Leaf Fermentation Products of Allium sativum L. Can Alleviate Apple Replant Disease (ARD)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Determination of Plant Growth
2.3. Determination of Anti-Oxidant Enzyme Activities and MDA Content of Roots
2.4. Determination of Soil Enzyme
2.5. Determination of Phenolic Acids
2.6. Determination of Soil Micro-Organisms
2.7. Determination of Real-Time Fluorescence Quantitative Analysis of Soil Harmful Fungi
2.8. Determination of Soil Nutrients
2.9. Statistical Analysis
3. Results
3.1. Antibacterial Test and Volatile Components Determination of LFP
3.2. Effect of LFP on Growth of M. hupehensis Seedlings
3.3. Effects of LFP on Root Anti-Oxidant Enzymes Activity and MDA Content
3.4. Effects of LFP on the Nutrients of Soil
3.5. Effects of LFP on the Phenolic Acids Content and Soil Enzyme Activities
3.6. Effects of LFP on the Number of Culturable Micro-Organisms and Pathogen Fungi in Soil
3.7. Effects of LFP on Soil Fungi Microecology
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reim, S.; Winkelmann, T.; Cestaro, A.; Rohr, A.D.; Flachowsky, H. Identification of candidate genes associated with tolerance to apple replant disease by genome-wide transcriptome analysis. Front. Microbiol. 2022, 13, 888908. [Google Scholar] [CrossRef]
- Cavael, U.; Diehl, K.; Lentzsch, P. Assessment of growth suppression in apple production with replant soils. Ecol. Indic. 2020, 109, 105846. [Google Scholar] [CrossRef]
- Grunewaldt-Stöcker, G.; Mahnkopp, F.; Popp, C.; Maiss, E.; Winkelmann, T. Diagnosis of apple replant disease (ARD): Microscopic evidence of early symptoms in fine roots of different apple rootstock genotypes. Sci. Hortic. 2019, 243, 583–594. [Google Scholar] [CrossRef]
- Winkelmann, T.; Smalla, K.; Amelung, W.; Baab, G.; Grunewaldt-Stocker, G.; Kanfra, X.; Meyhofer, R.; Reim, S.; Schmitz, M.; Vetterlein, D.; et al. Apple replant disease: Causes and mitigation strategies. Curr. Issues Mol. Biol. 2019, 30, 89–106. [Google Scholar] [CrossRef]
- Mazzola, M.; Manici, L.M. Apple replant disease: Role of microbial ecology in cause and control. Annu. Rev. Phytopathol. 2011, 50, 45–65. [Google Scholar] [CrossRef]
- Ajeethan, N.; Ali, S.; Fuller, K.D.; Abbey, L.; Yurgel, S.N. Apple root microbiome as indicator of plant adaptation to apple replant diseased soils. Microorganisms 2023, 11, 1372. [Google Scholar] [CrossRef]
- O’Brien, P.A. Biological control of plant diseases. Australas. Plant Pathol. 2017, 46, 293–304. [Google Scholar] [CrossRef]
- Syed Ab Rahman, S.F.; Singh, E.; Pieterse, C.M.J.; Schenk, P.M. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 2018, 267, 102–111. [Google Scholar] [CrossRef]
- DuPont, S.T.; Hewavitharana, S.S.; Mazzola, M. Field scale application of Brassica seed meal and anaerobic soil disinfestation for the control of apple replant disease. Appl. Soil. Ecol. 2021, 166, 104076. [Google Scholar] [CrossRef]
