Water Deficit Severity during the Preceding Year Determines Plant Tolerance to Subsequent Year Drought Stress Challenges: A Case Study in Damask Rose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Leaf Chlorophyll Fluorescence
2.3. Leaf Gas Exchange
2.4. Plant Phenology, Morphology, and Biomass Allocation
2.5. Petal Essential Oil Content
2.6. Leaf Potassium and Calcium Content
2.7. Leaf Chlorophyll and Carotenoid Content
2.8. Leaf Water Status
2.9. Leaf Electrolyte Leakage
2.10. Leaf Lipid Peroxidation
2.11. Leaf Proline Content
2.12. Leaf Enzymatic Activity
2.13. Statistical Design and Analysis
2.14. Principal Component and Correlation Analyses
3. Results
3.1. Correlation Analysis
3.2. Leaf Chlorophyll Fluorescence
3.3. Leaf Gas Exchange
3.4. Plant Phenology, Morphology, Biomass Allocation and Essential Oil Yield
3.5. Plant Physiological and Biochemical Traits
3.6. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kovacheva, N.; Rusanov, K.; Atanassov, I. Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during 21st century, directions and challenges. Biotechnol. Biotechnol. Equip. 2010, 24, 1793–1798. [Google Scholar] [CrossRef]
- Kumar, A.; Gautam, R.D.; Singh, S.; Chauhan, R.; Kumar, M.; Kumar, D.; Kumar, A.; Singh, S. Phenotyping floral traits and essential oil profiling revealed considerable variations in clonal selections of damask rose (Rosa damascena Mill.). Sci. Rep. 2023, 13, 8101. [Google Scholar] [CrossRef] [PubMed]
- Omidi, M.; Khandan-Mirkohi, A.; Kafi, M.; Rasouli, O.; Shaghaghi, A.; Kiani, M.; Zamani, Z. Comparative study of phytochemical profiles and morphological properties of some Damask roses from Iran. Chem. Biol. Technol. Agric. 2022, 9, 51. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Farimani, M.M.; Sadeghi, Z.; Asghari, S.; Rezadoost, H. Chemical analysis of Iranian Rosa damascena essential oil, concrete, and absolute oil under different bio-climatic conditions. Ind. Crops Prod. 2022, 187, 115266. [Google Scholar] [CrossRef]
- Venkatesha, K.T.; Gupta, A.; Rai, A.N.; Jambhulkar, S.J.; Bisht, R.; Padalia, R.C. Recent developments, challenges, and opportunities in genetic improvement of essential oil-bearing rose (Rosa damascena): A review. Ind. Crops Prod. 2022, 184, 114984. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, S.; Sood, S.; Agnihotri, V.K.; Singh, V.; Singh, B. Evaluation of several Rosa damascena varieties and Rosa bourboniana accession for essential oil content and composition in western Himalayas. J. Essent. Oil Res. 2014, 26, 147–152. [Google Scholar] [CrossRef]
- Nunes, H.; Miguel, M.G. Rosa damascena essential oils: A brief review about chemical composition and biological properties. Trends Phytochem. Res. 2017, 1, 111–128. [Google Scholar]
