Utilising Response Surface Methodology to Optimise Food Additives and Treatments Reduces Disease Caused by Penicillium digitatum and Penicillium italicum in ‘Valencia’ Oranges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit and Fungal Inoculation
2.2. Food Additives
2.3. Experimental Design for Effectiveness of Food Additive Solutions Using RSM
2.4. Statistical Analysis
3. Results and Discussion
3.1. Variable Responses from Box–Behnken Design Experiment
3.2. Fitting of the Models for Prediction of Impact of Food Additives and Temperature on the In Vivo Development of GM and BM
3.3. Effects of Food Additives and Temperature on Development of GM and BM
3.4. Prediction and Validation of Optimal Mixture and Concentration of Food Additives and Temperature to Control GM and BM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Golding, J.; Archer, J. Advances in postharvest handling of citrus fruit. In Achieving Sustainable Cultivation of Tropical Fruits; Yahia, E.M., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 65–90. [Google Scholar]
- Palou, L. Chapter 2—Penicillium digitatum, Penicillium italicum (Green Mold, Blue Mold). In Postharvest Decay; Bautista-Baños, S., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 45–102. [Google Scholar]
- Palou, L.; Ali, A.; Fallik, E.; Romanazzi, G. GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biol. Technol. 2016, 122, 41–52. [Google Scholar] [CrossRef]
- Romanazzi, G.; Sanzani, S.M.; Bi, Y.; Tian, S.; Gutiérrez Martínez, P.; Alkan, N. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Technol. 2016, 122, 82–94. [Google Scholar] [CrossRef]
- Cerioni, L.; Rapisarda, V.; Dtor, J.; Fikkert, S.; Ruiz, T.; Fassel, R.; Smilanick, J. Use of phosphite salts in laboratory and semicommercial tests to control citrus postharvest decay. Plant Dis. 2013, 97, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Deliopoulos, T.; Kettlewell, P.; Hare, M. Fungal disease suppression by inorganic salts: A review. Crop Prot. 2010, 29, 1059–1075. [Google Scholar] [CrossRef]
- Palou, L.; Pérez-Gago, M.B. GRAS salts as alternative low-toxicity chemicals for postharvest preservation of fresh horticultural products. In Postharvest Pathology: Next Generation Solutions to Reducing Losses and Enhancing Safety. Plant Pathology in the 21st Century, Vol. 11; Spadaro, D., Droby, S., Gullino, M.L., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 163–179. ISBN 9783030565299. [Google Scholar]
- D’Aquino, S.; Palma, A. Reducing or replacing conventional postharvest fungicides with low toxicity acids and salts. In Postharvest Pathology of Fresh Horticultural Produce; Palou, L., Smilanick, J.L., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2020; pp. 595–632. ISBN 9781138630833. [Google Scholar]
- Chevalier, E.; Chaabani, A.; Assezat, G.; Prochazka, F.; Oulahal, N. Casein/wax blend extrusion for production of edible films as carriers of potassium sorbate—A comparative study of waxes and potassium sorbate effect. Food Packag. Shelf Life 2018, 16, 41–50. [Google Scholar] [CrossRef]
