Deciphering the Virome of the Pimple-Shaped ‘Yali’ Pear Fruit through High-Throughput Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Extraction of Total RNA
2.3. Virome Analysis
2.4. Identify Virus Species by RT-PCR
2.5. Amplification and Sequencing of the Full Sequence of Movement Protein Gene
2.6. Analysis of Molecular Variation of ASGV
3. Results
3.1. Virome Analysis of Pimple-Shaped Fruits in ‘Yali’ Pear
3.2. Analysis of Virus Infection in Different Organs of ‘Yali’ Pear
3.3. Detection of Virus Infection in ‘Yali’ Pear Pimple-Shaped Fruit
3.4. Molecular Variation Analysis of ASGV Virus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhi, Z.L.; Nan, W.Y.; Xin, W.H.; Lei, W. Current situation of apple virus disease in China and research progress of detection technology. J. Ludong Univ. Nat. Sci. Ed. 2019, 35, 116–121. [Google Scholar]
- Dong, Y.R.; Sen, S.W.; Kui, H.; Mei, W.J. The molecular identification of latent viruses in the main apple production areas in Southwest China. J. Sichuan Univ. Nat. Sci. Ed. 2019, 56, 357–362. [Google Scholar]
- Karasev, A.V.; Boyko, V.P.; Gowda, S.; Nikolaeva, O.V.; Hilf, M.E.; Koonin, E.V.; Niblett, C.L.; Cline, K.; Gumpf, D.J.; Lee, R.F.; et al. Complete sequence of the citrus tristeza virus RNA genome. Virology 1995, 208, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Martín, S.; López, C.; García, M.L.; Naum-Onganía, G.; Grau, O.; Flores, R.; Moreno, P.; Guerri, J. The complete nucleotide sequence of a Spanish isolate of Citrus psorosis virus: Comparative analysis with other ophioviruses. Arch. Virol. 2005, 150, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Loconsole, G.; Onelge, N.; Potere, O.; Giampetruzzi, A.; Bozan, O.; Satar, S.; De Stradis, A.; Savino, V.; Yokomi, R.K.; Saponari, M. Identification and characterization of citrus yellow vein clearing virus, a putative new member of the genus Mandarivirus. Phytopathology 2012, 102, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Choudhary, N.; Guillermo, L.M.; Shao, J.; Govindarajulu, A.; Achor, D.; Wei, G.; Picton, D.D.; Levy, L.; Nakhla, M.K.; et al. A novel virus of the genus Cilevirus causing symptoms similar to citrus leprosis. Phytopathology 2013, 103, 488–500. [Google Scholar] [CrossRef]
- Vives, M.C.; Velázquez, K.; Pina, J.A.; Moreno, P.; Guerri, J.; Navarro, L. Identification of a new enamovirus associated with citrus vein enation disease by deep sequencing of small RNAs. Phytopathology 2013, 103, 1077–1086. [Google Scholar] [CrossRef]
- Vives, M.C.; Galipienso, L.; Navarro, L.; Moreno, P.; Guerri, J. The nucleotide sequence and genomic organization of Citrus leaf blotch virus: Candidate type species for a new virus genus. Virology 2001, 287, 225–233. [Google Scholar] [CrossRef]
- Cao, M.J.; Wu, Q.; Atta, S.; Su, H.N.; Yu, Y.Q.; Chen, H.M.; Zhou, C.Y. First molecular evidence of Citrus yellow vein clearing virus from Citrus in Punjab, Pakistan. Plant Dis. 2015, 100, 540. [Google Scholar] [CrossRef]
- Huang, Q.; Hartung, J.S. Cloning and sequence analysis of an infectious clone of Citrus yellow mosaic virus that can infect sweet orange via Agrobacterium-mediated inoculation. J. Gen. Virol. 2001, 82, 2549–2558. [Google Scholar] [CrossRef]
