Non-Destructive Detection of Cerasus Humilis Fruit Quality by Hyperspectral Imaging Combined with Chemometric Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Hyperspectral Image Acquisition
2.2.1. Hyperspectral Imaging System
2.2.2. Image Acquisition and Calibration
2.2.3. Chemical Analysis
2.3. Data Processing
2.3.1. Sample Partitioning
2.3.2. Spectral Preprocessing
2.3.3. Selection Methods of Characteristic Wavelengths
2.3.4. Models Establishment
3. Results and Discussion
3.1. Spectral Analysis
3.2. Statistics of SSC and Firmness
3.3. Spectral Pretreatment
3.4. Effective Wavelength Selection
3.4.1. Successive Projections Algorithm
3.4.2. Competitive Adaptive Reweighted Sampling
3.4.3. Uninformative Variable Elimination
3.4.4. Secondary Effective Wavelength Selection
3.5. Model Analysis
3.5.1. MLR Model
3.5.2. LS-SVM Model
3.5.3. Model Comparison and Analysis
3.6. Visualization of SSC and Firmness Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Yang, H.; Zhang, S.; Li, L. Detection of defective features in cerasus humilis fruit based on hyperspectral imaging technology. Appl. Sci. 2023, 13, 3279. [Google Scholar] [CrossRef]
- Li, L.; Lu, L.M.; Zhao, X.H.; Hu, D.Y.; Tang, T.Y.; Tang, Y.L. Nondestructive detection of tomato quality based on multiregion combination model. J. Food Process Eng. 2022, 45, e14100. [Google Scholar] [CrossRef]
- De Brito, A.A.; Campos, F.; dos Reis Nascimento, A.; Damiani, C.; da Silva, F.A.; de Almeida Teixeira, G.H.; Júnior, L.C.C. Non-destructive determination of color, titratable acidity, and dry matter in intact tomatoes using a portable Vis-NIR spectrometer. J. Food Compos. Anal. 2022, 107, 104288. [Google Scholar] [CrossRef]
- Shang, Y.; Bao, L.; Bi, H.; Guan, S.; Xu, J.; Gu, Y.; Zhao, C. Authenticity discrimination and adulteration level detection of camellia seed oil via hyperspectral imaging technology. Food Anal. Methods 2024, 17, 450–463. [Google Scholar] [CrossRef]
- Sun, J.; Shi, X.; Zhang, H.; Xia, L.; Guo, Y.; Sun, X. Detection of moisture content in peanut kernels using hyperspectral imaging technology coupled with chemometrics. J. Food Process Eng. 2019, 42, e13263. [Google Scholar] [CrossRef]
- Baiano, A. Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review. J. Food Eng. 2017, 214, 10–15. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, S.; Ren, R.; Xue, J.; Zhao, H. Detection of soluble solids content in different cultivated fresh jujubes based on variable optimization and model update. Foods 2022, 11, 2522. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, S.; Zuo, C.; Jiang, M.; Song, J.; Ding, F.; Pan, L. Exploring the variability and heterogeneity of apple firmness using visible and near-infrared hyperspectral imaging. LWT-Food Sci. Technol. 2024, 192, 115704. [Google Scholar] [CrossRef]
- Feng, S.; Shang, J.; Tan, T.; Wen, Q.; Meng, Q. Nondestructive quality assessment and maturity classification of loquats based on hyperspectral imaging. Sci. Rep. 2023, 13, 13189. [Google Scholar] [CrossRef] [PubMed]
