Physical Properties and Crop Performance of Four Substrate Fibers in Greenhouse Petunia Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Blending and Physical Properties
2.2. Crop Growth and Evaluation
2.3. Data Analysis
3. Results and Discussion
3.1. Substrate Properties
3.2. Greenhouse Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fields, J.; Owen, J.; Lamm, A.; Altland, J.; Jackson, B.; Zheng, Y.; Oki, L.; Fontenot, K.; Samtani, J.; Campbell, B. Soilless substrate science: A North American needs assessment to steer soilless substrate research into the future. In Proceedings of the II International Symposium on Growing Media, Soilless Cultivation, and Compost Utilization in Horticulture, Ghent, Belgium, 22–27 August 2021; Volume 1317, pp. 313–318. [Google Scholar] [CrossRef]
- Jackson, B.E.; Fields, J.; Owen, J.; Altland, J. Soilless Substrate Science for Current and Future Growers. Grower Talks. 2022. Available online: https://www.growertalks.com/Article/?articleid=25658 (accessed on 29 November 2023).
- Maher, M.; Prasad, M.; Raviv, M. Organic Soilless Media Components. In Soilless Culture: Theory and Practice; Raviv, M., Lieth, J.H., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 459–504. [Google Scholar]
- Schmilewski, G. The Role of Peat in Assuring the Quality of Growing Media. Mires Peat 2008, 3, 1–8. [Google Scholar]
- Peat for Horticulture. International Peatland Society. 2019. Available online: https://peatlands.org/peat/peat-for-horticulture/ (accessed on 1 February 2024).
- Alexander, P.D.; Bragg, N.C.; Meade, R.; Padelopoulos, G.; Watts, O. Peat in horticulture and conservation: The UK response to a changing world. Mires Peat 2008, 3, 1–10. [Google Scholar]
- Cleary, J.; Roulet, N.T.; Moore, T.R. Greenhouse Gas Emissions from Canadian Peat Extraction, 1990–2000: A Life-cycle Analysis. AMBIO 2005, 34, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Dunn, C.; Freeman, C. Peatlands: Our greatest source of carbon credits? Carbon Manag. 2011, 2, 289–301. [Google Scholar] [CrossRef]
- Blok, C.; Eveleens, B.; van Winkel, A. Growing media for food and quality of life in the period 2020–2050. Acta Hortic. 2021, 1305, 341–356. [Google Scholar] [CrossRef]
- Krucker, M.; Hummel, R.L.; Cogger, C. Chrysanthemum Production in Composted and Noncomposted Organic Waste Substrates Fertilized with Nitrogen at Two Rates Using Surface and Subirrigation. HortScience 2010, 45, 1695–1701. [Google Scholar] [CrossRef]
- Yu, P.; Li, Q.; Huang, L.; Niu, G.; Gu, M. Mixed Hardwood and Sugarcane Bagasse Biochar as Potting Mix Components for Container Tomato and Basil Seedling Production. Appl. Sci. 2019, 9, 4713. [Google Scholar] [CrossRef]
- Mariotti, B.; Martini, S.; Raddi, S.; Tani, A.; Jacobs, D.F.; Oliet, J.A.; Maltoni, A. Coconut Coir as a Sustainable Nursery Growing Media for Seedling Production of the Ecologically Diverse Quercus Species. Forests 2020, 11, 522. [Google Scholar] [CrossRef]
- Meerow, A.W. Growth of Two Subtropical Ornamentals Using Coir (Coconut Mesocarp Pith) as a Peat Substitute. HortScience 1994, 29, 1484–1486. [Google Scholar] [CrossRef]
- Newman, J. Core Facts about Coir. Nursery Management. 2007. Available online: https://www.nurserymag.com/news/core-facts-about-coir/ (accessed on 29 November 2023).
- Pryce, S. Alternatives to peat. Prof. Hort. 1991, 5, 101–106. [Google Scholar]
- Reynolds, S. Preliminary Studies in Western Samoa Using Various Parts of the Coconut Palm (Cocos Nucifera L.) as Growing Media. Acta Hortic. 1973, 37, 1983–1991. [Google Scholar] [CrossRef]
- Abad, M.; Fornes, F.; Carrión, C.; Noguera, V.; Noguera, P.; Maquieira, A.; Puchades, R. Physical Properties of Various Coconut Coir Dusts Compared to Peat. HortScience 2005, 40, 2138–2144. [Google Scholar] [CrossRef]
- Arenas, M.; Vavrina, C.; Cornell, J.; Hanlon, E.; Hochmuth, G. Coir as an Alternative to Peat in Media for Tomato Transplant Production. HortScience 2002, 37, 309–312. [Google Scholar] [CrossRef]
- Evans, M.R.; Stamps, R. 486 PB 128 Growth of Annual Species in Coconut Coir Substrates. HortScience 1994, 29, 501a–501. [Google Scholar] [CrossRef]
- Scagel, C.F. Growth and Nutrient Use of Ericaceous Plants Grown in Media Amended with Sphagnum Moss Peat or Coir Dust. HortScience 2003, 38, 46–54. [Google Scholar] [CrossRef]
- Harris, C.N.; Dickson, R.W.; Fisher, P.R.; Jackson, B.E.; Poleatewich, A.M. Evaluating Peat Substrates Amended with Pine Wood Fiber for Nitrogen Immobilization and Effects on Plant Performance with Container-grown Petunia. HortTechnology 2020, 30, 107–116. [Google Scholar] [CrossRef]
- Durand, S.; Jackson, B.E.; Fonteno, W.C.; Michel, J.-C. The Use of Wood Fiber for Reducing Risks of Hydrophobicity in Peat-Based Substrates. Agronomy 2021, 11, 907. [Google Scholar] [CrossRef]
- Jackson, B.E. Substrates on Trial: Wood Fiber in the Spotlight. 2018. Available online: https://www.greenhousemag.com/article/substrates-on-trial-wood-fiber-in-the-spotlight/ (accessed on 13 November 2023).
