The Impact of Deficit Irrigation on the Agronomic Performance and Chemical Composition of Scolymus hispanicus L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Nutritional Characterization
2.3. Organic Acids
2.4. Free Sugars
2.5. Tocopherols
2.6. Fatty Acids
2.7. Mineral Composition
2.8. Phenolic Compounds and Bioactive Properties
2.8.1. Phenolic Profile
2.8.2. Antioxidant Activity
2.8.3. Antimicrobial Properties
2.8.4. Hepatotoxicity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Growth Parameters
3.2. Nutritional Characterization
3.3. Organic Acids, Free Sugars and Tocopherols Content
3.4. Fatty Acid Composition
3.5. Mineral Status
3.6. Phenolic Compound Profile
3.7. Bioactive Properties
3.7.1. Antioxidant Activity
3.7.2. Antimicrobial Properties
3.7.3. Hepatotoxicity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Kumar, P.; Khan, A. Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. Biocatal. Agric. Biotechnol. 2020, 23, 101463. [Google Scholar] [CrossRef]
- Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. Climate change impact on crop rotations of winter durum wheat and tomato in Southern Italy: Yield analysis and soil fertility. Ital. J. Agron. 2012, 7, 100–107. [Google Scholar] [CrossRef]
- Galindo, A.; Collado-González, J.; Griñán, I.; Corell, M.; Centeno, A.; Martín-Palomo, M.J.; Girón, I.F.; Rodríguez, P.; Cruz, Z.N.; Memmi, H.; et al. Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric. Water Manag. 2018, 202, 311–324. [Google Scholar] [CrossRef]
- Lovelli, S.; Perniola, M.; Scalcione, E.; Troccoli, A.; Ziska, L.H. Future climate change in the Mediterranean area: Implications for water use and weed management. Ital. J. Agron. 2012, 7, 44–49. [Google Scholar] [CrossRef]
- Balestrini, R.; Chitarra, W.; Antoniou, C.; Ruocco, M.; Fotopoulos, V. Improvement of plant performance under water deficit with the employment of biological and chemical priming agents. J. Agric. Sci. 2018, 156, 680–688. [Google Scholar] [CrossRef]
- Borsato, E.; Rosa, L.; Marinello, F.; Tarolli, P.; D’Odorico, P. Weak and Strong Sustainability of Irrigation: A Framework for Irrigation Practices Under Limited Water Availability. Front. Sustain. Food Syst. 2020, 4, 17. [Google Scholar] [CrossRef]
- Liu, Y.; Song, W. Modelling crop yield, water consumption, and water use efficiency for sustainable agroecosystem management. J. Clean. Prod. 2020, 253, 119940. [Google Scholar] [CrossRef]
- Malek, Ž.; Verburg, P.H. Mapping global patterns of land use decision-making. Glob. Environ. Chang. 2020, 65, 102170. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water scarcity and future challenges for food production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Ouda, S.; Zohry, A.E.H.; Noreldin, T. Deficit Irrigation: A Remedy for Water Scarcity; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9783030355869. [Google Scholar]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Gatto, M.A.; Ippolito, A.; Linsalata, V.; Cascarano, N.A.; Nigro, F.; Vanadia, S.; Di Venere, D. Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol. Technol. 2011, 61, 72–82. [Google Scholar] [CrossRef]