- Al-Yasi, H.; Attia, H.; Alamer, K.; Hassan, F.; Ali, E.; Elshazly, S.; Siddique, K.H.; Hessini, K. Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in Damask rose. Plant Physiol. Biochem. 2020, 150, 133–139. [Google Scholar] [CrossRef]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response mechanism of plants to drought stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Seifikalhor, M.; Niknam, V.; Aliniaeifard, S.; Didaran, F.; Tsaniklidis, G.; Fanourakis, D.; Teymoorzadeh, M.; Mousavi, S.H.; Bosacchi, M.; Li, T. The regulatory role of γ-Aminobutyric acid in chickpea plants depends on drought tolerance and water scarcity level. Sci. Rep. 2022, 12, 7034. [Google Scholar] [CrossRef]
- Yousefzadeh, K.; Houshmand, S.; Shiran, B.; Mousavi-Fard, S.; Zeinali, H.; Nikoloudakis, N.; Gheisari, M.M.; Fanourakis, D. Joint effects of developmental stage and water deficit on essential oil traits (content, yield, composition) and related gene expression: A case study in two Thymus species. Agronomy 2022, 12, 1008. [Google Scholar] [CrossRef]
- Tombesi, S.; Frioni, T.; Poni, S.; Palliotti, A. Effect of water stress “memory” on plant behavior during subsequent drought stress. Environ. Exp. Bot. 2018, 150, 106–114. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Abdallah, M.B.; Methenni, K.; Nouairi, I.; Zarrouk, M.; Youssef, N.B. Drought priming improves subsequent more severe drought in a drought-sensitive cultivar of olive cv. Chétoui. Sci. Hortic. 2017, 221, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Zomorrodi, N.; Rezaei Nejad, A.; Mousavi-Fard, S.; Feizi, H.; Nikoloudakis, N.; Fanourakis, D. Efficiency of sodium and calcium chloride in conferring cross-tolerance to water deficit in periwinkle. Horticulturae 2022, 8, 1091. [Google Scholar] [CrossRef]
- Zomorrodi, N.; Rezaei Nejad, A.; Mousavi-Fard, S.; Feizi, H.; Tsaniklidis, G.; Fanourakis, D. Potency of titanium dioxide nanoparticles, sodium hydrogen sulfide and salicylic acid in ameliorating the depressive effects of water deficit on periwinkle ornamental quality. Horticulturae 2022, 8, 675. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.A.S.; Ali, E.F.; Alamer, K.H. Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena Miller var. trigintipetala Dieck. S. Afr. J. Bot. 2018, 116, 96–102. [Google Scholar] [CrossRef]
- Kulak, M. Recurrent drought stress effects on essential oil profile of Lamiaceae plants: An approach regarding stress memory. Ind. Crops Prod. 2020, 154, 112695. [Google Scholar] [CrossRef]
- Jacques, C.; Salon, C.; Barnard, R.L.; Vernoud, V.; Prudent, M. Drought stress memory at the plant cycle level: A review. Plants 2021, 10, 1873. [Google Scholar] [CrossRef]
- Lämke, J.; Bäurle, I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017, 18, 124. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, F. Drought stress memory and drought stress tolerance in plants: Biochemical and molecular basis. In Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry; Springer: Cham, Switzerland, 2016; pp. 17–44. [Google Scholar]
