Jasmonates Play an Important Role in Differential Accumulation of Key Oolong Tea Aromas in Two Tea Varieties (Camellia sinensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. GC-MS Conditions and Qualitative Analysis of Aroma Metabolites
2.3. Transcriptome RNA-Sequencing and Differential Expression Gene (DEG) Analysis
2.4. Quantitative Real-Time PCR (qRT-PCR) Verification Analysis
2.5. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.6. Plant Hormone Metabolite Profiling and Analysis
2.7. Statistical Analysis
3. Results
3.1. Differences in Key Aroma Components between CG and F6 before and after Mechanical Stress
3.2. Differences in Key Aroma Synthetase Genes Expression in CG and F6 before and after Mechanical Stress
3.3. Differences in Key Aroma Upstream or Regulator Genes Expression in CG and F6 before and after Mechanical Stress
3.4. Differences in Jasmonate (JA) Content in CG and F6 before and after Mechanical Stress
3.5. WGCNA Analysis of CG and F6 before and after Mechanical Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, L.; Zhou, X.; Su, X.; Yang, Z. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends Food Sci. Technol. 2020, 106, 242–253. [Google Scholar] [CrossRef]
- GB/T 23776-2018; Sensory Evaluation Methods for Tea. Standardization Administration of China: Beijing, China, 2018.
- Kuroda, K.; Inoue, N.; Ito, Y.; Kubota, K.; Sugimoto, A.; Kakuda, T.; Fushiki, T. Sedative effects of the jasmine tea odor and (R)-(−)-linalool, one of its major odor components, on autonomic nerve activity and mood states. Eur. J. Appl. Physiol. 2005, 95, 107–114. [Google Scholar] [CrossRef]
- Yoto, A.; Fukui, N.; Kaneda, C.; Shoko, T.; Keiichi, G.; Fumio, N.; Hidehiko, Y. Black tea aroma inhibited increase of salivary chromogranin-A after arithmetic tasks. J. Physiol. Anthropol. 2018, 37, 3. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, Q.; Yang, Y.; Wu, Z.; Wu, L.; Wang, P.; Deng, H.; Ye, N.; Sun, Y. Architecture and Dynamics of the Wounding-Induced Gene Regulatory Network During the Oolong Tea Manufacturing Process (Camellia sinensis). Front. Plant Sci. 2021, 12, 788469. [Google Scholar] [CrossRef]
- Zhou, C.; Tian, C.; Zhu, C.; Lai, Z.; Lin, Y.; Guo, Y. Hidden players in the regulation of secondary metabolism in tea plant: Focus on non-coding RNAs. Beverage Plant Res. 2022, 2, 1–12. [Google Scholar] [CrossRef]
- Yang, J.; Gu, D.; Wu, S.; Zhou, X.; Chen, J.; Liao, Y.; Zeng, L.; Yang, Z. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). Hortic. Res. 2021, 8, 253. [Google Scholar] [CrossRef]
- Yang, Z.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Baldermann, S.; Yang, Z.; Katsuno, T.; Tu, V.A.; Mase, N.; Nakamura, Y.; Watanabe, N. Discrimination of Green, Oolong, and Black Teas by GC-MS Analysis of Characteristic Volatile Flavor Compounds. Sci. Rep. 2014, 5, 620–632. [Google Scholar] [CrossRef]
- Fu, X.; Chen, Y.; Mei, X.; Katsuno, T.; Kobayashi, E.; Dong, F.; Watanabe, N.; Yang, Z. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Sci. Rep. 2015, 5, 16858. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, X.; Xiao, Y.; Gu, D.; Liao, Y.; Xu, X.; Jia, Y.; Deng, R.; Song, C.; Yang, Z. Elucidation of (Z)-3-Hexenyl-β-glucopyranoside Enhancement Mechanism under Stresses from the Oolong Tea Manufacturing Process. J. Agric. Food Chem. 2019, 67, 6541–6550. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z.-W.; Wu, Z.-J.; Wang, Y.-X.; Teng, R.-M.; Zhuang, J. Differentially expressed protein and gene analysis revealed the effects of temperature on changes in ascorbic acid metabolism in harvested tea leaves. Hortic. Res. 2018, 5, 65. [Google Scholar] [CrossRef]
- Li, X.L.; Deng, H.L.; Zhong, Q.S.; You, X.M.; Ruan, Q.C.; Shan, R.Y.; Lin, Z.H.; Chen, C.S. Aromatic differentiations of oolong teas. Acta Tea Sin. 2021, 62, 112–116. [Google Scholar]
- Van, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid par-tition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar]