- Benelli, A.; Cevoli, C.; Ragni, L.; Fabbri, A. In-field and non-destructive monitoring of grapes maturity by hyperspectral imaging. Biosyst. Eng. 2021, 207, 59–67. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Li, M. Uncertainty assessment for firmness and total soluble solids of sweet cherries using hyperspectral imaging and multivariate statistics. J. Food Eng. 2021, 289, 110177. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Xu, J.; Feng, X.; Wu, F.; Zhou, R.; He, Y. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biol. Technol. 2018, 143, 112–118. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, J.; Liu, S.; Huang, H.; Zhan, B.; Fan, G.; Zhang, H. Prediction of soluble solid content in Nanfeng mandarin by combining hyperspectral imaging and effective wavelength selection. J. Food Compos. Anal. 2024, 126, 105939. [Google Scholar] [CrossRef]
- Ma, T.; Xia, Y.; Inagaki, T.; Tsuchikawa, S. Non-destructive and fast method of mapping the distribution of the soluble solids content and pH in kiwifruit using object rotation near-infrared hyperspectral imaging approach. Postharvest Biol. Technol. 2021, 174, 111440. [Google Scholar] [CrossRef]
- Xu, L.; Chen, M.; Wang, Y.; Chen, X.; Lei, X. Study on non-destructive detection method of kiwifruit sugar content based on hyperspectral imaging technology. Spectrosc. Spectr. Anal. 2021, 41, 2188–2195. [Google Scholar]
- Choi, J.Y.; Kim, J.; Jeong, S.; Kim, M.; Park, S.; Moon, K.D. Hyperspectral imaging technigue for monitoring moisture content of blueberry during the drying process. Korean J. Food Preserv. 2021, 28, 445–455. [Google Scholar] [CrossRef]
- Baek, M.W.; Tilahun, S. Prediction of tannin content and quality parameters in astringent persimmons from visible and near-infrared spectroscopy. Front. Plant Sci. 2023, 14, 1260644. [Google Scholar] [CrossRef]
- Chu, X.; Miao, P.; Zhang, K.; Wei, H.; Fu, H.; Liu, H.; Ma, Z. Green banana maturity classification and quality evaluation using hyperspectral imaging. Agriculture 2022, 12, 530. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Rasooli Sharabiani, V.; Shahiri, M.; Moinfar, A.; Szumny, A. Predicting quality properties of pears during storage using hyper spectral imaging system. Agriculture 2023, 13, 1913. [Google Scholar] [CrossRef]
- Wang, B.; He, J.; Zhang, S.; Li, L. Nondestructive prediction and visualization of total flavonoids content in Cerasus Humilis fruit during storage periods based on hyperspectral imaging technique. J. Food Process Eng. 2021, 44, e13807. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, C.; Huang, W. Intensity correction of visualized prediction for sugar content in apple using hyperspectral imaging. Trans. Chin. Soc. Agric. Mach. 2015, 46, 227–232. [Google Scholar] [CrossRef]
- Wang, X.H.; Xu, L.J.; Chen, H.; Zou, Z.Y.; Huang, P.; Xin, B. Non-destructive detection of pH value of kiwifruit based on hyperspectral fluorescence imaging technology. Agriculture 2022, 12, 208. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Kim, K. Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng. 2013, 118, 157–171. [Google Scholar] [CrossRef]
- Tang, G.; Huang, Y.; Tian, K.; Song, X.; Yan, H.; Min, S. A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm. Analyst 2014, 139, 4894–4902. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Shang, J.; Huang, R.; Zhang, Y. Determination of soluble solids content and firmness in plum using hyperspectral imaging and chemometric algorithms. J. Food Process Eng. 2021, 44, e13597. [Google Scholar] [CrossRef]
- Gao, H.Z.; Wan, J.W.; Zhu, Z.Z.; Wang, L.B.; Nian, Y.J. Classification technique for hyperspectral image based on subspace of bands feature extraction and LS-SVM. Pectrosc. Spectr. Anal. 2011, 31, 1314–1317. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Zhang, H.; Aiguo, O. Nondestructive measurement of internal quality of Nanfeng mandarin fruit by charge coupled device near infrared spectroscopy. Comput. Electron. Agr. 2010, 71, S10–S14. [Google Scholar] [CrossRef]