- Kitagawa, H.; Tani, T. Effect of potassium sorbate and thiabendazole mixture on the control of green and blue molds of citrus fruit. J. Jpn. Soc. Hortic. Sci. 1984, 52, 464–468. [Google Scholar] [CrossRef]
- Palou, L.; Montesinos-Herrero, C.; Pastor, C.; del Rio, M. Evaluation of heated potassium sorbate solutions to control postharvest green and blue molds on commercially important citrus cultivars. Phytopathology 2008, 98, 119. [Google Scholar]
- Parra, J.; Ripoll, G.; Orihuel-Iranzo, B. Potassium sorbate effects on citrus weight loss and decay control. Postharvest Biol. Technol. 2014, 96, 7–13. [Google Scholar] [CrossRef]
- Guimarães, J.E.R.; de la Fuente, B.; Pérez-Gago, M.B.; Andradas, C.; Carbó, R.; Mattiuz, B.-H.; Palou, L. Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. Int. J. Food Microbiol. 2019, 301, 9–18. [Google Scholar] [CrossRef]
- Youssef, K.; Ligorio, A.M.; Franco, N.; Ippolito, A. Activity of salts incorporated in wax in controlling postharvest diseases of citrus fruit. Postharvest Biol. Technol. 2012, 65, 39–43. [Google Scholar] [CrossRef]
- Palou, L.; Usall, J.; Muñoz, J.A.; Smilanick, J.L.; Viñas, I. Hot water, sodium carbonate, and sodium bicarbonate for the control of postharvest green and blue molds of clementine mandarins. Postharvest Biol. Technol. 2002, 24, 93–96. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Usall, J.; Viñas, I. Control of postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate. Plant Dis. 2001, 85, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Deng, L.; Zeng, K. Enhancement of biocontrol efficacy of Pichia membranaefaciens by hot water treatment in postharvest diseases of citrus fruit. Crop Prot. 2014, 63, 89–96. [Google Scholar] [CrossRef]
- Montesinos-Herrero, C.; Moscoso-Ramírez, P.A.; Palou, L. Evaluation of sodium benzoate and other food additives for the control of citrus postharvest green and blue molds. Postharvest Biol. Technol. 2016, 115, 72–80. [Google Scholar] [CrossRef]
- Romanazzi, G.; Orçonneau, Y.; Moumni, M.; Davillerd, Y.; Marchand, P.A. Basic substances, a sustainable tool to complement and eventually replace synthetic pesticides in the management of pre and postharvest diseases: Reviewed instructions for Users. Molecules 2022, 27, 3484. [Google Scholar] [CrossRef] [PubMed]
- Thakur, R.; Saberi, B.; Pristijono, P.; Stathopoulos, C.E.; Golding, J.B.; Scarlett, C.J.; Bowyer, M.; Vuong, Q.V. Use of response surface methodology (RSM) to optimize pea starch–chitosan novel edible film formulation. J. Food Sci. Technol. 2017, 54, 2270–2278. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-Herrero, C.; Smilanick, J.L.; Tebbets, J.S.; Walse, S.; Palou, L. Control of citrus postharvest decay by ammonia gas fumigation and its influence on the efficacy of the fungicide imazalil. Postharvest Biol. Technol. 2011, 59, 85–93. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Mansour, M.F.; Mlikota-Gabler, F.; Sorenson, D. Control of citrus postharvest green mold and sour rot by potassium sorbate combined with heat and fungicides. Postharvest Biol. Technol. 2008, 47, 226–238. [Google Scholar] [CrossRef]
