, R.; Dicenta, F.; Howard, W.; Arus, P.; Gradziel, T.M. Fruits and Nuts. In Genome Mapping and Molecular Breeding in Plants, 1st ed.; Kole, C., Ed.; Springer: Berlin, Germany, 2007; Volume 3, pp. 229–242. [Google Scholar]
- Boskovic, R.; Tobutt, K.R.; Batlle, I.; Duval, H.; Martinez-Gomez, P.; Gradziel, T.M. Stylar ribonucleases in almond: Correlation with and prediction of incompatibility genotypes. Plant Breed. 2003, 122, 70–76. [Google Scholar] [CrossRef]
- He, M.; Gu, C.; Wu, J.Y.; Zhang, S.L. Recent advances on self-incompatibility mechanism in fruit trees. Acta Hortic. Sin. 2021, 48, 759–777. [Google Scholar]
- Tao, R.; Watari, A.; Hanada, T.; Habu, T.; Yaegaki, H.; Yamaguchi, M.; Yamane, H. Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol. Biol. 2007, 63, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, M. Study on Pollination Characteristic and S Genotype Identification of Self-Incompatibility of Kernel-Apricot. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2015. [Google Scholar]
- He, M.; Li, L.; Xu, Y.; Mu, J.; Xie, Z.; Gu, C.; Zhang, S. Identification of S-genotypes and a novel S-RNase in 84 native Chinese pear accessions. Hortic. Plant J. 2022, 8, 713–726. [Google Scholar] [CrossRef]
- Jiang, X.; Cao, X.; Wang, D.; Feng, J.; Liu, Y.; Fan, X. Identification of self-incompatibility S-RNase genotypes for apricot cultivars in South of Xinjiang area. J. Fruit Sci. 2012, 29, 569–576. [Google Scholar]
- Liu, Z.; Gao, Y.; Wang, K.; Feng, J.; Sun, S.; Lu, X.; Wang, L.; Tian, W.; Wang, G.; Li, Z.; et al. Identification of S-RNase genotype and analysis of its origin and evolutionary patterns in Malus plants. J. Integr. Agric. 2024, 23, 1205–1221. [Google Scholar] [CrossRef]
- Lopez, M.; Vargas, F.J.; Batlle, I. Self-(in)compatibility almond genotypes: A review. Euphytica 2006, 150, 1–16. [Google Scholar] [CrossRef]
- Kodad, O.; Alonso, J.M.; Sanchez, A.; Oliveira, M.; Company, R.S.I. Evaluation of genetic diversity of S-alleles in an almond germplasm collection. J. Hortic. Sci. Biotech. 2008, 83, 603–608. [Google Scholar] [CrossRef]
- Akram, H.; Behrouz, S.; Bahram, M.; Ali, I.; Bojana, B. Identification of new S-RNase self-incompatibility alleles and characterization of natural mutations in Iranian almond cultivars. Trees 2013, 27, 497–510. [Google Scholar]
- Gomez, E.M.; Dicenta, F.; Batlle, I.; Romero, A.; Ortega, E. Significance of S-genotype determination in the conservation of genetic resources and breeding of almond. Ciheam 2016, 119, 83–86. [Google Scholar]
- Ma, Y.; Ma, R. Analysis on polymorphism of S gene in almond. Acta Hortic. Sin. 2006, 33, 137–139. [Google Scholar]
- Jiang, J.; Feng, J.; Cao, X.; Li, W.; Wang, X.; Chen, L. Identification of self-Incompatibility S-RNase genotypes for almond cultivars in Xinjiang. Xinjiang Agric. Sci. 2011, 48, 1177–1182. [Google Scholar]
- Guo, C.; Yang, B.; Tudi, M.; Tang, Y.; Li, N.; Wang, J.; Gong, P. Comparison of amplification effects on almond resources in China using different primer combinations. Xinjiang Agric. Sci. 2016, 53, 641–646. [Google Scholar]
- Tamura, M.; Ushijima, K.; Sassa, H.; Hirano, H.; Tao, R.; Gradziel, T.M.; Dandekar, A.M. Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis. Theor. Appl. Genet. 2000, 101, 344–349. [Google Scholar] [CrossRef]
- Sonneveld, T.; Tobutt, K.R.; Robbins, T.P. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor. Appl. Genet. 2003, 107, 1059–1070. [Google Scholar] [CrossRef]
- Ortega, E.; Sutherland, B.G.; Dicenta, F.; Boskovic, R.; Tobutt, K.R. Determination of incompatibility genotypes in almond using first and second intron consensus primers: Detection of new S alleles and correction of reported S genotypes. Plant Breed. 2005, 124, 188–196. [Google Scholar] [CrossRef]