- Bruce, T.J.A.; Matthes, M.C.; Napier, J.A.; Pickett, J.A. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Sci. 2007, 173, 603–608. [Google Scholar] [CrossRef]
- Alves, R.D.; Menezes-Silva, P.E.; Sousa, L.F.; Loram-Lourenço, L.; Silva, M.L.; Almeida, S.E.; Silva, F.G.; Perez de Souza, L.; Fernie, A.R.; Farnese, F.S. Evidence of drought memory in Dipteryx alata indicates differential acclimation of plants to savanna conditions. Sci. Rep. 2020, 10, 16455. [Google Scholar] [CrossRef] [PubMed]
- Moosavi-Nezhad, M.; Salehi, R.; Aliniaeifard, S.; Tsaniklidis, G.; Woltering, E.J.; Fanourakis, D.; Żuk-Gołaszewska, K.; Kalaji, H.M. Blue light improves photosynthetic performance during healing and acclimatization of grafted watermelon seedlings. Int. J. Mol. Sci. 2021, 22, 8043. [Google Scholar] [CrossRef]
- Barboričová, M.; Filaček, A.; Vysoka, D.M.; Gašparovič, K.; Živčák, M.; Brestič, M. Sensitivity of fast chlorophyll fluorescence parameters to combined heat and drought stress in wheat genotypes. Plant Soil Environ. 2022, 68, 309–316. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Pikuła, W.; Pawlak, R.; Drygaś, B.; Szpunar-Krok, E. Physiological response of Miscanthus sinensis (Anderss.) to biostimulants. Agriculture 2023, 14, 33. [Google Scholar] [CrossRef]
- Fanourakis, D.; Heuvelink, E.; Carvalho, S.M. Spatial heterogeneity in stomatal features during leaf elongation: An analysis using Rosa hybrida. Funct. Plant Biol. 2015, 42, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Lyu, Y. Comparative transcriptome and weighted gene co-expression network analysis identify key transcription factors of Rosa chinensis ‘Old Blush’ after exposure to a gradual drought stress followed by recovery. Front. Genet. 2021, 12, 690264. [Google Scholar] [CrossRef]
- Gohari, G.; Mohammadi, A.; Akbari, A.; Panahirad, S.; Dadpour, M.R.; Fotopoulos, V.; Kimura, S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 2020, 10, 912. [Google Scholar] [CrossRef]
- Zakerian, F.; Sefidkon, F.; Abbaszadeh, B.; Kalate Jari, S. Effects of Water stress and mycorrhizal fungi on essential oil content and composition of Satureja sahendica Bornm. J. Agric. Sci. Technol. 2020, 22, 789–799. [Google Scholar]
- F Larbi, A.; Kchaou, H.; Gaaliche, B.; Gargouri, K.; Boulal, H.; Morales, F. Supplementary potassium and calcium improves salt tolerance in olive plants. Sci. Hortic. 2020, 260, 108912. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Fanourakis, D.; Papadakis, V.M.; Machado, M.; Psyllakis, E.; Nektarios, P.A. Non-invasive leaf hydration status determination through convolutional neural networks based on multispectral images in chrysanthemum. Plant Growth Regul. 2024, 102, 485–496. [Google Scholar] [CrossRef]