- Yim, B.; Nitt, H.; Wrede, A.; Jacquiod, S.; Sorensen, S.J.; Winkelmann, T.; Smalla, K. Effects of soil pre-treatment with basamid(R) granules, Brassica juncea, Raphanus sativus, and Tagetes patula on bacterial and fungal communities at two apple replant disease sites. Front. Microbiol. 2017, 8, 1604. [Google Scholar] [CrossRef]
- Yang, P.; Yuan, Y.; Yan, C.; Jia, Y.; You, Q.; Da, L.; Lou, A.; Lv, B.; Zhang, Z.; Liu, Y. AlliumDB: A central portal for comparative and functional genomics in Allium. Hortic. Res. 2024, 11, uhad285. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Batish, D.R.; Kohli, R.K. Autotoxicity: Concept, organisms, and ecological significance. Crit. Rev. Plant Sci. 1999, 18, 757–772. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and biological functions of garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Y.; Feng, L.; Xu, Y.; Du, Z.; Zhang, L. Biochar prepared from maize straw and molasses fermentation wastewater: Application for soil improvement. RSC Adv. 2020, 10, 14510–14519. [Google Scholar] [CrossRef] [PubMed]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.; Al-Sagan, A.A.; El-Hack, A.; Taha, M.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [PubMed]
- Tufail, T.; Saeed, F.; Afzaal, M.; Ain, H.B.U.; Gilani, S.A.; Hussain, M.; Anjum, F.M. Wheat straw: A natural remedy against different maladies. Food Sci. Nutr. 2021, 9, 2335–2344. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wu, Y.; Zhang, S.; Yang, H.; Wu, W.; Lyu, L.; Li, W. Changes in antioxidant substances and antioxidant enzyme activities in raspberry fruits at different developmental stages. Sci. Hortic. 2023, 321, 112314. [Google Scholar] [CrossRef]
- Yin, C.; Xiang, L.; Wang, G.; Wang, Y.; Shen, X.; Chen, X.; Mao, Z. How to plant apple trees to reduce replant disease in apple orchard: A study on the phenolic acid of the replanted apple orchard. PLoS ONE 2016, 11, e0167347. [Google Scholar] [CrossRef] [PubMed]
- Mitsuboshi, M.; Kioka, Y.; Noguchi, K.; Asakawa, S. An evaluation method for the suppression of pathogenic Fusarium oxysporum by soil microorganisms using the dilution plate technique. Microbes Environ. 2016, 31, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Knauth, S.; Schmidt, H.; Tippkötter, R. Comparison of commercial kits for the extraction of DNA from paddy soils. Lett. Appl. Microbiol. 2013, 56, 222–228. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Li, X.; Tang, Z.; Zhang, Z.; Gao, H.; Ma, F.; Li, C. Exogenous dopamine and MdTyDC overexpression enhance apple resistance to Fusarium solani. Phytopathology 2022, 112, 2503–2513. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Q.; Li, X.; Zhang, Z.; Ai, S.; Liu, C.; Ma, F.; Li, C. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. Plant Physiol. 2023, 192, 2015–2029. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, N.; Hou, J.; Xu, L.; Liu, C.; Zhang, J.; Wang, Q.; Zhang, X.; Wu, X. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front. Ecol. Evol. 2018, 6, 64. [Google Scholar] [CrossRef]