- Yoshikawa, N.; Sasaki, E.; Kato, M.; Takahashi, T. The nucleotide sequence of apple stem grooving capillovirus genome. Virology 1992, 191, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Jelkmann, W. Nucleotide sequences of apple stem pitting virus and of the coat protein gene of a similar virus from pear associated with vein yellows disease and their relationship with potex- and carlaviruses. J. Gen. Virol. 1994, 75, 1535–1542. [Google Scholar] [CrossRef]
- German, S.; Candresse, T.; Lanneau, M.; Huet, J.C.; Pernollet, J.C.; Dunez, J. Nucleotide sequence and genomic organization of apple chlorotic leaf spot closterovirus. Virology 1990, 179, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Shiel, P.J.; Berger, P.H. The complete nucleotide sequence of apple mosaic virus (ApMV) RNA 1 and RNA 2: ApMV is more closely related to alfalfa mosaic virus than to other ilarviruses. J. Gen. Virol. 2000, 81, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Digiaro, M.; Savino, V.; Di Terlizzi, B. Ilaviruses in apricot and plum pollen. Acta Hortic. 1992, 309, 93–98. [Google Scholar] [CrossRef]
- Lewsey, M.G. Plant Pathogens: RNA Viruses; Elsevier Press Inc.: Amsterdam, The Netherlands, 2019; pp. 443–458. [Google Scholar]
- Wang, G.; Hong, N.; Zhang, Z.; Wang, H.; Liu, F. Preliminary report on identification of pear virus indicator plant in field. China Fruit 1993, 15–18. [Google Scholar]
- Tan, J.; Han, X.H.; Cheng, S.; Wu, Y.; Hao, X. Preparation and application of polyclonal antibodies against coat protein gene from Apple stem grooving virus. Acta Agric. Boreali-Occident. Sin. 2020, 30, 787–792. [Google Scholar]
- Youssef, S.; Moawad, S.; Nosseir, F.; Shalaby, A. Detection and identification of Apple stem pitting virus and Apple stem grooving virus affecting apple and pear trees in Egypt. In Proceedings of the 21th International Conference on Virus and Other Graft Transmissible Diseases of Fruit Crops, Neustadt, Germany, 5–10 July 2009. [Google Scholar]
- Hua, Y.M.; Yao, Z.Y.; Peng, Y.X.; Qin, X.Y.; Ying, L.Z.; Jian, S.R.; Min, W.Z.; Yan, X.H.; Rong, H.S. Analysis of virus species in main cultivars of early pear in Shangrao and the efficiency of their shoot tip virus-free techniques. Acta Agric. Zhejiangensis 2017, 29, 89–100. [Google Scholar]
- Kim, N.Y.; Lee, H.J.; Kim, H.S.; Lee, S.H.; Moon, J.S.; Jeong, R.D. Identification of Plant Viruses Infecting Pear Using RNA Sequencing. Plant Pathol. J. 2021, 37, 258–267. [Google Scholar] [CrossRef]
- Sharma, S.; Kashyap, P.L.; Sharma, A. 3—Plant Virome: Current Understanding, Mechanisms, and Role in Phytobiome. In Microbiomes and Plant Health; Solanki, M.K., Kashyap, P.L., Ansari, R.A., Kumari, B., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 53–81. [Google Scholar]
- Yang, S.; Mao, Q.; Wang, Y.; He, J.; Yang, J.; Chen, X.; Xiao, Y.; He, Y.; Zhao, M.; Lu, J.; et al. Expanding known viral diversity in plants: Virome of 161 species alongside an ancient canal. Environ. Microbiome 2022, 17, 58. [Google Scholar] [CrossRef]