- Safaei Far, A.; Mousavi-Fard, S.; Rezaei Nejad, A.; Shahbazi, F.; Ahmadi-Majd, M.; Fanourakis, D. Nano Silver and melatonin effectively delay the senescence of cut carnation flowers under simulated vibrational stress. J. Hortic. Sci. Biotech. 2024. [Google Scholar] [CrossRef]
- Ahmadi-Majd, M.; Mousavi-Fard, S.; Rezaei Nejad, A.; Fanourakis, D. Nano-selenium in the holding solution promotes rose and carnation vase life by improving both water relations and antioxidant status. J. Hortic. Sci. Biotech. 2023, 98, 246–261. [Google Scholar] [CrossRef]
- Lukić, N.; Kukavica, B.; Davidović-Plavšić, B.; Hasanagić, D.; Walter, J. Plant stress memory is linked to high levels of anti-oxidative enzymes over several weeks. Environ. Exp. Bot. 2020, 178, 104166. [Google Scholar] [CrossRef]
- Ramírez, D.A.; Rolando, J.L.; Yactayo, W.; Monneveux, P.; Mares, V.; Quiroz, R. Improving potato drought tolerance through the induction of long-term water stress memory. Plant Sci. 2015, 238, 26–32. [Google Scholar] [CrossRef]
- Schmalenbach, I.; Zhang, L.; Reymond, M.; Jiménez-Gómez, J.M. The relationship between flowering time and growth responses to drought in the Arabidopsis Landsberg erecta x Antwerp-1 population. Front. Plant Sci. 2014, 5, 107219. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, F.C. Stomatal control of transpiration. Trends Ecol. Evol. 1993, 8, 289–294. [Google Scholar] [CrossRef]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
Year | 1 | 2 | 2 | 2 | 2 | 2 |
---|---|---|---|---|---|---|
Available Water Content (%) | Fv/Fm | Fv/F0 | Vj | PIabs | ||
70 | 70 | 0.86 ± 0.001 | 6.0 ± 0.04 | 0.35 ± 0.00 | 11.7 ± 0.01 | |
70 | 40 | 0.84 ± 0.004 | 5.4 ± 0.04 | 0.42 ± 0.01 | 6.50 ± 0.45 | |
70 | 10 | 0.83 ± 0.002 | 5.1 ± 0.07 | 0.44 ± 0.01 | 5.20 ± 0.30 | |
40 | 70 | 0.85 ± 0.002 | 5.9 ± 0.09 | 0.39 ± 0.01 | 9.20 ± 0.49 | |
40 | 40 | 0.85 ± 0.002 | 5.6 ± 0.10 | 0.40 ± 0.01 | 8.20 ± 0.23 | |
40 | 10 | 0.84 ± 0.002 | 5.6 ± 0.08 | 0.41 ± 0.01 | 7.30 ± 0.49 | |
10 | 70 | 0.84 ± 0.002 | 5.5 ± 0.08 | 0.42 ± 0.01 | 6.70 ± 0.37 | |
10 | 40 | 0.83 ± 0.002 | 4.9 ± 0.07 | 0.48 ± 0.01 | 4.00 ± 0.41 | |
10 | 10 | 0.82 ± 0.004 | 4.6 ± 0.04 | 0.41 ± 0.03 | 4.70 ± 0.08 | |
F-Value | 5.28 | 7.45 | 5.94 | 15.31 | ||
p-Value | 0.007 | <0.001 | 0.004 | <0.001 |
Year | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
---|---|---|---|---|---|---|---|---|
Available Water Content (%) | Photosynthesis Rate (μmol CO2 m−2 s−1) | Transpiration Rate (mmol H2O m−2 s−1) | Stomatal Conductance (mol m−2 s−1) | Substomatal CO2 Concentration (mmol mol−1) | Carboxylation Efficiency (mol CO2 m−2 s−1) | PWUE (μmol CO2 mol H2O−1) | ||
70 | 70 | 11.8 ± 0.71 | 5.3 ± 0.08 | 0.51 ± 0.043 | 535 ± 12 | 0.022 ± 0.0009 | 2.2 ± 0.11 | |
70 | 40 | 6.10 ± 0.37 | 2.8 ± 0.24 | 0.40 ± 0.023 | 423 ± 26 | 0.015 ± 0.0011 | 2.2 ± 0.06 | |
70 | 10 | 3.50 ± 0.20 | 2.0 ± 0.07 | 0.33 ± 0.006 | 432 ± 15 | 0.008 ± 0.0007 | 1.8 ± 0.05 | |