- Dou, D.; Zhou, J.-M. Phytopathogen effectors subverting host immunity: Different foes, similar battleground. Cell Host Microbe 2012, 12, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Shafi, A.; Chauhan, R.; Gill, T.; Swarnkar, M.K.; Sreenivasulu, Y.; Kumar, S.; Kumar, N.; Shankar, R.; Ahuja, P.S.; Singh, A.K. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol. Biol. 2015, 87, 615–631. [Google Scholar] [CrossRef]
- Aydin, M.; Tombuloglu, G.; Sakcali, M.S.; Hakeem, K.R.; Tombuloglu, H. Boron alleviates drought stress by enhancing gene expression and antioxidant enzyme activity. J. Soil. Sci. Plant Nutr. 2019, 19, 545–555. [Google Scholar] [CrossRef]
- Kozjek, K.; Manoharan, L.; Urich, T.; Ahrén, D.; Hedlund, K. Microbial gene activity in straw residue amendments reveals carbon sequestration mechanisms in agricultural soils. Soil. Biol. Biochem. 2023, 179, 108994. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Kuzyakov, Y.; Li, W.; Liu, J.; Jiang, C.; Wu, M.; Li, Z. Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100-year paddy soil chronosequence. Appl. Soil. Ecol. 2018, 130, 84–90. [Google Scholar] [CrossRef]
- Chang, L.; Han, F.; Chai, S.; Cheng, H.; Yang, D.; Chen, Y. Straw strip mulching affects soil moisture and temperature for potato yield in semiarid regions. Agron. J. 2020, 112, 1126–1139. [Google Scholar] [CrossRef]
- Westerveld, S.M.; Riddle, R.N.; Shi, F. Efficacy of fumigants and biofumigants for the control of replant disease of American ginseng (Panax quinquefolius). Can. J. Plant Pathol. 2023, 45, 405–419. [Google Scholar] [CrossRef]
- Leisso, R.; Rudell, D.; Mazzola, M. Metabolic composition of apple rootstock rhizodeposits differs in a genotype-specific manner and affects growth of subsequent plantings. Soil. Biol. Biochem. 2017, 113, 201–214. [Google Scholar] [CrossRef]
- Yuan, H.-Z.; Zhu, Z.-K.; Wei, X.-M.; Liu, S.-L.; Peng, P.-Q.; Gunina, A.; Shen, J.-L.; Kuzyakov, Y.; Ge, T.-D.; Wu, J.-S.; et al. Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils. J. Integr. Agric. 2019, 18, 1474–1485. [Google Scholar] [CrossRef]
- Fatemi, F.R.; Fernandez, I.J.; Simon, K.S.; Dail, D.B. Nitrogen and phosphorus regulation of soil enzyme activities in acid forest soils. Soil Biol. Biochem. 2016, 98, 171–179. [Google Scholar] [CrossRef]
- Rudinskienė, A.; Marcinkevičienė, A.; Velička, R.; Kosteckas, R.; Kriaučiūnienė, Z.; Vaisvalavičius, R. The comparison of soil agrochemical and biological properties in the multi-cropping farming systems. Plants 2022, 11, 774. [Google Scholar] [CrossRef] [PubMed]
- Cordero, I.; Snell, H.; Bardgett, R.D. High throughput method for measuring urease activity in soil. Soil Biol. Biochem. 2019, 134, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Allison, V.J.; Condron, L.M.; Peltzer, D.A.; Richardson, S.J.; Turner, B.L. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol. Biochem. 2007, 39, 1770–1781. [Google Scholar] [CrossRef]