- Shinzawa, H.; Ritthiruangdej, P.; Ozaki, Y. Kernel analysis of partial least squares regression models. Appl. Spectrosc. 2011, 65, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, Y.; Huang, W.; Tian, X.; Xia, Y.; Xu, L.; Fan, S. Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm. Infrared Phys. Technol. 2019, 98, 297–304. [Google Scholar] [CrossRef]
- Shao, Y.; Ji, S.; Xuan, G.; Wang, K.; Xu, L.; Shao, J. Soluble solids content monitoring and shelf life analysis of winter jujube at different maturity stages by Vis-NIR hyperspectral imaging. Postharvest Biol. Technol. 2024, 210, 112773. [Google Scholar] [CrossRef]
- Li, X.; Wei, Z.; Peng, F.; Liu, J.; Han, G. Non-destructive prediction and visualization of anthocyanin content in mulberry fruits using hyperspectral imaging. Front. Plant Sci. 2023, 14, 1137198. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Gao, Y.; Yan, Q.; Qi, L.; Zhu, Y.; Wang, B. Estimation method of soluble solid content in peach based on deep features of hyperspectral imagery. Sensors 2020, 20, 5021. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, H.; Zhang, C.; Wu, P.; Li, J.; Xia, Y.; Fan, S. Rapid prediction and visualization of moisture content in single cucumber (Cucumis sativus L.) seed using hyperspectral imaging technology. Infrared Phys. Technol. 2019, 102, 103034. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Song, S.; Xie, S.; Kang, F. Study on starch content detection and visualization of potato based on hyperspectral imaging. Food Sci. Nutr. 2021, 9, 4420–4430. [Google Scholar] [CrossRef] [PubMed]
Index | Sample Set | No. of Samples | Minimum | Maximum | Average Value | Standard Deviation |
---|---|---|---|---|---|---|
SSC (°Brix) | Calibration set | 240 | 9.24 | 20.85 | 14.65 | 1.88 |
Prediction set | 80 | 11.32 | 18.17 | 14.91 | 1.85 | |
Total samples | 320 | 9.24 | 20.85 | 14.71 | 1.87 | |
Firmness (kg/cm2) | Calibration set | 240 | 5.86 | 16.64 | 11.45 | 2.57 |
Prediction set | 80 | 7.61 | 16.53 | 12.45 | 2.27 | |
Total samples | 320 | 5.86 | 16.64 | 11.76 | 2.53 |
Parameter | Preprocessing Methods | Lvs | Calibration Set | Prediction Set | |||
---|---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | |||
SSC | Original spectra | 12 | 0.7625 | 1.2148 | 0.8368 | 1.0289 | 1.7934 |
S-G | 10 | 0.7365 | 1.2703 | 0.8056 | 1.1123 | 1.6589 | |
SNV | 11 | 0.7709 | 1.1963 | 0.8596 | 0.9865 | 1.8705 | |
MSC | 9 | 0.7589 | 1.2228 | 0.8315 | 1.0528 | 1.7527 | |
BC | 10 | 0.7611 | 1.2181 | 0.8308 | 1.0431 | 1.7689 | |
De-T | 9 | 0.7497 | 1.2429 | 0.8229 | 1.0447 | 1.7662 | |
Firmness | Original spectra | 11 | 0.6737 | 1.4674 | 0.7836 | 1.2536 | 1.8074 |
S-G | 11 | 0.6738 | 1.4946 | 0.7607 | 1.2867 | 1.7609 | |
SNV | 12 | 0.6728 | 1.4968 | 0.6689 | 1.3784 | 1.6438 | |
MSC | 12 | 0.6724 | 1.4976 | 0.6586 | 1.3801 | 1.6418 | |
BC | 10 | 0.6456 | 1.5527 | 0.6482 | 1.4079 | 1.6093 | |
De-T | 12 | 0.6759 | 1.4852 | 0.6949 | 1.3123 | 1.7266 |
Parameter | Variable Selection Methods | No. of Variables | Characteristic Wavelengths (nm) |
---|---|---|---|
SSC | UVE-SPA | 15 | 1218, 1189, 969, 1151, 1453, 1577, 995, 1110, 1367, 1129, 953, 960, 1409, 1596, 1647 |