40 | 70 | 7.80 ± 0.07 | 3.8 ± 0.10 | 0.44 ± 0.028 | 487 ± 4.3 | 0.016 ± 0.0001 | 2.0 ± 0.07 | |
40 | 40 | 8.40 ± 0.41 | 2.8 ± 0.21 | 0.44 ± 0.020 | 464 ± 16 | 0.018 ± 0.0012 | 3.0 ± 0.10 | |
40 | 10 | 5.90 ± 0.42 | 2.4 ± 0.03 | 0.41 ± 0.006 | 389 ± 10 | 0.015 ± 0.0014 | 2.5 ± 0.20 | |
10 | 70 | 4.90 ± 0.52 | 2.8 ± 0.17 | 0.35 ± 0.028 | 423 ± 34 | 0.012 ± 0.0003 | 1.7 ± 0.09 | |
10 | 40 | 4.60 ± 0.04 | 2.2 ± 0.03 | 0.33 ± 0.005 | 426 ± 4.4 | 0.011 ± 0.0000 | 2.1 ± 0.04 | |
10 | 10 | 3.10 ± 0.17 | 1.8 ± 0.18 | 0.30 ± 0.006 | 431 ± 14 | 0.007 ± 0.0004 | 1.7 ± 0.18 | |
F-Value | 55.89 | 30.93 | 4.42 | 5.76 | 22.25 | 5.74 | ||
p-Value | <0.001 | <0.001 | 0.013 | 0.005 | <0.001 | 0.005 |
Year | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
---|---|---|---|---|---|---|---|---|---|
Available Water Content (%) | Time to Flowering (d) | Number of Flowers | Flower Diameter (mm) | Individual Flower Dry Weight (g) | Number of Petals | Receptacle Diameter (mm) | Individual Petal Dry Weight (g) | ||
70 | 70 | 86.7 ± 0.7 | 254 ± 2 | 73.5 ± 0.0 | 0.52 ± 0.004 | 40.3 ± 0.3 | 12.1 ± 0.1 | 0.40 ± 0.003 | |
70 | 40 | 84.3 ± 0.7 | 232 ± 1 | 68.8 ± 0.3 | 0.47 ± 0.009 | 33.3 ± 0.9 | 11.4 ± 0.1 | 0.37 ± 0.003 | |
70 | 10 | 82.3 ± 0.9 | 221 ± 1 | 66.4 ± 0.2 | 0.41 ± 0.002 | 30.3 ± 0.3 | 10.1 ± 0.1 | 0.33 ± 0.003 | |
40 | 70 | 85.3 ± 0.9 | 238 ± 1 | 70.4 ± 0.5 | 0.51 ± 0.023 | 39.0 ± 0.0 | 11.8 ± 0.1 | 0.39 ± 0.002 | |
40 | 40 | 86.3 ± 0.3 | 238 ± 1 | 69.9 ± 0.3 | 0.50 ± 0.017 | 38.7 ± 0.3 | 11.6 ± 0.3 | 0.39 ± 0.008 | |
40 | 10 | 85.0 ± 0.6 | 234 ± 1 | 68.8 ± 0.4 | 0.47 ± 0.005 | 33.0 ± 0.0 | 11.4 ± 0.3 | 0.38 ± 0.006 | |
10 | 70 | 83.7 ± 0.3 | 228 ± 1 | 67.8 ± 0.6 | 0.43 ± 0.010 | 32.0 ± 1.2 | 10.7 ± 0.2 | 0.35 ± 0.007 | |
10 | 40 | 81.0 ± 0.6 | 226 ± 1 | 67.4 ± 1.3 | 0.43 ± 0.004 | 32.3 ± 0.3 | 10.4 ± 0.3 | 0.35 ± 0.009 | |
10 | 10 | 79.3 ± 0.7 | 208 ± 0 | 65.6 ± 0.2 | 0.40 ± 0.003 | 29.3 ± 1.3 | 10.0 ± 0.1 | 0.32 ± 0.006 | |
F-Value | 4.65 | 115.51 | 11.10 | 6.98 | 11.32 | 5.57 | 19.05 | ||
p-Value | 0.011 | <0.001 | <0.001 | 0.002 | <0.001 | 0.005 | <0.001 |
Year | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Available Water Content (%) | Main Stem Length (m) | Canopy Diameter (m2) | Number of Leaves | Plant Leaf Area (m2) | Individual Leaf Area (cm2) | Shoot Dry Weight (kg) | Dry Weight Ratio (%) 1 | ||||
Shoot | Flower | Petal | |||||||||
70 | 70 | 1.89 ± 0.03 | 1.82 ± 0.04 | 1301 ± 46 | 2.09 ± 0.08 | 16.1 ± 0.9 | 2.90 ± 0.11 | 34.3 ± 0.4 | 18.1 ± 0.0 | 18.3 ± 0.13 | |
70 | 40 | 1.68 ± 0.01 | 1.62 ± 0.00 | 801 ± 53 | 0.74 ± 0.05 | 9.30 ± 0.1 | 1.71 ± 0.03 | 41.1 ± 0.6 | 18.0 ± 0.3 | 18.3 ± 0.03 | |
70 | 10 | 1.58 ± 0.01 | 1.51 ± 0.01 | 594 ± 41 | 0.40 ± 0.02 | 6.70 ± 0.2 | 1.50 ± 0.03 | 42.0 ± 0.7 | 16.7 ± 0.1 | 17.6 ± 0.03 | |
40 | 70 | 1.75 ± 0.00 | 1.69 ± 0.02 | 983 ± 58 | 1.29 ± 0.04 | 13.2 ± 0.4 | 2.71 ± 0.02 | 44.8 ± 0.3 | 18.7 ± 0.2 | 19.0 ± 0.05 | |
