Detection of Volatile Compounds and Their Contribution to the Nutritional Quality of Chinese and Japanese Welsh Onions (Allium fistulosum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation
2.2. Determination of Nutritional Quality
2.3. Determination of Volatile Compounds
2.4. Determination of Mineral Elements
2.5. Statistical Analysis
3. Results
3.1. Nutritional Quality of Edible Parts of Two Welsh Onion Cultivars
3.2. Volatile Compounds
3.3. Mineral Elements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, G.; Gou, J.; Klee, H.; Huang, S. Next-Gen Approaches to Flavor-Related Metabolism. Annu. Rev. Plant Biol. 2019, 70, 187–212. [Google Scholar] [CrossRef] [PubMed]
- Pott, D.M.; Osorio, S.; Vallarino, J.G. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived from the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. Front. Plant Sci. 2019, 10, 454686. [Google Scholar] [CrossRef] [PubMed]
- Khandagale, K.; Krishna, R.; Roylawar, P.; Ade, A.B.; Benke, A.; Shinde, B.; Singh, M.; Gawande, S.J.; Rai, A. Omics approaches inAlliumresearch: Progress and way ahead. PeerJ 2020, 8, e9824. [Google Scholar] [CrossRef]
- Gao, S.; Kong, Y.; Lv, Y.; Cao, B.; Chen, Z.; Xu, K. Effect of different LED light quality combination on the content of vitamin C, soluble sugar, organic acids, amino acids, antioxidant capacity and mineral elements in green onion (Allium fistulosum L.). Food Res. Int. 2022, 156, 111329. [Google Scholar] [CrossRef] [PubMed]
- Biancolillo, A.; Aloia, R.; Rossi, L.; D’Archivio, A.A. Organosulfur volatile profiles in Italian red garlic (Allium sativum L.) varieties investigated by HS-SPME/GC-MS and chemometrics. Food Control 2022, 131, 108477. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Walczak, M.; Skrzypczak-Zielinska, M.; Jelen, H.H. Bitter taste of Brassica vegetables: The role of genetic factors, receptors, isothiocyanates, glucosinolates, and flavor context. Crit. Rev. Food Sci. Nutr. 2018, 58, 3130–3140. [Google Scholar] [CrossRef]
- Díaz-Pérez, J.C.; da Silva, A.L.B.R.; Valdez-Aguilar, L.A. Seasonal plant growth, leaf and bulb mineral nutrients, and bulb yield and quality under chemical, mixed, and organic fertilization in sweet onion (Allium cepa L.). J. Plant Nutr. 2021, 45, 153–167. [Google Scholar] [CrossRef]
- Gil-Pérez, I.; Rebollar, R.; Lidón, I.; Martín, J.; van Trijp, H.C.M.; Piqueras-Fiszman, B. Hot or not? Conveying sensory information on food packaging through the spiciness-shape correspondence. Food Qual. Prefer. 2019, 71, 197–208. [Google Scholar] [CrossRef]
- Yin, C.; Fan, X.; Fan, Z.; Shi, D.; Yao, F.; Gao, H. Comparison of non-volatile and volatile flavor compounds in six Pleurotus mushrooms. J. Sci. Food Agric. 2019, 99, 1691–1699. [Google Scholar] [CrossRef]
- Khokhar, K.M. Mineral nutrient management for onion bulb crops—A review. J. Hortic. Sci. Biotechnol. 2019, 94, 703–717. [Google Scholar] [CrossRef]
- Vuković, S.; Popović-Djordjević, J.B.; Kostić, A.Ž.; Pantelić, N.D.; Srećković, N.; Akram, M.; Laila, U.; Katanić Stanković, J.S. Allium Species in the Balkan Region—Major Metabolites, Antioxidant and Antimicrobial Properties. Horticulturae 2023, 9, 408. [Google Scholar] [CrossRef]
- Li, H. Principle and Technology of Plant Physiological and Biochemical Experiments; SHigher Education Press: Beijing, China, 2002. [Google Scholar]