- Rivarez, M.P.S.; Vučurović, A.; Mehle, N.; Ravnikar, M.; Kutnjak, D. Global advances in tomato virome research: Current status and the impact of high-throughput sequencing. Front. Microbiol. 2021, 12, 671925. [Google Scholar] [CrossRef] [PubMed]
- Tabara, M.; Nagashima, Y.; He, K.; Qian, X.; Crosby, K.M.; Jifon, J.; Jayaprakasha, G.K.; Patil, B.; Koiwa, H.; Takahashi, H.; et al. Frequent asymptomatic infection with tobacco ringspot virus on melon fruit. Virus Res. 2021, 293, 198266. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; He, J.; Cheng, Y.; Li, L.; Guan, J. Effects of low-oxygen storage on the quality and physiological disorder of ‘Yali’ pear. Mod. Food Sci. Technol. 2020, 36, 114–120. [Google Scholar]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, X.; Zhang, S.; Zhu, J.; Tang, B.; Wang, A.; Dong, L.; Zhang, Z.; Yu, C.; Sun, Y.; et al. The genome sequence archive family: Toward explosive data growth and diverse data types. Genom. Proteom. Bioinform. 2021, 19, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Partners, C.-N.M.A.; Xue, Y.; Bao, Y.; Zhang, Z.; Zhao, W.; Xiao, J.; He, S.; Zhang, G.; Li, Y.; Zhao, G.; et al. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022, 50, D27–D38. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Han, X.C.; Li, Q.; Chen, Z.R. Screening of pear viral disease detection methods and detection of pear virus disease in Tianjin region. Acta Agric. Boreali-Occident. Sin. 2018, 33, 125–129. [Google Scholar]
- Chen, L.; Wang, M.; Li, J.; Feng, C.; Cui, Z.; Zhao, L.; Wang, Q. Exogenous application of melatonin improves eradication of apple stem grooving virus from the infected in vitro shoots by shoot tip culture. Plant Pathol. 2019, 68, 997–1006. [Google Scholar] [CrossRef]
- Niu, J.X.; Liu, L.K.; Zhu, J.; Qin, W.M. Study on the RT-PCR detection system for Pear vein yellow virus by using dsDNA as template. J. Fruit Sci. 2003, 20, 143–145. [Google Scholar]
- Sun, X.X.; Niu, J.X.; Wang, B.H. Identification and analysis of an apple stem groove virus complete genomic sequence from Korla fragrant pear. Mol. Plant Breed. 2015, 8, 1771–1778. [Google Scholar]
- Gao, Y.N.; Yin, J.; Wang, Y.; Wang, R.; Ma, C.H.; Li, D.L. RT-PCR detection of main virus in pear rootstock. J. Qingdao Agric. Univ. Nat. Sci. 2019, 36, 14–18. [Google Scholar]
- Roossinck, M.J. Deep sequencing for discovery and evolutionary analysis of plant viruses. Virus Res. 2017, 239, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.P.; Zhou, L.; Ma, L.; Quan, S.W.; Qin, Y.; Niu, J.X. Detection of pear virus by high-throughput sequencing technology. Xinjiang Agric. Sci. 2020, 57, 1503. [Google Scholar]
- Shen, P.; Tian, X.; Zhang, S.; Ren, F.; Li, P.; Yu, Y.-Q.; Li, R.; Zhou, C.; Cao, M. Molecular characterization of a novel luteovirus infecting apple by next-generation sequencing. Arch. Virol. 2018, 163, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, H.; Bateman, M.; Liu, Z.; Li, R. Molecular characterization of a novel luteovirus from peach identified by high-throughput sequencing. Arch. Virol. 2017, 162, 2903–2905. [Google Scholar] [CrossRef] [PubMed]
- Kegler, H.; Kleinhempel, H.; Verderevskaja, T.D. Investigations on pear stony pit virus. Acta Hortic. 1976, 67, 209–218. [Google Scholar] [CrossRef]