- Ünlü, M.; Kanber, R.; Şenyigit, U.; Onaran, H.; Diker, K. Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in the Middle Anatolian Region in Turkey. Agric. Water Manag. 2006, 79, 43–71. [Google Scholar] [CrossRef]
- Goodwin, I.; Boland, A.-M. Scheduling deficit irrigation of fruit trees for optimizing water use efficiency. In Deficit Irrigation Practices; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2002; pp. 67–79. ISBN 1020-1203. [Google Scholar]
- Karkanis, A.; Polyzos, N.; Kompocholi, M.; Petropoulos, S.A. Rock samphire, a candidate crop for saline agriculture: Cropping practices, chemical composition and health effects. Appl. Sci. 2022, 12, 737. [Google Scholar] [CrossRef]
- Paschoalinotto, B.H.; Polyzos, N.; Compocholi, M.; Rouphael, Y.; Alexopoulos, A.; Dias, M.I.; Barros, L.; Petropoulos, S.A. Domestication of Wild Edible Species: The Response of Scolymus hispanicus Plants to Different Fertigation Regimes. Horticulturae 2023, 9, 103. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Di Gioia, F.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.; Barros, L.; et al. Wild and cultivated Centaurea raphanina subsp. mixta: A valuable source of bioactive compounds. Antioxidants 2020, 9, 314. [Google Scholar] [CrossRef]
- Polyzos, N.; Paschoalinotto, B.H.; Compocholi, M.; Pinela, J.; Heleno, S.A.; Calhelha, R.C.; Dias, M.I.; Barros, L.; Petropoulos, S.A. Fertilization of pot-grown Cichorium spinosum L.: How it can affect plant growth, chemical profile, and bioactivities of edible parts? Horticulturae 2022, 8, 890. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Di Gioia, F.; Ferreira, I.C.F.R.; Petropoulos, S.A. Wild greens used in the Mediterranean diet. In The Mediterranean Diet: An Evidence-Based Approach; Preedy, V., Watson, R., Eds.; Academic Press: London, UK, 2020; pp. 209–228. ISBN 9788578110796. [Google Scholar]
- Carrascosa, Á.; Pascual, A.; Ros, M.; Petropoulos, S.; Alguacil, M. The Effect of Fertilization Regime on Growth Parameters of Sonchus oleraceus and Two Genotypes of Portulaca oleracea. Biol. Life Sci. Forum 2022, 16, 7. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef]
- Renna, M. Reviewing the prospects of sea fennel (Crithmum maritimum L.) as emerging vegetable crop. Plants 2018, 7, 92. [Google Scholar] [CrossRef]
- Zenobi, S.; Fiorentini, M.; Ledda, L.; Deligios, P.; Aquilanti, L.; Orsini, R. Crithmum maritimum L. Biomass Production in Mediterranean Environment. Agronomy 2022, 12, 926. [Google Scholar] [CrossRef]
- Papadimitriou, D.M.; Daliakopoulos, I.N.; Kontaxakis, E.; Sabathianakis, M.; Manios, T.; Savvas, D. Effect of moderate salinity on Golden Thistle (Scolymus hispanicus L.) grown in a soilless cropping system. Sci. Hortic. 2022, 303, 111182. [Google Scholar] [CrossRef]