- Montesinos-Herrero, C.; del Río, M.A.; Pastor, C.; Brunetti, O.; Palou, L. Evaluation of brief potassium sorbate dips to control postharvest Penicillium decay on major citrus species and cultivars. Postharvest Biol. Technol. 2009, 52, 117–125. [Google Scholar] [CrossRef]
- D’Aquino, S.; Fadda, A.; Barberis, A.; Palma, A.; Angioni, A.; Schirra, M. Combined effects of potassium sorbate, hot water and thiabendazole against green mould of citrus fruit and residue levels. Food Chem. 2013, 141, 858–864. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | ||||
---|---|---|---|---|
Run/Treatment | SB | SBen | PS | Temperature (°C) |
Control | 0.0% | 0.0% | 0.0% | 20 |
1 | 3.0% | 0.5% | 0.0% | 20 |
2 | 3.0% | 0.0% | 0.5% | 20 |
3 | 0.0% | 0.5% | 0.5% | 20 |
4 | 6.0% | 0.5% | 0.5% | 20 |
5 | 3.0% | 1.0% | 0.5% | 20 |
6 | 3.0% | 0.5% | 1.0% | 20 |
7 | 3.0% | 0.0% | 0.0% | 35 |
8 | 0.0% | 0.5% | 0.0% | 35 |
9 | 6.0% | 0.5% | 0.0% | 35 |
10 | 3.0% | 1.0% | 0.0% | 35 |
11 | 0.0% | 0.0% | 0.5% | 35 |
12 | 6.0% | 0.0% | 0.5% | 35 |
13 | 3.0% | 0.5% | 0.5% | 35 |
14 | 0.0% | 1.0% | 0.5% | 35 |
15 | 6.0% | 1.0% | 0.5% | 35 |
16 | 3.0% | 0.0% | 1.0% | 35 |
17 | 0.0% | 0.5% | 1.0% | 35 |
18 | 6.0% | 0.5% | 1.0% | 35 |
19 | 3.0% | 1.0% | 1.0% | 35 |
20 | 3.0% | 0.5% | 0.0% | 50 |
21 | 3.0% | 0.0% | 0.5% | 50 |
22 | 0.0% | 0.5% | 0.5% | 50 |
23 | 6.0% | 0.5% | 0.5% | 50 |
24 | 3.0% | 1.0% | 0.5% | 50 |
25 | 3.0% | 0.5% | 1.0% | 50 |
Independent Variables | Dependent Variables Responses | |||||||
---|---|---|---|---|---|---|---|---|
SB | SBen | PS | Temperatures (°C) | GM Severity (mm) | GM Incidence (%) | BM Severity (mm) | BM Incidence (%) | |
Std Error | 4.853 | 4.95 | 3.838 | 4.7 | ||||
Run/Treatment | LSD | 13.644 | 13.91 | 10.791 | 13.23 | |||
Control | 0.0% | 0.0% | 0.0% | 20 | 103 a | 87.5 a | 71.28 a | 96 a |
1 | 3.0% | 0.5% | 0.0% | 20 | 2.8 g | 4 e | 18.26 bcd | 22 cdefg |
2 | 3.0% | 0.0% | 0.5% | 20 | 10 fg | 11 de | 10.88 cde | 11 bcdefg |
3 | 0.0% | 0.5% | 0.5% | 20 | 24.18 cde | 28 c | 6.81 e | 18 bcd |
4 | 6.0% | 0.5% | 0.5% | 20 | 4.75 g | 5 e | 13 cde | 14 fg |
5 | 3.0% | 1.0% | 0.5% | 20 | 5.63 g | 6 e | 14.25 cde | 16 defg |
6 | 3.0% | 0.5% | 1.0% | 20 | 10.66 efg | 12 de | 14.08 cde | 17 cdefg |
7 | 3.0% | 0.0% | 0.0% | 35 | 9.67 fg | 1 de | 28.48 b | 33 bcdef |
8 | 0.0% | 0.5% | 0.0% | 35 | 47.01 b | 5 b | 10.58 cde | 3 bc |
9 | 6.0% | 0.5% | 0.0% | 35 | 10.22 fg | 11 de | 16.36 cde | 18 fg |
10 | 3.0% | 1.0% | 0.0% | 35 | 6.25 g | 6 e | 15.25 cde | 18 cdefg |
11 | 0.0% | 0.0% | 0.5% | 35 | 28.06 c | 36 bc | 11.51 cde | 28 b |
12 | 6.0% | 0.0% | 0.5% | 35 | 10.17 fg | 11 de | 7.56 de | 13 fg |
13 | 3.0% | 0.5% | 0.5% | 35 | 9.30 g | 10 e | 13.63 cde | 18 cdefg |
14 | 0.0% | 1.0% | 0.5% | 35 | 25.25 cd | 28 c | 11.74 cde | 3 bcdef |
15 | 6.0% | 1.0% | 0.5% | 35 | 7.76 g | 08 e | 10.54 cde | 11 g |
16 | 3.0% | 0.0% | 1.0% | 35 | 11.75 defg | 13 de | 15.72 cde | 19 cdefg |
17 | 0.0% | 0.5% | 1.0% | 35 | 25.63 c | 28 c | 8.2 de | 17 bcdef |
18 | 6.0% | 0.5% | 1.0% | 35 | 2.88 g | 4 e | 14.25 cde | 19 fg |
19 | 3.0% | 1.0% | 1.0% | 35 | 8.5 g | 9 e | 15.63 cde | 19 fg |
20 | 3.0% | 0.5% | 0.0% | 50 | 11.13 efg | 13 de | 19 bc | 24 cdefg |
21 | 3.0% | 0.0% | 0.5% | 50 | 6.94 g | 9 e | 11.41 cde | 14 cdefg |