- Yuan, H.; Cao, G.; Hou, X.; Huang, M.; Du, P.; Tan, T.; Zhang, Y.; Zhou, H.; Liu, X.; Liu, L.; et al. Development of a widely targeted volatilomics method for profiling volatilomes in plants. Mol. Plant 2022, 15, 189–202. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Shi, L.; Gong, D.; Zhang, S.; Zhao, Q.; Zhan, D.; Vasseur, L.; Wang, Y.; Yu, J.; et al. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat. Genet. 2021, 53, 1250–1259. [Google Scholar] [CrossRef]
- Anders, S.; Reyes, A.; Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012, 22, 2008–2017. [Google Scholar] [CrossRef]
- Zhou, Z.-W.; Deng, H.-L.; Wu, Q.-Y.; Liu, B.-B.; Yue, C.; Deng, T.-T.; Lai, Z.-X.; Sun, Y. Validation of reference genes for gene expression studies in post-harvest leaves of tea plant (Camellia sinensis). PeerJ 2018, 7, e6385. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Peng, Q.; Zhou, Y.; Liao, Y.; Zeng, L.; Xu, X.; Jia, Y.; Dong, F.; Li, J.; Tang, J.; Yang, Z. Functional Characterization of An Allene Oxide Synthase Involved in Biosynthesis of Jasmonic Acid and Its Influence on Metabolite Profiles and Ethylene Formation in Tea (Camellia sinensis) Flowers. Int. J. Mol. Sci. 2018, 19, 2440. [Google Scholar] [CrossRef]
- Hu, J.Z.; Cai, J.; Park, S.J.; Lee, K.; Li, Y.X.; Chen, Y.; Yun, J.Y.; Xu, T.; Kang, H.S. N6-Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. Plant J. 2021, 106, 1759–1775. [Google Scholar]
- Zhou, Y.; Zeng, L.; Liu, X.; Gui, J.; Mei, X.; Fu, X.; Dong, F.; Tang, J.; Zhang, L.; Yang, Z. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chem. 2017, 231, 78–86. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, L.; Liao, Y.; Li, J.; Tang, J.; Yang, Z. Formation of α-Farnesene in Tea (Camellia sinensis) Leaves Induced by Herbivore-Derived Wounding and Its Effect on Neighboring Tea Plants. Int. J. Mol. Sci. 2019, 20, 4151. [Google Scholar] [CrossRef]
- Chen, S.; Xie, P.; Li, Y.; Wang, X.; Liu, H.; Wang, S.; Han, W.; Wu, R.; Li, X.; Guan, Y.; et al. New Insights into Stress-Induced β-Ocimene Biosynthesis in Tea (Camellia sinensis) Leaves during Oolong Tea Processing. J. Agric. Food Chem. 2021, 69, 11656–11664. [Google Scholar] [CrossRef]
- Zeng, L.; Zhou, Y.; Gui, J.; Fu, X.; Mei, X.; Zhen, Y.; Ye, T.; Du, B.; Dong, F.; Watanabe, N.; et al. Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process. J. Agric. Food Chem. 2016, 64, 5011–5019. [Google Scholar] [CrossRef]
- Zeng, L.; Zhou, Y.; Fu, X.; Liao, Y.; Yuan, Y.; Jia, Y.; Dong, F.; Yang, Z. Biosynthesis of Jasmine Lactone in Tea (Camellia sinensis) Leaves and Its Formation in Response to Multiple Stresses. J. Agric. Food Chem. 2018, 66, 3899–3909. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, S.; Zhou, C.; Tian, C.; Shi, B.; Xu, K.; Huang, L.; Sun, Y.; Lin, Y.; Lai, Z.; et al. RNA Methylome Reveals the m6A-Mediated Regulation of Flavor Metabolites in Tea Leaves under Solar-Withering. Genom. Proteom. Bioinform. 2023, 21, 769–787. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, L.; Hou, X.; Liao, Y.; Yang, Z. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. J. Exp. Bot. 2020, 71, 2172–2185. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, X.; Yang, J.; Zhou, X.; Wu, S.; Gu, D.; Zeng, L.; Yang, Z. Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Food Res. Int. 2021, 142, 110183. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Acosta, I.F.; Farmer, E.E. Jasmonates. In Arabidopsis Book; Somerville, C., Meyerowit, E., Eds.; The American Society of Plant Biologists: Rockville, MD, USA, 2010; p. e0129. [Google Scholar]
- Zang, Y.; Zheng, W.; He, Y.; Hong, S.-B.; Zhu, Z. Global analysis of transcriptional response of Chinese cabbage to methyl jasmonate reveals JA signaling on enhancement of secondary metabolism pathways. Sci. Hortic. 2015, 189, 159–167. [Google Scholar] [CrossRef]