- Marmouzi, I.; El Karbane, M.; El Hamdani, M.; Kharbach, M.; Naceiri Mrabti, H.; Alami, R.; Dahraoui, S.; El Jemli, M.; Ouzzif, Z.; Cherrah, Y.; et al. Phytochemical and pharmacological variability in golden thistle functional parts: Comparative study of roots, stems, leaves and flowers. Nat. Prod. Res. 2017, 31, 2669–2674. [Google Scholar] [CrossRef] [PubMed]
- Lentini, F.; Venza, F. Wild food plants of popular use in Sicily. J. Ethnobiol. Ethnomed. 2007, 3, 15. [Google Scholar] [CrossRef]
- Leonti, M.; Nebel, S.; Rivera, D.; Heinrich, M. Wild gathered food plants in the European Mediterranean: A comparative analysis. Econ. Bot. 2006, 60, 130–142. [Google Scholar] [CrossRef]
- Tardío, J.; Pardo-de-santayana, M.; Morales, R. Ethnobotanical review of wild edible plants in Spain. Bot. J. Linn. Soc. 2006, 152, 27–71. [Google Scholar] [CrossRef]
- Disciglio, G.; Tarantino, A.; Frabboni, L.; Gagliardi, A.; Michela, M.; Tarantino, E.; Gatta, G.; Beta, L.; Miller, F.; Cichorium, L.; et al. Qualitative characterisation of cultivated and wild edible plants: Mineral elements, phenols content and antioxidant capacity. Ital. J. Agron. 2017, 12, 383–394. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Cabrera Loera, R.D.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Díez Marqués, C.; Pardo-de-Santayana, M.; Tardío, J. Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resour. Crop Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Majchrzak, D.; Wagner, K.H.; Elmadfa, I.; Kafatos, A. Lipid concentrations of wild edible greens in Crete. Food Chem. 2006, 99, 822–834. [Google Scholar] [CrossRef]
- Pieroni, A.; Janiak, V.; Dürr, C.M.; Lüdeke, S.; Trachsel, E.; Heinrich, M. In vitro antioxidant activity of non-cultivated vegetables of ethnic Albanians in southern Italy. Phytother. Res. 2002, 16, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Polo, S.; Tardío, J.; Vélez-del-Burgo, A.; Molina, M.; Pardo-de-Santayana, M. Knowledge, use and ecology of golden thistle (Scolymus hispanicus L.) in Central Spain. J. Ethnobiol. Ethnomed. 2009, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Tardío, J. Fatty acids profiles of some Spanish wild vegetables. Food Sci. Technol. Int. 2012, 18, 281–290. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Pardo-de-Santayana, M.; Tardío, J. Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT Food Sci. Technol. 2014, 55, 389–396. [Google Scholar] [CrossRef]
- Chaski, C.; Petropoulos, S.A. The Effects of Biostimulant Application on Growth Parameters of Lettuce Plants Grown under Deficit Irrigation Conditions. Biol. Life Sci. Forum 2022, 16, 4. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists; Horwitz, W., Latimer, G., Eds.; AOAC Inter.: Gaithersburg, MD, USA, 2019; ISBN 0935584773. [Google Scholar]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Molina, M.; Tardío, J.; Aceituno-Mata, L.; Morales, R.; Reyes-García, V.; Pardo-de-Santayana, M. Weeds and food diversity: Natural yield assessment and future alternatives for traditionally consumed wild vegetables. J. Ethnobiol. 2014, 34, 44–67. [Google Scholar] [CrossRef]