22 | 0.0% | 0.5% | 0.5% | 50 | 22.38 cdef | 24 cd | 15.31 cde | 23 bcde |
23 | 6.0% | 0.5% | 0.5% | 50 | 9.36 fg | 9 e | 15.38 cde | 2 fg |
24 | 3.0% | 1.0% | 0.5% | 50 | 3.82 g | 4 e | 8.85 cde | 11 efg |
25 | 3.0% | 0.5% | 1.0% | 50 | 4.44 g | 5 e | 7.32 e | 8 efg |
GM Severity (mm) | GM Incidence (%) | BM Severity (mm) | BM Incidence (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | DF | Estimate | Prob > |t| | Estimate | Prob > |t| | Estimate | Prob > |t| | Estimate | Prob > |t| |
β0 | 1 | 9.30117 | 0.0111 * | 0.1051 | 0.0063 * | 13.6316 | 0.0001 * | 0.17412 | 0.0001 * |
β1 | 1 | −10.614 | <0.0001 * | −0.1204 | <0.0001 * | 1.07898 | 0.3866 | −0.0417 | 0.0108 * |
β2 | 1 | −1.6158 | 0.3182 | −0.0258 | 0.1319 | −0.7758 | 0.5305 | −0.0103 | 0.4723 |
β3 | 1 | −1.9355 | 0.236 | −0.0203 | 0.2264 | −2.7283 | 0.0423 * | −0.0385 | 0.0166 * |
β4 | 1 | 0.00341 | 0.9983 | −0.002 | 0.9014 | −0.0009 | 0.9994 | 0.00125 | 0.9292 |
β12 | 1 | 0.10115 | 0.9706 | 0.0127 | 0.6544 | 0.68677 | 0.747 | −0.0085 | 0.7284 |
β13 | 1 | 3.50658 | 0.2164 | 0.0365 | 0.2103 | 0.06661 | 0.975 | 0.03372 | 0.1847 |
β14 | 1 | 1.60581 | 0.5613 | 0.0208 | 0.4659 | −1.5313 | 0.4758 | 0.00313 | 0.8984 |
β23 | 1 | 0.04317 | 0.9874 | −0.0008 | 0.9782 | 3.28372 | 0.1404 | 0.03783 | 0.1403 |
β24 | 1 | 0.3125 | 0.9094 | 0 | 1 | −1.4836 | 0.4894 | −0.0186 | 0.4529 |
β34 | 1 | −3.6347 | 0.2012 | −0.0376 | 0.1974 | −1.8759 | 0.3849 | −0.0265 | 0.2903 |
β11 | 1 | 9.67173 | 0.0013 * | 0.1067 | 0.0008 * | −2.5096 | 0.1889 | 0.02422 | 0.2658 |
β22 | 1 | −0.8107 | 0.7336 | −0.0063 | 0.7969 | 0.06273 | 0.9728 | 0.0044 | 0.8357 |
β33 | 1 | 1.33129 | 0.5779 | 0.0102 | 0.678 | 2.72606 | 0.1561 | 0.02721 | 0.2143 |
β44 | 1 | −3.0251 | 0.2181 | −0.0344 | 0.1751 | −0.8471 | 0.6466 | −0.029 | 0.188 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Archer, J.; Pristijono, P.; Vuong, Q.V.; Palou, L.; Golding, J.B. Utilising Response Surface Methodology to Optimise Food Additives and Treatments Reduces Disease Caused by Penicillium digitatum and Penicillium italicum in ‘Valencia’ Oranges. Horticulturae 2024, 10, 453. https://doi.org/10.3390/horticulturae10050453
Archer J, Pristijono P, Vuong QV, Palou L, Golding JB. Utilising Response Surface Methodology to Optimise Food Additives and Treatments Reduces Disease Caused by Penicillium digitatum and Penicillium italicum in ‘Valencia’ Oranges. Horticulturae. 2024; 10(5):453. https://doi.org/10.3390/horticulturae10050453
Chicago/Turabian StyleArcher, John, Penta Pristijono, Quan V. Vuong, Lluís Palou, and John B. Golding. 2024. "Utilising Response Surface Methodology to Optimise Food Additives and Treatments Reduces Disease Caused by Penicillium digitatum and Penicillium italicum in ‘Valencia’ Oranges" Horticulturae 10, no. 5: 453. https://doi.org/10.3390/horticulturae10050453
APA StyleArcher, J., Pristijono, P., Vuong, Q. V., Palou, L., & Golding, J. B. (2024). Utilising Response Surface Methodology to Optimise Food Additives and Treatments Reduces Disease Caused by Penicillium digitatum and Penicillium italicum in ‘Valencia’ Oranges. Horticulturae, 10(5), 453. https://doi.org/10.3390/horticulturae10050453