40 | 40 | 1.73 ± 0.01 | 1.68 ± 0.02 | 782 ± 18 | 0.99 ± 0.02 | 12.7 ± 0.3 | 2.67 ± 0.06 | 45.9 ± 0.5 | 18.7 ± 0.1 | 18.9 ± 0.03 | |
40 | 10 | 1.70 ± 0.02 | 1.63 ± 0.01 | 706 ± 37 | 0.65 ± 0.03 | 9.20 ± 0.6 | 1.85 ± 0.03 | 42.1 ± 0.3 | 18.1 ± 0.2 | 18.6 ± 0.05 | |
10 | 70 | 1.64 ± 0.02 | 1.58 ± 0.01 | 803 ± 64 | 0.74 ± 0.08 | 9.20 ± 0.4 | 1.69 ± 0.03 | 40.9 ± 0.4 | 17.0 ± 0.3 | 18.2 ± 0.01 | |
10 | 40 | 1.62 ± 0.03 | 1.57 ± 0.03 | 841 ± 43 | 0.63 ± 0.04 | 8.10 ± 0.1 | 1.69 ± 0.06 | 41.2 ± 1.1 | 17.1 ± 0.2 | 17.9 ± 0.09 | |
10 | 10 | 1.50 ± 0.01 | 1.51 ± 0.00 | 615 ± 12 | 0.36 ± 0.01 | 5.80 ± 0.2 | 1.46 ± 0.02 | 41.1 ± 0.7 | 16.9 ± 0.1 | 17.5 ± 0.03 | |
F-Value | 19.38 | 19.76 | 13.45 | 105.15 | 19.46 | 61.36 | 21.80 | 3.75 | 4.67 | ||
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.025 | 0.011 |
Year | 1 | 2 | 2 | 2 | 1 + 2 | 2 | 2 | 2 | 2 | 1 + 2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Available Water Content (%) | Water Use Efficiency (g Dry Mass L−1 H2O) | Stress Tolerance Index (%) | Leaf Ca Content | Leaf K Content | Essential Oil (%) | Essential Oil Yield (g plant−1) | |||||
Shoot | Flower | Flower | Shoot | Flower | (μg g−1) | ||||||
70 | 70 | 5.2 ± 0.1 | 0.23 ± 0.003 | 0.21 ± 0.000 | 100 ± 2.6 | 100 ± 1.5 | 252 ± 8.30 | 228 ± 2.50 | 0.027 ± 0.001 | 0.19 ± 0.01 | |
70 | 40 | 4.3 ± 0.1 | 0.27 ± 0.006 | 0.22 ± 0.003 | 49.3 ± 0.4 | 82.9 ± 0.9 | 217 ± 15.9 | 196 ± 16.9 | 0.026 ± 0.003 | 0.16 ± 0.02 | |
70 | 10 | 4.7 ± 0.1 | 0.28 ± 0.000 | 0.22 ± 0.000 | 42.4 ± 0.7 | 74.3 ± 0.4 | 223 ± 8.10 | 200 ± 2.20 | 0.022 ± 0.002 | 0.12 ± 0.01 | |
40 | 70 | 4.8 ± 0.1 | 0.21 ± 0.009 | 0.21 ± 0.006 | 71.9 ± 1.4 | 89.0 ± 0.9 | 234 ± 3.20 | 195 ± 4.90 | 0.027 ± 0.003 | 0.17 ± 0.02 | |
40 | 40 | 6.7 ± 0.1 | 0.3 ± 0.012 | 0.26 ± 0.006 | 69.0 ± 0.6 | 88.7 ± 1.0 | 253 ± 3.30 | 234 ± 0.90 | 0.038 ± 0.001 | 0.24 ± 0.01 | |
40 | 10 | 5.8 ± 0.1 | 0.35 ± 0.003 | 0.28 ± 0.003 | 52.1 ± 0.9 | 84.3 ± 0.1 | 314 ± 21.2 | 230 ± 4.80 | 0.040 ± 0.001 | 0.25 ± 0.01 | |
10 | 70 | 3.2 ± 0.1 | 0.17 ± 0.003 | 0.18 ± 0.003 | 49.2 ± 0.9 | 79.6 ± 0.6 | 245 ± 10.7 | 176 ± 3.00 | 0.030 ± 0.002 | 0.17 ± 0.01 | |
10 | 40 | 4.2 ± 0.1 | 0.24 ± 0.000 | 0.22 ± 0.000 | 48.7 ± 0.8 | 78.1 ± 1.2 | 275 ± 14.4 | 192 ± 17.5 | 0.030 ± 0.000 | 0.17 ± 0.00 | |
10 | 10 | 4.5 ± 0.1 | 0.26 ± 0.000 | 0.22 ± 0.000 | 42.2 ± 0.9 | 68.0 ± 0.3 | 188 ± 10.2 | 182 ± 6.10 | 0.021 ± 0.001 | 0.10 ± 0.01 | |
F-Value | 51.10 | 26.76 | 36.86 | 199.75 | 82.88 | 14.02 | 5.86 | 10.37 | 16.17 | ||
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.004 | <0.001 | <0.001 |
Year | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Available Water Content (%) | Relative Water Content (%) | Electrolyte Leakage (%) | Chlorophyll | Carotenoid | MDA | Proline | Catalase | Peroxidase | Ascorbate Peroxidase | ||