- Calone, R.; Mircea, D.M.; González-Orenga, S.; Boscaiu, M.; Lambertini, C.; Barbanti, L.; Vicente, O. Recovery from Salinity and Drought Stress in the Perennial Sarcocornia fruticosa vs. the Annual Salicornia europaea and S. veneta. Plants 2022, 11, 1058. [Google Scholar] [CrossRef]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Díez-Marqués, C.; Molina, M.; Tardío, J. Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. J. Food Compos. Anal. 2014, 34, 163–170. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I.C.F.R. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Majchrzak, D.; Wagner, K.H.; Elmadfa, I.; Kafatos, A. The antioxidant and phylloquinone content of wildly grown greens in Crete. Food Chem. 2006, 99, 813–821. [Google Scholar] [CrossRef]
- Min, K.; Chen, K.; Arora, R. Short versus prolonged freezing differentially impacts freeze–thaw injury in spinach leaves: Mechanistic insights through metabolite profiling. Physiol. Plant. 2019, 168, 777–789. [Google Scholar] [CrossRef]
- Oh, M.-M.; Carey, E.E.; Rajashekar, C.B. Regulated Water Deficits Improve Phytochemical Concentration in Lettuce. J. Am. Soc. Hortic. Sci. 2010, 135, 223–229. [Google Scholar] [CrossRef]
- Luoh, J.W.; Begg, C.B.; Symonds, R.C.; Ledesma, D.; Yang, R.-Y. Nutritional Yield of African Indigenous Vegetables in Water-Deficient and Water-Sufficient Conditions. Food Nutr. Sci. 2014, 05, 812–822. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 2004, 37, 263–277. [Google Scholar] [CrossRef]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Han, L.; Huang, B. Membrane fatty acid composition and saturation levels associated with leaf dehydration tolerance and post-drought rehydration in Kentucky bluegrass. Crop Sci. 2011, 51, 273–281. [Google Scholar] [CrossRef]
- Bettaieb, I.; Zakhama, N.; Wannes, W.A.; Kchouk, M.E.; Marzouk, B. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Ghanimi, R.; Ouhammou, A.; Ahouach, A.; Rakhila, Y.; Talbi, Z.; Cherkaoui, M. Macroelements and Microelements Content of Some Wild Edible Plants. Asian J. Microbiol. Biotechnol. Environ. Sci. 2022, 24, 414–418. [Google Scholar] [CrossRef]
- Gonçalves, S.; Moreira, E.; Andrade, P.B.; Valentão, P.; Romano, A. Effect of in vitro gastrointestinal digestion on the total phenolic contents and antioxidant activity of wild Mediterranean edible plant extracts. Eur. Food Res. Technol. 2019, 245, 753–762. [Google Scholar] [CrossRef]
- Dias, M.I.; Barros, L.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic profile and antioxidant properties of commercial and wild Fragaria vesca L. roots: A comparison between hydromethanolic and aqueous extracts. Ind. Crops Prod. 2015, 63, 125–132. [Google Scholar] [CrossRef]