- van Schoor, L.; Denman, S.; Cook, N.C. Characterisation of apple replant disease under South African conditions and potential biological management strategies. Sci. Hortic. 2009, 119, 153–162. [Google Scholar] [CrossRef]
- Su, Y.; Lv, J.L.; Yu, M.; Ma, Z.H.; Xi, H.; Kou, C.L.; He, Z.C.; Shen, A.L. Long-term decomposed straw return positively affects the soil microbial community. J. Appl. Microbiol. 2020, 128, 138–150. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, M.; Jin, J.; Fu, M. Effects of different nitrogen applications and straw return depth on straw microbial and carbon and nitrogen cycles in paddy fields in the cool zone. Sci. Rep. 2024, 14, 6424. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Q.; Li, X.; Li, X.; Yu, Z.; Li, X.; Yang, T.; Su, Z.; Zhang, H.; Zhang, C. Effects of long-term no-tillage with different straw mulching frequencies on soil microbial community and the abundances of two soil-borne pathogens. Appl. Soil Ecol. 2020, 148, 103488. [Google Scholar] [CrossRef]
Concentration of Water Solution of LFP (%) | Fusarium proliferatum | Fusarium solani | Fusarium oxysporum |
---|---|---|---|
Bacteriostatic Zone Diameter (mm) | |||
0 | - | - | - |
3 | 26 | 24 | 30 |
5 | 18 | 20 | 16 |
Name | Molecular Formula | Relative Content | CAS |
---|---|---|---|
Valeric acid | C5H10O2 | 16.06 | 109-52-4 |
2-Chloroethyl vinyl ether | C4H7ClO | 8.97 | 110-75-8 |
3-Ethoxy-1-propanol | C7H18O3 | 4.76 | 111-35-3 |
Hexanoic acid | C6H12O2 | 4.09 | 142-62-1 |
Butyric acid | C4H8O2 | 2.51 | 107-92-6 |
Hydrocinnamic acid | C9H10O2 | 2.4 | 501-52-0 |
Dibutyl phthalate | C16H22O4 | 1.82 | 84-74-2 |
Methyl valerate | C6H12O2 | 1.09 | 624-24-8 |
Isoamyl isovalerate | C10H20O2 | 1.07 | 659-70-1 |
Treatment | Plant Height (cm) | Ground Diameter (mm) | Fresh Weight (g) | Dry Weight (g) |
---|---|---|---|---|
CK1 | 58.33 ± 3.72 d | 6.98 ± 0.15 c | 62.66 ± 4.39 c | 24.97 ± 1.79 c |
CK2 | 85.33 ± 4.20 a | 10.13 ± 0.15 a | 114.52 ± 8.95 a | 45.67 ± 3.68 a |
T1 | 76.93 ± 3.40 b | 9.85 ± 0.08 b | 104.71 ± 3.12 b | 42.13 ± 1.39 b |
T2 | 61.27 ± 3.72 c | 8.21 ± 0.09 bc | 63.67 ± 2.69 c | 25.47 ± 0.82 c |
Treatment | Length (cm) | Surface Area (cm2) | Volume (cm3) | Tips |
---|---|---|---|---|
CK1 | 832.00 ± 23.21 d | 384.33 ± 14.05 d | 7.64 ± 0.29 d | 2322.67 ± 105.53 d |
CK2 | 2360.67 ± 56.70 a | 937.37 ± 65.34 a | 18.71 ± 0.38 a | 7398.00 ± 251.81 a |
T1 | 2034.67 ± 64.84 b | 831.01 ± 69.91 b | 16.49 ± 0.55 b | 6364.33 ± 170.94 b |
T2 | 1295.67 ± 54.15 c | 564.65 ± 18.85 c | 10.86 ± 0.37 e | 4393.33 ± 212.80 c |
Treatment | NH4+-N (mg·kg−1) | NO3−-N (mg·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) | Organic Matter (g·kg−1) |
---|---|---|---|---|---|
CK1 | 3.18 ± 0.06 b | 6.98 ± 0.30 b | 26.60 ± 1.27 b | 69.05 ± 1.99 b | 7.45 ± 0.17 b |