- Randle, W.M.; Bussard, M.; Warnock, D. Ontogeny and sulfur fertility affect leaf sulfur in short-day onions. J. Am. Soc. Hortic. Sci. 1993, 118, 762–765. [Google Scholar] [CrossRef]
- Kremr, D.; Bajerová, P.; Bajer, T.; Eisner, A.; Adam, M.; Ventura, K. Using headspace solid-phase microextraction for comparison of volatile sulphur compounds of fresh plants belonging to families Alliaceae and Brassicaceae. J. Food Sci. Tech. 2015, 52, 5727–5735. [Google Scholar] [CrossRef]
- Ishida, H.; Suzuno, H.; Sugiyama, N.; Innami, S.; Tadokoro, T.; Maekawa, A. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chem. 2000, 68, 359–367. [Google Scholar] [CrossRef]
- Pai, S.; Yang, C.; Riley, J.P. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Anal. Chim. Acta 1990, 229, 115–120. [Google Scholar] [CrossRef]
- Tang, Q.-Y.; Zhang, C.-X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, S.; Inaoka, T.; Nakamura, T.; Kimura, K.; Sekiyama, Y.; Tomita, S. Nuclear magnetic resonance- and gas chromatography/mass spectrometry-based metabolomic characterization of water-soluble and volatile compound profiles in cabbage vinegar. J. Biosci. Bioeng. 2018, 126, 53–62. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yoon, J.; Han, J.; Seo, Y.; Kang, B.-H.; Lee, J.; Ochar, K. Green Onion (Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic Significance. Foods 2023, 12, 4503. [Google Scholar] [CrossRef]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Crowther, T.; Collin, H.A.; Smith, B.; Tomsett, A.B.; O’Connor, D.; Jones, M.G. Assessment of the flavour of fresh uncooked onions by taste-panels and analysis of flavour precursors, pyruvate and sugars. J. Sci. Food Agric. 2005, 85, 112–120. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Jelen, H.H. Volatile compounds of selected raw and cooked brassica vegetables. Molecules 2019, 24, 391. [Google Scholar] [CrossRef]
- Villière, A.; Le Roy, S.; Fillonneau, C.; Guillet, F.; Falquerho, H.; Boussely, S.; Prost, C. Evaluation of aroma profile differences between sué, sautéed, and pan-fried onions using an innovative olfactometric approach. Flavour 2015, 4, 24. [Google Scholar] [CrossRef]
- Kusano, M.; Kobayashi, M.; Iizuka, Y.; Fukushima, A.; Saito, K. Unbiased profiling of volatile organic compounds in the headspace of Allium plants using an in-tube extraction device. BMC Res. Notes 2016, 9, 133. [Google Scholar] [CrossRef]
- McGorrin, R.J. The significance of volatile sulfur compounds in food flavors. In Volatile Sulfur Compounds in Food; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; Volume 1068, pp. 3–31. [Google Scholar]
- Zhang, N.; Sun, B.; Mao, X.; Chen, H.; Zhang, Y. Flavor formation in frying process of green onion (Allium fistulosum L.) deep-fried oil. Food Res. Int. 2019, 121, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, G.S.; Poll, L. Determination of odor active aroma compounds in freshly cut leek (Allium ampeloprasum Var. Bulga) and in long-term stored frozen unblanched and blanched leek slices by gas chromatography olfactometry analysis. J. Agr. Food Chem. 2004, 52, 1642–1646. [Google Scholar] [CrossRef]
- Vyavahare, G.D.; Lee, Y.; Seok, Y.J.; Kim, H.N.; Sung, J.; Park, J.H. Monitoring of Soil Nutrient Levels by an EC Sensor during Spring Onion (Allium fistulosum) Cultivation under Different Fertilizer Treatments. Agronomy 2023, 13, 2156. [Google Scholar] [CrossRef]