- Rolim, P.M.; Fidelis, G.P.; Padilha, C.E.A.; Santos, E.S.; Rocha, H.A.O.; Macedo, G.R. Phenolic profile and antioxidant activity from peels and seeds of melon (Cucumis melo L. var. reticulatus) and their antiproliferative effect in cancer cells. Braz. J. Med. Biol. Res. 2018, 51, e6069. [Google Scholar] [CrossRef] [PubMed]
- De Abreu, I.N.; Mazzafera, P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem. 2005, 43, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Al Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.S.; Pérez-Gregorio, M.R.; García-Falcón, M.S.; Simal-Gándara, J.; Almeida, D.P.F. Effect of meteorological conditions on antioxidant flavonoids in Portuguese cultivars of white and red onions. Food Chem. 2011, 124, 303–308. [Google Scholar] [CrossRef]
- Guarise, M.; Borgonovo, G.; Bassoli, A.; Ferrante, A. The Effect of Drought on Sisymbrium officinale (L.) Wild Species for Potential Cultivation as a Leafy Vegetable. Horticulturae 2023, 9, 111. [Google Scholar] [CrossRef]
- Schiattone, M.I.; Boari, F.; Cantore, V.; Castronuovo, D.; Denora, M.; Di Venere, D.; Perniola, M.; Sergio, L.; Todorovic, M.; Candido, V. Effect of water regime, nitrogen level and biostimulants application on yield and quality traits of wild rocket [Diplotaxis tenuifolia (L.) DC.]. Agric. Water Manag. 2023, 277, 108078. [Google Scholar] [CrossRef]
- Ozel-Tasci, C.; Gulec, S. Golden thistle (Scolymus hispanicus L.) hydromethanolic extracts ameliorated glucose absorption and inflammatory markers in vitro. Food Sci. Nutr. 2023, 11, 7974–7984. [Google Scholar] [CrossRef] [PubMed]
- Bettaieb, I.; Hamrouni-Sellami, I.; Bourgou, S.; Limam, F.; Marzouk, B. Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiol. Plant. 2011, 33, 1103–1111. [Google Scholar] [CrossRef]
- Sergio, L.; Boari, F.; Pieralice, M.; Linsalata, V.; Cantore, V.; Venere, D. Di Bioactive phenolics and antioxidant capacity of some wild edible greens as affected by different cooking treatments. Foods 2020, 9, 1320. [Google Scholar] [CrossRef] [PubMed]
- Borneo, R.; León, A.E.; Aguirre, A.; Ribotta, P.; Cantero, J.J. Antioxidant capacity of medicinal plants from the Province of Córdoba (Argentina) and their in vitro testing in a model food system. Food Chem. 2009, 112, 664–670. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Drought Stress Effects on Growth, ROS Markers, Compatible Solutes, Phenolics, Flavonoids, and Antioxidant Activity in Amaranthus tricolor. Appl. Biochem. Biotechnol. 2018, 186, 999–1016. [Google Scholar] [CrossRef] [PubMed]
- Puente-Garza, C.A.; Meza-Miranda, C.; Ochoa-Martínez, D.; García-Lara, S. Effect of in vitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant Physiol. Biochem. 2017, 115, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Aboukhalaf, A.; El Amraoui, B.; Tabatou, M.; da Rocha, J.M.F.; Belahsen, R. Screening of the antimicrobial activity of some extracts of edible wild plants in Morocco. Funct. Foods Health Dis. 2020, 10, 265–273. [Google Scholar] [CrossRef]