- Brakta, A.; Sharma, U.; Thakur, P.D.; Handa, A. First report of pear stony pit disease from India. New Dis. Rep. 2013, 27, 11. [Google Scholar] [CrossRef]
- Paunovic, S.; Maksimovic, V.; Rankovic, M.; Radovic, S. Characterization of a virus associated with pear stony pit in cv. Wurttemberg. J. Phytopathol. 1999, 147, 695–700. [Google Scholar]
- Ji, P.; Wang, L.; Kong, B.; Li, X.; Cao, K.; Ma, J. Identification and molecular variation of apple stem grooving virus (ASGV) infecting apple from Yunnan. J. Fruit Sci. 2013, 30, 397–403. [Google Scholar]
- Zhang, X.; Wang, L.; Zhao, Z.; Zheng, Y.; Chen, J.; Cui, B. Genomic molecular characteristics of apple stem grooving virus isolate of Pyrus communis. Jiangsu Agric. Sci. 2017, 45, 43–47. [Google Scholar]
- Huang, Y.Y.; Wang, G.P.; Hong, N. Study on the molecular characteristics of partial sequence from different sources isolates of Apple stem grooving virus. Xinjiang Agric. Sci. 2011, 48, 247–251. [Google Scholar]
- Wang, Y.; Zhuang, H.; Yang, Z.; Wen, L.; Wang, G.; Hong, N. Molecular characterization of an apple stem grooving virus isolate from kiwifruit (Actinidia chinensis) in China. Can. J. Plant Pathol. 2018, 40, 76–83. [Google Scholar] [CrossRef]
Names | Sequences | Size of Fragments | Sources |
---|---|---|---|
ASGV-F | AAGAGAGGATTTAGGTCCCTC | 825 bp | [30] |
ASGV-R | ATAAAGGGAGGCATGTCAACC | ||
ASPV-F | TGCCTCAAAGTACACCCCTCAGT | 316 bp | [30] |
ASPV-R | CGCCAAGAAATGCACAGC | ||
ADFVd-F | GAGGAAAACTCCGTGTGGTTC | 271 bp | [30] |
ADFVd-R | AAGTCCACTCCCTGCCAGACC | ||
ACLSV-F | CAGACCCTTATTGAAGTCGAA | 358 bp | [30] |
ACLSV-R | GGCAACCCTGGAACAGA | ||
ASGV-MP-F | ATGGCTATCGTCAACGTCAACCG | 963 bp | This Study |
ASGV-MP-R | TCAGGGGGAGGAACCGTCAGAAG |
Sample ID | Read Number | Total Number of Bases Measured (bp) | N (%) | GC (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|---|
wx1 | 76,158,416 | 11,423,762,400 | 0.00061 | 44.9 | 97.86 | 94.68 |
wx2 | 76,758,390 | 11,513,758,500 | 0.00062 | 44.79 | 97.51 | 94.19 |
wx3 | 81,919,920 | 12,287,988,000 | 0.00061 | 44.81 | 97.72 | 94.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Gao, C.; Guan, Y.; Cheng, Y.; Wei, C.; Guan, J. Deciphering the Virome of the Pimple-Shaped ‘Yali’ Pear Fruit through High-Throughput Sequencing. Horticulturae 2024, 10, 311. https://doi.org/10.3390/horticulturae10040311
Zhang Y, Gao C, Guan Y, Cheng Y, Wei C, Guan J. Deciphering the Virome of the Pimple-Shaped ‘Yali’ Pear Fruit through High-Throughput Sequencing. Horticulturae. 2024; 10(4):311. https://doi.org/10.3390/horticulturae10040311
Chicago/Turabian StyleZhang, Yang, Congcong Gao, Yeqing Guan, Yudou Cheng, Chuangqi Wei, and Junfeng Guan. 2024. "Deciphering the Virome of the Pimple-Shaped ‘Yali’ Pear Fruit through High-Throughput Sequencing" Horticulturae 10, no. 4: 311. https://doi.org/10.3390/horticulturae10040311
APA StyleZhang, Y., Gao, C., Guan, Y., Cheng, Y., Wei, C., & Guan, J. (2024). Deciphering the Virome of the Pimple-Shaped ‘Yali’ Pear Fruit through High-Throughput Sequencing. Horticulturae, 10(4), 311. https://doi.org/10.3390/horticulturae10040311