CK2 | 3.17 ± 0.06 b | 7.17 ± 0.31 b | 26.18 ± 0.53 b | 69.05 ± 5.26 b | 7.61 ± 0.11 b |
T1 | 4.19 ± 0.23 a | 11.98 ± 0.17 a | 36.31 ± 0.71 a | 106.94 ± 1.99 a | 9.97 ± 0.12 a |
T2 | 4.06 ± 0.21 a | 12.31 ± 0.14 a | 36.55 ± 0.28 a | 114.97 ± 1.99 a | 10.32 ± 0.07 a |
Treatment | Benzoic Acid (mg·kg−1) | Phloridzin (mg·kg−1) | Phloretin (mg·kg−1) | Cinnamic Acid (mg·kg−1) |
---|---|---|---|---|
CK1 | 6.58 ± 0.19 a | 2.13 ± 0.12 a | 1.72 ± 0.11 a | 0.73 ± 0.02 a |
CK2 | 3.13 ± 0.03 c | 1.02 ± 0.04 d | 1.15 ± 0.02 c | 0.37 ± 0.03 c |
T1 | 5.53 ± 0.12 bc | 1.57 ± 0.10 b | 1.32 ± 0.03 b | 0.43 ± 0.03 bc |
T2 | 5.73 ± 0.12 b | 1.43 ± 0.07 c | 1.27 ± 0.05 bc | 0.48 ± 0.02 b |
Treatment | Urease Activity (mg·g−1·d−1) | Sucrase Activity (mg·g−1·d−1) | Phosphatase Activity (mg·g−1·d−1) | Catalase Activity (mg·g−1·d−1) |
---|---|---|---|---|
CK1 | 0.08 ± 0.00 c | 7.31 ± 0.11 bc | 11.25 ± 0.74 bc | 0.18 ± 0.01 c |
CK2 | 0.08 ± 0.00 c | 6.72 ± 0.24 c | 8.69 ± 0.34 c | 0.18 ± 0.00 c |
T1 | 0.14 ± 0.00 a | 15.70 ± 0.45 a | 17.74 ± 0.61 a | 0.21 ± 0.01 a |
T2 | 0.11 ± 0.01 b | 13.69 ± 0.62 b | 12.63 ± 0.51 b | 0.20 ± 0.01 b |
Treatment | Bacteria (×105·CFU·g−1) | Fungi (×103·CFU·g−1) | Bacteria/Fungi |
---|---|---|---|
CK1 | 7.00 ± 1.00 b | 27.67 ± 5.03 a | 25.30 d |
CK2 | 2.33 ± 1.15 c | 4.00 ± 1.00 c | 58.25 c |
T1 | 22.00 ± 1.00 a | 15.67 ± 1.53 b | 140.39 a |
T2 | 22.67 ± 1.155 a | 26.00 ± 1.00 ab | 87.19 b |
Treatment | Gene Copies | |||
---|---|---|---|---|
F. oxysporum (109·Copies·g−1) | F. proliferatum (106·Copies·g−1) | F. solani (1011·Copies·g−1) | F. moniliforme (106·Copies·g−1) | |
CK1 | 12.21 ± 1.23 a | 18.72 ± 1.72 a | 2.26 ± 0.16 a | 7.28 ± 0.36 a |
CK2 | 1.27 ± 0.06 d | 2.47 ± 0.19 d | 0.32 ± 0.02 d | 1.62 ± 0.12 d |
T1 | 4.14 ± 0.35 c | 3.23 ± 0.14 c | 1.21 ± 0.05 c | 3.00 ± 0.26 c |
T2 | 5.16 ± 0.22 b | 4.88 ± 0.31 b | 1.62 ± 0.17 b | 3.43 ± 0.27 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Zhang, R.; Zhao, Y.; Wang, G.; Yin, C.; Liu, Y.; Mao, Z. Leaf Fermentation Products of Allium sativum L. Can Alleviate Apple Replant Disease (ARD). Horticulturae 2024, 10, 546. https://doi.org/10.3390/horticulturae10060546
Yin C, Zhang R, Zhao Y, Wang G, Yin C, Liu Y, Mao Z. Leaf Fermentation Products of Allium sativum L. Can Alleviate Apple Replant Disease (ARD). Horticulturae. 2024; 10(6):546. https://doi.org/10.3390/horticulturae10060546
Chicago/Turabian StyleYin, Chengwen, Rong Zhang, Yiming Zhao, Gongshuai Wang, Chengmiao Yin, Yusong Liu, and Zhiquan Mao. 2024. "Leaf Fermentation Products of Allium sativum L. Can Alleviate Apple Replant Disease (ARD)" Horticulturae 10, no. 6: 546. https://doi.org/10.3390/horticulturae10060546
APA StyleYin, C., Zhang, R., Zhao, Y., Wang, G., Yin, C., Liu, Y., & Mao, Z. (2024). Leaf Fermentation Products of Allium sativum L. Can Alleviate Apple Replant Disease (ARD). Horticulturae, 10(6), 546. https://doi.org/10.3390/horticulturae10060546