- Ozel-Tasci, C.; Gulec, S. Effects of Golden Thistle (Scolymus hispanicus L.) on Cytotoxic Activity: Cell Cycle Arrest and Apoptotic Properties on the CaCo-2 Cell Line. J. Med. Food 2022, 25, 523–528. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Ivanov, M.; Sokovic, M.D.; Ferreira, I.C.F.R.; Barros, L. Effects of growing substrate and nitrogen fertilization on the chemical composition and bioactive properties of Centaurea raphanina ssp. mixta (DC.) Runemark. Agronomy 2021, 11, 576. [Google Scholar] [CrossRef]
- Mikropoulou, E.V.; Vougogiannopoulou, K.; Kalpoutzakis, E.; Sklirou, A.D.; Skaperda, Z.; Houriet, J.; Wolfender, J.L.; Trougakos, I.P.; Kouretas, D.; Halabalaki, M.; et al. Phytochemical composition of the decoctions of Greek edible greens (chórta) and evaluation of antioxidant and cytotoxic properties. Molecules 2018, 23, 1541. [Google Scholar] [CrossRef] [PubMed]
Growth Parameters | ||||
---|---|---|---|---|
Treatments | Weight of Leaves/Plant (g) | Number of Leaves/Plants | Weight of Roots/Plant (g) | Dry Matter of Roots (%) |
Control | 91.1 ± 22.7 b* | 15.2 ± 3.3 ab | 211.1 ± 115.5 a | 27.0 ± 2.4 a |
I1 | 111.9 ± 26.1 ab | 13.6 ± 1.1 b | 137.9 ± 44.9 b | 16.1 ± 1.8 c |
I2 | 118.4 ± 25.7 a | 17.3 ± 3.3 a | 224.2 ± 89.2 a | 24.2 ± 1.3 b |
Nutritional Profile | Control | I1 | I2 |
---|---|---|---|
Total fat (g/100 g dw) | 2.71 ± 0.03 a* | 2.41 ± 0.03 b | 2.3 ± 0.1 c |
Crude protein (g/100 g dw) | 17.72 ± 0.10 c | 21.1 ± 0.1 a | 18.4 ± 0.1 b |
Ash (g/100 g dw) | 18.8 ± 0.1 c | 20.4± 0.1 a | 19.6 ± 0.2 b |
Total fiber dietary (g/100 g dw) | 42.7 ± 0.2 b | 43.5 ± 2.6 a | 42.6 ± 1.1 b |
Carbohydrates (g/100 g dw) | 18.1 ± 0.1 a | 12.5 ± 1.8 b | 17.2 ± 1.0 a |
Energy (kcal/100 g dw) | 252.98 ± 0.27 a | 243.4 ± 3.6 c | 247.8 ± 1.8 b |
Organic Acids (g/100 g dw) | Control | I1 | I2 |
---|---|---|---|
Oxalic acid | 5.55 ± 0.01 b* | 6.134 ± 0.002 a | 5.3228 ± 0.0001 c |
Quinic acid | 4.32 ± 0.06 c | 5.9 ± 0.2 a | 4.62 ± 0.08 b |
Shikinic acid | 0.007 ± 0.001 a | 0.0018 ± 0.0001 c | 0.0067 ± 0.0004 b |
Ascorbic acid | tr | tr | tr |
Fumaric acid | 0.0588 ± 0.0001 a | 0.0124 ± 0.0001 c | 0.05217 ± 0.00002 b |
Sum | 9.94 ± 0.05 b | 12.1 ± 0.2 a | 10.01 ± 0.08 b |
Tocopherols (g/100 g dw) | |||
α-Tocopherol | 0.023 ± 0.001 b | 0.049 ± 0.001 a | 0.021 ± 0.001 c |
Sum | 0.023 ± 0.001 b | 0.049 ± 0.001 a | 0.021 ± 0.001 c |
Free sugars(g/100 g dw) | |||
Fructose | 5.61 ± 0.08 b | 5.34 ± 0.05 c | 7.65 ± 0.01 a |
Glucose | 10.5 ± 0.05 b | 11.2 ± 0.4 a | 9.2 ± 0.2 c |
Sucrose | 11.8 ± 0.2 b | 16.02 ± 0.54 a | 8.6 ± 0.4 c |
Raffinose | 14.8 ± 0.7 b | 15.2 ± 0.4 a | 14.55 ± 0.06 b |
Sum | 42.6 ± 0.4 b | 47.8 ± 1.3 a | 39.995 ± 0.219 c |