UVE-CARS | 10 | 995, 1036, 1075, 1081, 1119, 1122, 1151, 1208, 1383, 1628 | |
Firmness | UVE-SPA | 4 | 1106, 1180, 960, 1164 |
UVE-CARS | 8 | 966, 1106, 1198, 1202, 1205, 1208, 1237, 1377 |
Parameter | Variable Selection Methods (No.) | Calibration Set | Prediction Set | |||
---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | ||
SSC | SPA (18) | 0.7231 | 1.2973 | 0.7844 | 1.1708 | 1.5760 |
CARS (10) | 0.7187 | 1.3058 | 0.7728 | 1.1975 | 1.5409 | |
UVE (129) | 0.8981 | 0.8258 | 0.6207 | 1.7198 | 1.0729 | |
UVE-SPA (15) | 0.8045 | 1.1024 | 0.8326 | 0.9913 | 1.8614 | |
UVE-CARS (10) | 0.7821 | 1.1702 | 0.8179 | 1.0749 | 1.7166 | |
Firmness | SPA (4) | 0.6762 | 1.4887 | 0.7049 | 1.3677 | 1.6566 |
CARS (8) | 0.6916 | 1.4518 | 0.7287 | 1.2926 | 1.7529 | |
UVE (53) | 0.7449 | 1.4958 | 0.6839 | 1.3945 | 1.6248 | |
UVE-SPA (4) | 0.6537 | 1.5402 | 0.6694 | 1.4005 | 1.6179 | |
UVE-CARS (8) | 0.7211 | 1.4529 | 0.7629 | 1.2545 | 1.8061 |
Parameter | Variable Selection Methods (No.) | (γ, σ2) | Calibration Set | Prediction Set | |||
---|---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | |||
SSC | SPA (18) | (3.8888 × 103, 660.6806) | 0.8146 | 1.0952 | 0.8526 | 0.9703 | 1.9017 |
CARS (10) | (4.4715 × 103, 344.6078) | 0.7815 | 1.1737 | 0.8179 | 1.0681 | 1.7276 | |
UVE (129) | (482.3338, 1.7519 × 103) | 0.7952 | 1.1449 | 0.8514 | 0.9806 | 1.8817 | |
UVE-SPA (15) | (4.1732 × 103, 771.8445) | 0.8043 | 1.1224 | 0.8532 | 0.9650 | 1.9121 | |
UVE-CARS (10) | (2.4422 × 103, 782.9417) | 0.7631 | 1.2157 | 0.8244 | 1.0631 | 1.7357 | |
Firmness | SPA (4) | (318.8407, 2.0509 × 103) | 0.6871 | 1.4635 | 0.7392 | 1.2879 | 1.7593 |
CARS (8) | (561.8141, 210.9484) | 0.7129 | 1.3991 | 0.7635 | 1.1889 | 1.9058 | |
UVE (53) | (262.0350, 193.0957) | 0.7353 | 1.3390 | 0.7775 | 1.1333 | 1.9993 | |
UVE-SPA (4) | (42.8355, 12.0954) | 0.6918 | 1.4525 | 0.6926 | 1.3060 | 1.7349 | |
UVE-CARS (8) | (143.1516, 29.2393) | 0.7283 | 1.3578 | 0.7879 | 1.1205 | 2.0221 |
Model | Parameter | Variable Selection Methods (No.) | Calibration Set | Prediction Set | |||
---|---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | |||
MLR | SSC | UVE-SPA (15) | 0.8045 | 1.1024 | 0.8326 | 0.9913 | 1.8614 |
Firmness | UVE-CARS (8) | 0.7211 | 1.4529 | 0.7629 | 1.2545 | 1.8061 | |
LS-SVM | SSC | SPA (18) | 0.8146 | 1.0952 | 0.8526 | 0.9703 | 1.9017 |
Firmness | UVE-CARS (8) | 0.7283 | 1.3578 | 0.7879 | 1.1205 | 2.0221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Yang, H.; Li, L.; Zhang, S. Non-Destructive Detection of Cerasus Humilis Fruit Quality by Hyperspectral Imaging Combined with Chemometric Method. Horticulturae 2024, 10, 519. https://doi.org/10.3390/horticulturae10050519
Wang B, Yang H, Li L, Zhang S. Non-Destructive Detection of Cerasus Humilis Fruit Quality by Hyperspectral Imaging Combined with Chemometric Method. Horticulturae. 2024; 10(5):519. https://doi.org/10.3390/horticulturae10050519
Chicago/Turabian StyleWang, Bin, Hua Yang, Lili Li, and Shujuan Zhang. 2024. "Non-Destructive Detection of Cerasus Humilis Fruit Quality by Hyperspectral Imaging Combined with Chemometric Method" Horticulturae 10, no. 5: 519. https://doi.org/10.3390/horticulturae10050519
APA StyleWang, B., Yang, H., Li, L., & Zhang, S. (2024). Non-Destructive Detection of Cerasus Humilis Fruit Quality by Hyperspectral Imaging Combined with Chemometric Method. Horticulturae, 10(5), 519. https://doi.org/10.3390/horticulturae10050519