- Shi, J.; Xie, D.; Qi, D.; Peng, Q.; Chen, Z.; Schreiner, M.; Lin, Z.; Baldermann, S. Methyl Jasmonate-Induced Changes of Flavor Profiles During the Processing of Green, Oolong, and Black Tea. Front. Plant Sci. 2019, 10, 781. [Google Scholar] [CrossRef]
- Shi, J.; Ma, C.; Qi, D.; Lv, H.; Yang, T.; Peng, Q.; Chen, Z.; Lin, Z. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC Plant Biol. 2015, 15, 233. [Google Scholar] [CrossRef]
- Mosblech, A.; Feussner, I.; Heilmann, I. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 2009, 47, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Ren, N.; Qi, J.; Lu, J.; Xiang, C.; Ju, H.; Cheng, J.; Lou, Y. The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. Physiol. Plant. 2014, 152, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Schaller, A.; Stintzi, A. Enzymes in jasmonate biosynthesis-Structure, function, regulation. Phytochemistry 2009, 70, 1532–1538. [Google Scholar] [CrossRef] [PubMed]
- Schilmiller, A.L.; Koo, A.J.; Howe, G.A. Functional Diversification of Acyl-Coenzyme A Oxidases in Jasmonic Acid Biosynthesis and Action. Plant Physiol. 2007, 143, 812–824. [Google Scholar] [CrossRef]
- Delker, C.; Zolman, B.K.; Miersch, O.; Wasternack, C. Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal β-oxidation enzymes—Additional proof by properties of pex6 and aim1. Phytochemistry 2007, 68, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Wang, L.; Yue, C.; Hao, X.; Wang, X.; Yang, Y. Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis). Plant Physiol. Biochem. 2015, 97, 432–442. [Google Scholar] [CrossRef]
- Cao, H.-L.; Wang, L.; Qian, W.-J.; Hao, X.-Y.; Yang, Y.-J.; Wang, X.-C. Positive Regulation of CsbZIP4 Transcription Factor on Salt Stress Response in Transgenic Arabidopsis. Acta Agron. Sin. 2017, 43, 1012–1020. [Google Scholar] [CrossRef]
- Lorenzo, O.; Chico, J.M.; Sánchez-Serrano, J.J.; Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 2004, 16, 1938–1950. [Google Scholar] [CrossRef]
- Eulgem, T.; Somssich, I. E Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 2007, 10, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zheng, C.; Yao, M.; Chen, L. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants. Beverage Plant Res. 2021, 1, 1–11. [Google Scholar] [CrossRef]
- Chen, T.; Chen, X.; Zhang, S.; Zhu, J.; Tang, B.; Wang, A.; Dong, L.; Zhang, Z.; Yu, C.; Sun, Y.; et al. The Genome Sequence Archive Family: Toward Explosive Data Growth and Diverse Data Types. Genom. Proteom. Bioinform. 2021, 19, 578–583. [Google Scholar] [CrossRef] [PubMed]
- CNCB-NGDC Members and Partners. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022, 50, D27–D38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.-L.; Deng, H.-L.; Zheng, Y.-C.; Kong, X.-R.; Zhong, Q.-S.; You, X.-M.; Shan, R.-Y.; Lin, Z.-H.; Chen, Z.-H.; Chen, C.-S. Jasmonates Play an Important Role in Differential Accumulation of Key Oolong Tea Aromas in Two Tea Varieties (Camellia sinensis). Horticulturae 2024, 10, 520. https://doi.org/10.3390/horticulturae10050520
Li X-L, Deng H-L, Zheng Y-C, Kong X-R, Zhong Q-S, You X-M, Shan R-Y, Lin Z-H, Chen Z-H, Chen C-S. Jasmonates Play an Important Role in Differential Accumulation of Key Oolong Tea Aromas in Two Tea Varieties (Camellia sinensis). Horticulturae. 2024; 10(5):520. https://doi.org/10.3390/horticulturae10050520
Chicago/Turabian StyleLi, Xin-Lei, Hui-Li Deng, Yu-Cheng Zheng, Xiang-Rui Kong, Qiu-Sheng Zhong, Xiao-Mei You, Rui-Yang Shan, Zheng-He Lin, Zhi-Hui Chen, and Chang-Song Chen. 2024. "Jasmonates Play an Important Role in Differential Accumulation of Key Oolong Tea Aromas in Two Tea Varieties (Camellia sinensis)" Horticulturae 10, no. 5: 520. https://doi.org/10.3390/horticulturae10050520
APA StyleLi, X. -L., Deng, H. -L., Zheng, Y. -C., Kong, X. -R., Zhong, Q. -S., You, X. -M., Shan, R. -Y., Lin, Z. -H., Chen, Z. -H., & Chen, C. -S. (2024). Jasmonates Play an Important Role in Differential Accumulation of Key Oolong Tea Aromas in Two Tea Varieties (Camellia sinensis). Horticulturae, 10(5), 520. https://doi.org/10.3390/horticulturae10050520