Fatty Acids | Control | I1 | I2 |
---|---|---|---|
C13:0 | 0.54 ± 0.02 c* | 0.7 ± 0.03 a | 0.56 ± 0.01 b |
C14:0 | 0.68 ± 0.02 c | 0.91 ± 0.01 b | 1 ± 0.02 a |
C14:1 | 0.18 ± 0.01 c | 0.283 ± 0.001 a | 0.201 ± 0.001 b |
C15:0 | 0.123 ± 0.001 b | 0.144 ± 0.001 a | 0.112 ± 0.001 c |
C15:1 | 0.165 ± 0.005 b | 0.183 ± 0.008 a | 0.148 ± 0.004 c |
C16:0 | 19.5 ± 0.5 b | 19.9 ± 0.4 a | 19.3 ± 0.6 b |
C16:1 | 2.23 ± 0.09 b | 2.26 ± 0.1 b | 2.39 ± 0.01 a |
C17:0 | 0.31 ± 0.01 c | 0.41 ± 0.01 b | 0.52 ± 0.01 a |
C18:0 | 1.86 ± 0.07 b | 1.79 ± 0.07 c | 1.95 ± 0.09 a |
C18:1n9c | 1.5 ± 0.02 c | 1.55 ± 0.08 b | 1.76 ± 0.07 a |
C18:2n6c | 12.5 ± 0.1 c | 13.8 ± 0.6 b | 14.2 ± 0.5 a |
C18:3n6 | 0.41 ± 0.01 a | 0.37 ± 0.01 b | 0.404 ± 0.004 a |
C18:3n3 | 58.6 ± 0.4 a | 56.4 ± 0.4 b | 56.26 ± 0.03 b |
C22:0 | 0.49 ± 0.01 c | 0.52 ± 0.01 a | 0.501 ± 0.005 b |
C23:0 | 0.32 ± 0.01 a | 0.25 ± 0.001 b | 0.236 ± 0.01 c |
C24:0 | 0.59 ± 0.01 a | 0.51 ± 0.02 b | 0.446 ± 0.001 c |
SFA | 24.4 ± 0.6 b | 24.6 ± 0.7 a | 24.2 ± 0.7 c |
MUFA | 4.08 ± 0.13 c | 4.3 ± 0.2 b | 4.5 ± 0.1 a |
PUFA | 72.0 ± 0.5 a | 70.6 ± 0.9 c | 70.8 ± 0.5 b |
n6/n3 | 0.22 | 0.25 | 0.26 |
PUFA/SFA | 2.9 | 2.9 | 2.9 |
Control | I1 | I2 | |
---|---|---|---|
Minerals | |||
[K]/(g/Kg) | 39.2 ± 39.9 b | 35.6 ± 0.3 c | 51.2 ± 1.1 a |
[Na]/(mg/Kg) | 7295.6 ± 7168.7 a | 7132.2 ± 271.9 a | 2989.98 ± 73.49 b |
[Ca]/(g/Kg) | 10 ± 10.3 c | 12.9 ± 0.3 a | 12.6 ± 0.4 b |
[Mg]/(g/Kg) | 3.90 ± 3.91 c | 4.9 ± 0.2 a | 4.2 ± 0.2 b |
[Fe]/(mg/Kg) | 748.66 ± 752.02 c | 1333.9 ± 47.4 b | 1809.4 ± 46.1 a |
[Mn]/(mg/Kg) | 80.3 ± 78.4 c | 115.95 ± 1.74 b | 127.9 ± 3.8 a |
[Cu]/(mg/Kg) | 8.6 ± 8.3 c | 11.4 ± 0.3 a | 11.1 ± 0.3 b |
[Zn]/(mg/Kg) | 24.8 ± 24.2 c | 44.02 ± 1.53 a | 33.1 ± 0.9 b |
Peak | Rt | λmax | [M-H]− | MS2 | Tentative Identification | Control | I1 | I2 |
---|---|---|---|---|---|---|---|---|
1 | 18.26 | 354 | 477 | 301 (100) | Quercetin-O-hexurunoside | 1.255 ± 0.001 b* | 2.14 ± 0.01 a | 0.835 ± 0.002 c |
2 | 21.07 | 328 | 593 | 285 (100) | Kaempherol-O-deoxyhexosil-hexoside | 1.1063 ± 0.0002 b | 1.19 ± 0.01 a | 0.56 ± 0.001 c |
3 | 22.13 | 347 | 461 | 285 (100) | Kaempherol-O-hexurunoside | 3.025 ± 0.007 b | 3.67 ± 0.04 a | 2.121 ± 0.004 c |
4 | 23.6 | 346 | 491 | 315 (100) | Isorhamnetin-O-hexurunoside | 0.679 ± 0.006 c | 0.683 ± 0.001 b | 1.04 ± 0.004 a |
TPC | 6.065 ± 0.002 b | 7.67 ± 0.03 a | 4.56 ± 0.01 c |
Control | I1 | I2 | ||||
---|---|---|---|---|---|---|
Antioxidant activity (IC50 values ug/mL) A | ||||||
OxHLIA Δt = 60 | 184 ± 9 c* | 204 ± 5 b | 210 ± 6 a | |||
TBARS inhibition | 501 ± 19 a | 201 ± 12 c | 432 ± 9 b | |||
Antimicrobial activity (mg/mL) B Food bacteria | MIC | MBC | MIC | MBC | MIC | MBC |
Gram-negative bacteria | ||||||
Enterobacter Cloacae | >10 | >10 | 10 | >10 | 10 | >10 |
Escherichia coli | 10 | >10 | 10 | >10 | 10 | >10 |
Pseudomonas aeruginosa | 10 | >10 | 10 | >10 | 10 | >10 |