- Tao, R.; Yamane, H.; Sugiura, A. Molecular Typing of S-alleles through Identification, characterization and cDNA cloning for S-RNases in sweet cherry. J. Am. Soc. Hortic. Sci. 1999, 24, 224–233. [Google Scholar] [CrossRef]
- Audergon, J.M. Conribution to the study of inheritance of the character self incompatibility in apricot. Acta Hortic. 1999, 488, 275–279. [Google Scholar] [CrossRef]
- Sharafi, Y.; Hajilou, J.; Mohammadi, S.A.; Dadpour, M.R.; Eskandari, S. Pollen-pistil compatibility relationships in some Iranian almond (Prunus dulcis, Batch) genotypes as revealed by PCR analysis. Afr. J. Biotechnol. 2010, 9, 3338–3341. [Google Scholar]
- Zeng, B.; Gao, Q.; Tian, J.; Li, J. Research Progress on Self-Incompatibility of Almond Plants. In Proceedings of the Dried Fruit Branch of Chinese Horticultural Society, Shijiazhuang, China, 29 November 2013. [Google Scholar]
- Tian, J. China Almond, 1st ed.; China Agriculture Press: Beijing, China, 2008. [Google Scholar]
- Charlesworth, D.; Guttman, D.S. Seeing selection in S allele sequence. Curr. Biol. 1997, 7, 34–37. [Google Scholar] [CrossRef]
- Ortega, E.; Bonkovi, R.I.; Sargent, D.J.; Tobutt, K.R. Analysis of S-RNase alleles of almond (Prunus dulcis): Characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Mol. Gen. Genomics. 2006, 276, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Heng, W.; Wu, H.Q.; Chen, Q.X.; Wu, J.; Huang, S.; Zhang, S.L. Identification of S-genotypes and novel S-RNase alleles in Prunus mume. J. Hortic. Sci. Biotech. 2008, 83, 689–694. [Google Scholar] [CrossRef]
- Liang, M. Identification and Evolution of Citrus Self-Incompatibility Related Genes. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2019. [Google Scholar]
Primer Pair | Primer | Sequence 5′-3′ | Reference |
---|---|---|---|
1 | AS1II | TATTTTCAATTTGTGCAACAATGG | [17] |
AmyC5R | CAAAATACCACTTCATGTAACAAC | ||
2 | PaConsI-F | YCTTGTTCTTGSTTTYGCTTTMTTC | [18] |
EM-PC1consRD | GCCAYTGTTGCACAAAYTGAA | [19] | |
3 | PruC2 | CTATGGCCAAGTAATTATTCAAACC | [20] |
PruC4R | GGATGTGGTACGATTGAAGCG | ||
4 | C1-F | HCARTTTGTGCAACARTGGC | |
C5-R | CCACTTCATGTAACARYTS | ||
5 | PaConsI-F | YCTTGTTCTTGSTTTYGCTTTMTTC | [18] |
C5-R | CCACTTCATGTAACARYTS | ||
6 | C1-F | HCARTTTGTGCAACARTGGC | |
PruC4R | GGATGTGGTACGATTGAAGCG | [20] |
2022 | 2023 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Hybrid Combination (♀ × ♂) | Genotype Combination | Hybrid Strain | Fruit Number | Fruit Rate | Hybrid Combination (♀ × ♂) | Genotype Combination | Hybrid Strain | Fruit Number | Fruit Rate |
Jinsha Fruit × Taohuaguazi Badan | S6S16 × S10S24 | 542 | 161 | 29.70 | XX2 × Paizhui | S7S57 × SgS16 | 608 | 76 | 12.50 |
Jinsha Fruit × Yeerqiang | S6S16 × S5S57 | 581 | 122 | 21.00 | Shache 29 × Zhipi | S1S55 × Sn3S57 | 532 | 115 | 21.62 |
Jinsha Fruit × XX3 | S6S16 ×S1S27 | 517 | 29 | 5.61 | Shache 29 × XX2 | S1S55 × S7S57 | 532 | 91 | 17.11 |
Yeerqiang holy Fruit × Yeerqiang | S7S8 × S5S57 | 384 | 55 | 14.32 | Amannisha × Zhipi | S5S10 × Sn3S57 | 717 | 85 | 11.85 |
No. | Fragment Length/bp | S-RNase Genes with the Highest Homology on GenBank | Sequence ID | Similarity/% |
---|---|---|---|---|
1 | 313 | Prunus webbii Sn1, exons 1-3 | AM690352.1 | 99.36 |
2 | 347 | Prunus dulcis S27, partial cds | MH316093.1 | 99.71 |
3 | 350 | Prunus salicina S7, partial cds | AY781290.1 | 99.43 |
4 | 408 | Prunus dulcis S8, complete cds | AB481108.1 | 100.00 |
5 | 419 | Prunus dulcis Sf′, complete cds | MH316088.1 | 99.52 |
6 | 591 | Prunus dulcis S5, complete cds | MH316078.1 | 98.98 |
7 | 621 | Prunus cerasifera S11, exons 1-2 | AM992055.1 | 99.68 |
8 | 624 | Prunus dulcis Sg, partial cds | DQ156219.1 | 99.84 |