- Kong, L.; Xu, K.; Wang, L.; He, P.; Zhang, Y. Influence of nitrogen and sulfur interaction on growth and quality of Chinese spring onion. J. Plant Nutr. Fertil. 2013, 19, 1272–1278. [Google Scholar]
- McCallum, J.; Porter, N.; Searle, B.; Shaw, M.; Bettjeman, B.; McManus, M. Sulfur and nitrogen fertility affects flavour of field-grown onions. Plant Soil 2005, 269, 151–158. [Google Scholar] [CrossRef]
- Liu, P.; Weng, R.; Sheng, X.; Wang, X.; Zhang, W.; Qian, Y.; Qiu, J. Profiling of organosulfur compounds and amino acids in garlic from different regions of China. Food Chem. 2020, 305, 125499. [Google Scholar] [CrossRef]
Edible Parts | Cultivars | Soluble Sugar (mg/g FW) | Soluble Protein (mg/g FW) | Free Amino Acid (mg/g FW) | Coarse Fiber (%) | Pyruvic Acid (mg/g FW) |
---|---|---|---|---|---|---|
Pseudostem | Zhangqiu | 2.55 ± 0.02 a | 0.90 ± 0.13 a | 0.51 ± 0.01 b | 1.02 ± 0.03 b | 1.03 ± 0.02 a |
Tenko | 1.38 ± 0.03 b | 1.10 ± 0.11 a | 0.59 ± 0.01 a | 1.39 ± 0.05 a | 0.91 ± 0.02 b | |
Leaf | Zhangqiu | 0.37 ± 0.01 a | 0.45 ± 0.02 b | 0.34 ± 0.02 b | 0.66 ± 0.01 b | 0.50 ± 0.01 b |
Tenko | 0.25 ± 0.01 b | 0.50 ± 0.01 a | 0.41 ± 0.01 a | 0.87 ± 0.03 a | 0.75 ± 0.02 a |
Organs | Cultivars | Mineral Elements (mg/g DW) | |||||||
---|---|---|---|---|---|---|---|---|---|
N | P | K | Na | Mg | Ca | Fe | S | ||
Root | Zhangqiu | 20.69 ± 1.29 a | 16.77 ± 0.73 a | 39.94 ± 0.15 a | 1.22 ± 0.11 a | 7.53 ± 0.03 a | 12.80 ± 1.04 a | 0.70 ± 0.01 a | 5.79 ± 0.18 a |
Tenko | 18.81 ± 0.31 a | 11.96 ± 0.09 b | 36.02 ± 0.02 b | 0.81 ± 0.03 b | 5.97 ± 0.02 b | 10.90 ± 0.22 a | 0.55 ± 0.02 b | 5.31 ± 0.06 a | |
Pseudostem | Zhangqiu | 18.14 ± 1.16 a | 14.99 ± 0.70 a | 30.32 ± 0.41 b | 0.84 ± 0.11 a | 3.44 ± 0.03 b | 3.42 ± 0.04 b | 0.45 ± 0.01 a | 5.52 ± 0.04 a |
Tenko | 15.00 ± 0.48 a | 10.39 ± 0.24 b | 31.24 ± 0.37 a | 0.47 ± 0.02 b | 3.91 ± 0.03 a | 6.28 ± 0.08 a | 0.38 ± 0.01 b | 5.08 ± 0.10 b | |
Leaf | Zhangqiu | 23.20 ± 1.28 a | 14.79 ± 0.66 a | 34.82 ± 0.30 b | 0.74 ± 0.05 a | 6.91 ± 0.04 a | 16.08 ± 0.15 a | 0.55 ± 0.01 a | 7.68 ± 0.09 b |
Tenko | 23.48 ± 0.68 a | 10.50 ± 0.22 b | 35.61 ± 0.40 a | 0.44 ± 0.01 b | 6.87 ± 0.11 a | 8.20 ± 0.10 b | 0.38 ± 0.01 b | 8.13 ± 0.08 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Guo, J.; Chen, Z.; Xu, K.; Xu, K. Detection of Volatile Compounds and Their Contribution to the Nutritional Quality of Chinese and Japanese Welsh Onions (Allium fistulosum L.). Horticulturae 2024, 10, 446. https://doi.org/10.3390/horticulturae10050446
Liu X, Guo J, Chen Z, Xu K, Xu K. Detection of Volatile Compounds and Their Contribution to the Nutritional Quality of Chinese and Japanese Welsh Onions (Allium fistulosum L.). Horticulturae. 2024; 10(5):446. https://doi.org/10.3390/horticulturae10050446
Chicago/Turabian StyleLiu, Xuena, Jinghua Guo, Zijing Chen, Kun Xu, and Kang Xu. 2024. "Detection of Volatile Compounds and Their Contribution to the Nutritional Quality of Chinese and Japanese Welsh Onions (Allium fistulosum L.)" Horticulturae 10, no. 5: 446. https://doi.org/10.3390/horticulturae10050446
APA StyleLiu, X., Guo, J., Chen, Z., Xu, K., & Xu, K. (2024). Detection of Volatile Compounds and Their Contribution to the Nutritional Quality of Chinese and Japanese Welsh Onions (Allium fistulosum L.). Horticulturae, 10(5), 446. https://doi.org/10.3390/horticulturae10050446