Salmonella enterica | 10 | >10 | 5 | >10 | 10 | >10 |
Yersinia enterocolitica | >10 | >10 | 10 | >10 | 10 | >10 |
Gram-positive bacteria | ||||||
Bacillus cereus | 10 | >10 | >10 | >10 | >10 | >10 |
Listeria monocytogenes | 5 | >10 | 5 | >10 | 10 | >10 |
Staphylococcus aureus | 5 | >10 | 5 | >10 | 5 | >10 |
Clinical bacteria B | MIC | MBC | MIC | MBC | MIC | MBC |
Gram-negative bacteria | 10 | >10 | 10 | >10 | 10 | >10 |
Escherichia coli | >10 | >10 | >10 | >10 | 10 | >10 |
Klebsiella pneumoniae | >10 | >10 | >10 | >10 | 10 | >10 |
Morganella morganii | >10 | >10 | >10 | >10 | >10 | >10 |
Proteus mirabilis | 10 | >10 | 10 | >10 | 10 | >10 |
Pseudomonas aeruginosa | 10 | >10 | >10 | >10 | >10 | >10 |
Gram-positive bacteria | ||||||
Enterococcus faecalis | 5 | >10 | 5 | >10 | 10 | >10 |
Listeria monocytogenes | 5 | >10 | 5 | >10 | 5 | >10 |
MRSA | 10 | >10 | 10 | >10 | 10 | >10 |
Antifungal activity (mg/mL) B | MIC | MFC | MIC | MFC | MIC | MFC |
Aspergillus brasiliensis | >10 | >10 | >10 | >10 | >10 | >10 |
Aspergillus fumigatus | 10 | >10 | 10 | >10 | 10 | >10 |
Anti-inflammatory activity (IC50 values μg/mL) C | ||||||
RAW 264.7 | >400 | >400 | >400 | |||
Cytotoxicity Activity (GI50 values μg/mL) D | ||||||
AGS | >400 | >400 | >400 | |||
CaCo2 | >400 | >400 | >400 | |||
MCF7 | >400 | >400 | >400 | |||
NCI-H460 | >400 | >400 | >400 | |||
Hepatotoxicity (GI50 values μg/mL) D | ||||||
PLP2 | >400 | >400 | 383 ± 3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyzos, N.; Paschoalinotto, B.H.; Pires, T.C.S.P.; Añibarro-Ortega, M.; Calhelha, R.; Ferreira, I.C.F.R.; Dias, M.I.; Barros, L.; Petropoulos, S.A. The Impact of Deficit Irrigation on the Agronomic Performance and Chemical Composition of Scolymus hispanicus L. Horticulturae 2024, 10, 479. https://doi.org/10.3390/horticulturae10050479
Polyzos N, Paschoalinotto BH, Pires TCSP, Añibarro-Ortega M, Calhelha R, Ferreira ICFR, Dias MI, Barros L, Petropoulos SA. The Impact of Deficit Irrigation on the Agronomic Performance and Chemical Composition of Scolymus hispanicus L. Horticulturae. 2024; 10(5):479. https://doi.org/10.3390/horticulturae10050479
Chicago/Turabian StylePolyzos, Nikolaos, Beatriz H. Paschoalinotto, Tânia C. S. P. Pires, Mikel Añibarro-Ortega, Ricardo Calhelha, Isabel C. F. R. Ferreira, Maria Inês Dias, Lillian Barros, and Spyridon A. Petropoulos. 2024. "The Impact of Deficit Irrigation on the Agronomic Performance and Chemical Composition of Scolymus hispanicus L." Horticulturae 10, no. 5: 479. https://doi.org/10.3390/horticulturae10050479
APA StylePolyzos, N., Paschoalinotto, B. H., Pires, T. C. S. P., Añibarro-Ortega, M., Calhelha, R., Ferreira, I. C. F. R., Dias, M. I., Barros, L., & Petropoulos, S. A. (2024). The Impact of Deficit Irrigation on the Agronomic Performance and Chemical Composition of Scolymus hispanicus L. Horticulturae, 10(5), 479. https://doi.org/10.3390/horticulturae10050479