9 | 653 | Prunus webbii Sn3, exons 1-3 | AM690354.1 | 100.00 |
10 | 722 | Prunus persica S3, complete cds | AB537563.1 | 99.86 |
11 | 754 | Prunus webbii S6, partial cds | EU294327.1 | 99.80 |
12 | 772 | Prunus dulcis S63, partial cds | AY613919.1 | 99.87 |
13 | 797 | Prunus dulcis S55, exons 1-3 | FN599511.1 | 99.87 |
14 | 797 | Prunus dulcis Sn5, exons 1-2 | AM690355.1 | 99.87 |
15 | 811 | Prunus dulcis S57, exons 1-3 | FN599513.1 | 100.00 |
16 | 821 | Prunus persica S2, complete cds | AB252417.1 | 100.00 |
17 | 822 | Prunus dulcis S49, partial cds | JX067634.2 | 99.51 |
18 | 857 | Prunus dulcis S6 precursor, exons 1-3 | AM231657.1 | 100.00 |
19 | 982 | Prunus dulcis S61, partial cds | AY613917.1 | 98.07 |
20 | 993 | Prunus dulcis Sf, partial cds | DQ156217.1 | 99.60 |
21 | 994 | Prunus dulcis S23, complete cds | AB488496.1 | 98.89 |
22 | 1086 | Prunus dulcis S16 precursor, exons 1-3 | AM231665.1 | 99.82 |
23 | 1130 | Prunus dulcis S24, exons 1-3 | LN624639.1 | 100.00 |
24 | 1254 | Prunus webbii S10, partial cds | EU294324.1 | 99.60 |
25 | 1274 | Prunus dulcis S54, exons 1-3 | FN599510.1 | 100.00 |
26 | 1483 | Prunus armeniaca S2, partial cds | AY587562.1 | 95.95 |
27 | 1592 | Prunus persica S1, complete cds | AB252415.1 | 99.87 |
28 | 1634 | Prunus dulcis S22 precursor, exons 1-3 | AM231671.1 | 96.22 |
29 | 1650 | Prunus dulcis S35, partial cds | KM225273.1 | 99.76 |
30 | 2031 | Prunus dulcis S7, complete cds | MH316075.1 | 100.00 |
Cross Incompatibility Group/CIG | S-genotype | Sample |
---|---|---|
I | S10S57 | Houke Taobadan, Ydl 1, Ydl 2, Shache 79 |
II | S1S57 | Taobadan, Arele Taobadan, Tianrenxiao Taobadan |
III | S5S57 | Gongbadan, Yeerqiang |
IV | S5S10 | Amannisha, Kubadan |
V | S16S57 | Xiaoshuangren |
VI | S7S57 | Shitou Almond, Shache 48, XX2 |
VII | S5S7 | Jianzuihuang, Wanfeng |
VIII | S1S16 | Xiaokuren Taobadan, XX1 |
0 1 | Shuangbo (S5S65), Huangshuang (S22S57), Ku 1 (S10S63), Shache 28 (S6S35), Threeling Taobadan (S1S24), Badanxing (S23S63), Jinsha Fruit (S6S16), Shuangguo (S5S35), Baichang Badan (S5S54), Shache 27 (S1S5), Taohuaguazi Badan (S10S24), Guazi Badan (S57S65), Shache 29 (S1S55), A1 (S5S16), Tianren Taobadan (S5S24), Badanwang (S5S6), Baiboke (Sn3S54), Aitelaisi Badan (S10S22), Paizhui (SgS16), Wanhua Taobadan (S1S2), Aifeng (Sn3S23), Zhipi (Sn3S57), Yingzui (Sn3S1), Shuangruan (Sn5S63), Jinbian 1 (S49Sf′), Jinbian 2 (S49Sf), Jinbian 3 (Sn1Sf′), Ku Taobadan (S2S57), XX3 (S1S27), Yeerqiang holy Fruit (S7S8), Prunus triloba (S7S11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Wang, L.; Wang, X.; Xu, Y.; Ablitip, Y.; Guo, C.; Ayup, M. Identification of S-RNase Genotypes of 65 Almond [Prunus dulcis (Mill.) D.A. Webb] Germplasm Resources and Close Relatives. Horticulturae 2024, 10, 545. https://doi.org/10.3390/horticulturae10060545
Xu P, Wang L, Wang X, Xu Y, Ablitip Y, Guo C, Ayup M. Identification of S-RNase Genotypes of 65 Almond [Prunus dulcis (Mill.) D.A. Webb] Germplasm Resources and Close Relatives. Horticulturae. 2024; 10(6):545. https://doi.org/10.3390/horticulturae10060545
Chicago/Turabian StyleXu, Panyun, Lirong Wang, Xinwei Wang, Yeting Xu, Yarmuhammat Ablitip, Chunmiao Guo, and Mubarek Ayup. 2024. "Identification of S-RNase Genotypes of 65 Almond [Prunus dulcis (Mill.) D.A. Webb] Germplasm Resources and Close Relatives" Horticulturae 10, no. 6: 545. https://doi.org/10.3390/horticulturae10060545
APA StyleXu, P., Wang, L., Wang, X., Xu, Y., Ablitip, Y., Guo, C., & Ayup, M. (2024). Identification of S-RNase Genotypes of 65 Almond [Prunus dulcis (Mill.) D.A. Webb] Germplasm Resources and Close Relatives. Horticulturae, 10(6), 545. https://doi.org/10.3390/horticulturae10060545