Content (mg g−1 FW) | Content (µmol g−1 FW) | Activity (µmol min−1 g−1 FW) | |||||||||
70 | 70 | 67.7 ± 0.6 | 19.3 ± 0.1 | 18.8 ± 0.87 | 4.0 ± 0.51 | 0.9 ± 0.03 | 2.6 ± 0.09 | 1.4 ± 0.10 | 0.36 ± 0.016 | 0.12 ± 0.006 | |
70 | 40 | 62.0 ± 1.6 | 29.4 ± 0.1 | 11.8 ± 0.56 | 2.5 ± 0.25 | 1.2 ± 0.10 | 2.8 ± 0.09 | 1.6 ± 0.11 | 0.38 ± 0.039 | 0.14 ± 0.002 | |
70 | 10 | 50.0 ± 0.6 | 39.4 ± 0.9 | 8.70 ± 0.15 | 2.0 ± 0.08 | 2.1 ± 0.24 | 3.5 ± 0.12 | 2.0 ± 0.05 | 0.41 ± 0.004 | 0.13 ± 0.003 | |
40 | 70 | 65.8 ± 1.7 | 22.3 ± 0.2 | 15.9 ± 0.85 | 2.7 ± 0.24 | 1.0 ± 0.05 | 3.0 ± 0.10 | 1.6 ± 0.04 | 0.49 ± 0.009 | 0.14 ± 0.014 | |
40 | 40 | 65.6 ± 0.5 | 24.5 ± 1.0 | 16.1 ± 0.66 | 2.6 ± 0.17 | 1.0 ± 0.02 | 4.2 ± 0.34 | 2.1 ± 0.07 | 0.62 ± 0.019 | 0.23 ± 0.013 | |
40 | 10 | 61.8 ± 1.5 | 30.0 ± 0.3 | 12.9 ± 0.85 | 2.5 ± 0.13 | 1.0 ± 0.11 | 4.5 ± 0.27 | 2.1 ± 0.09 | 0.52 ± 0.031 | 0.25 ± 0.008 | |
10 | 70 | 63.5 ± 1.0 | 30.0 ± 0.4 | 11.5 ± 0.45 | 2.8 ± 0.15 | 1.6 ± 0.18 | 2.7 ± 0.20 | 1.5 ± 0.06 | 0.43 ± 0.009 | 0.13 ± 0.002 | |
10 | 40 | 61.1 ± 0.6 | 33.8 ± 0.5 | 9.30 ± 0.75 | 2.0 ± 0.10 | 1.4 ± 0.07 | 3.4 ± 0.11 | 1.6 ± 0.04 | 0.56 ± 0.014 | 0.21 ± 0.018 | |
10 | 10 | 51.1 ± 4.3 | 38.0 ± 2.0 | 8.10 ± 0.31 | 1.7 ± 0.06 | 1.7 ± 0.14 | 3.2 ± 0.09 | 1.9 ± 0.01 | 0.43 ± 0.002 | 0.16 ± 0.001 | |
F-Value | 5.28 | 21.86 | 15.90 | 4.36 | 12.39 | 3.37 | 1.95 | 6.47 | 18.33 | ||
p-Value | 0.007 | <0.001 | <0.001 | 0.014 | <0.001 | 0.035 | 0.152 | 0.003 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aalam, F.; Rezaei Nejad, A.; Mousavi-Fard, S.; Raji, M.; Nikoloudakis, N.; Goumenaki, E.; Fanourakis, D. Water Deficit Severity during the Preceding Year Determines Plant Tolerance to Subsequent Year Drought Stress Challenges: A Case Study in Damask Rose. Horticulturae 2024, 10, 462. https://doi.org/10.3390/horticulturae10050462
Aalam F, Rezaei Nejad A, Mousavi-Fard S, Raji M, Nikoloudakis N, Goumenaki E, Fanourakis D. Water Deficit Severity during the Preceding Year Determines Plant Tolerance to Subsequent Year Drought Stress Challenges: A Case Study in Damask Rose. Horticulturae. 2024; 10(5):462. https://doi.org/10.3390/horticulturae10050462
Chicago/Turabian StyleAalam, Fatemeh, Abdolhossein Rezaei Nejad, Sadegh Mousavi-Fard, Mohammadreza Raji, Nikolaos Nikoloudakis, Eleni Goumenaki, and Dimitrios Fanourakis. 2024. "Water Deficit Severity during the Preceding Year Determines Plant Tolerance to Subsequent Year Drought Stress Challenges: A Case Study in Damask Rose" Horticulturae 10, no. 5: 462. https://doi.org/10.3390/horticulturae10050462
APA StyleAalam, F., Rezaei Nejad, A., Mousavi-Fard, S., Raji, M., Nikoloudakis, N., Goumenaki, E., & Fanourakis, D. (2024). Water Deficit Severity during the Preceding Year Determines Plant Tolerance to Subsequent Year Drought Stress Challenges: A Case Study in Damask Rose. Horticulturae, 10(5), 462. https://doi.org/10.3390/horticulturae10050462