- Dickson, R.W.; Helms, K.M.; Jackson, B.E.; Machesney, L.M.; Lee, J.A. Evaluation of Peat Blended with Pine Wood Components for Effects on Substrate Physical Properties, Nitrogen Immobilization, and Growth of Petunia (Petunia × hybrida Vilm.-Andr.). HortScience 2022, 57, 304–311. [Google Scholar] [CrossRef]
- Wright, R.D.; Jackson, B.E.; Browder, J.F.; Latimer, J.G. Growth of Chrysanthemum in a Pine Tree Substrate Requires Additional Fertilizer. HortTechnology 2008, 18, 111–115. [Google Scholar] [CrossRef]
- Jackson, B.E.; Wright, R.D.; Barnes, M.C. Pine Tree Substrate, Nitrogen Rate, Particle Size, and Peat Amendment Affect Poinsettia Growth and Substrate Physical Properties. HortScience 2008, 43, 2155–2161. [Google Scholar] [CrossRef]
- Jackson, B.E.; Wright, R.D.; Browder, J.F.; Harris, J.R.; Niemiera, A.X. Effect of Fertilizer Rate on Growth of Azalea and Holly in Pine Bark and Pine Tree Substrates. HortScience 2008, 43, 1561–1568. [Google Scholar] [CrossRef]
- Bhadha, J.H.; Xu, N.; Khatiwada, R.; Swanson, S.; LaBorde, C. Bagasse: A Potential Organic Soil Amendment Used in Sugarcane Production. 2020. Available online: https://edis.ifas.ufl.edu/pdf/SS/SS69000.pdf (accessed on 10 March 2024).
- Background. USDA ERS—Background. (2021, October 19). Available online: https://www.ers.usda.gov/topics/crops/sugar-and-sweeteners/background/#production (accessed on 10 March 2024).
- Webber, C.L., III; White, P.M., Jr.; Spaunhorst, D.J.; Lima, I.M.; Petrie, E.C. Sugarcane Biochar as an Amendment for Greenhouse Growing Media for the Production of Cucurbit Seedlings. J. Agric. Sci. 2018, 10, 104–115. [Google Scholar] [CrossRef]
- Thiessen, M.; Fields, J.S.; Abdi, D.; Beasley, J. Sugarcane Bagasse Is an Effective Soilless Substrate Amendment in Quick-turn Osteospermum Production. HortScience 2023, 58, 1170–1177. [Google Scholar] [CrossRef]
- Loisel, J.; Yu, Z.; Beilman, D.W.; Camill, P.; Alm, J.; Amesbury, M.J.; Anderson, D.; Andersson, S.; Bochicchio, C.; Barber, K.; et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 2014, 24, 1028–1042. [Google Scholar] [CrossRef]
- Peat, Inc. Analysis Summary. 2022. Available online: https://www.peatinc.com/about/ (accessed on 29 November 2023).
- Watmough, S.; Gilbert-Parkes, S.; Basiliko, N.; Lamit, L.J.; Lilleskov, E.A.; Andersen, R.; del Aguila-Pasquel, J.; Artz, R.E.; Benscoter, B.W.; Borken, W.; et al. Variation in carbon and nitrogen concentrations among peatland categories at the global scale. PLoS ONE 2022, 17, e0275149. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Puchades, R.; Maquieira, A.; Noguera, V. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour. Technol. 2002, 82, 241–245. [Google Scholar] [CrossRef]
- Bhat, S.A.; Singh, J.; Vig, A.P. Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. SpringerPlus 2015, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Nisaren, B.N.; Wogi, L.; Tamiru, S. Effect of filter cake and bagasse on selected physicochemical properties of calcareous sodic soils at Amibara, Ethiopia. Int. J. Agron. Agric. Res. 2019, 14, 20–28. [Google Scholar]
- Uchimiya, M.; Hay, A.G.; LeBlanc, J. Chemical and microbial characterization of sugarcane mill mud for soil applications. PLoS ONE 2022, 17, e0272013. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Bhadha, J.H.; Rabbany, A.; Swanson, S.; McCray, J.M.; Li, Y.C.; Strauss, S.L.; Mylavarapu, R. Crop Nutrition and Yield Response of Bagasse Application on Sugarcane Grown on a Mineral Soil. Agronomy 2021, 11, 1526. [Google Scholar] [CrossRef]
- Domeño, I.; Irigoyen, I.; Muro, J. New wood fibre substrates characterization and evaluation in hydroponic tomato culture. Eur. J. Hortic. Sci. 2010, 75, 89–94. [Google Scholar]
- Fonteno, W.C.; Hardin, C.T.; Brewster, J.P. Procedures for Determining Physical Properties of Horticultural Substrates Using the NCSU Porometer; Horticultural Substrates Laboratory, North Carolina State University: Raleigh, NC, USA, 1995. [Google Scholar]
- Wright, R.D. The Pour-through Nutrient Extraction Procedure. HortScience 1986, 21, 227–229. [Google Scholar] [CrossRef]
- Fields, J.S.; Owen, J.S., Jr.; Scoggins, H.L. The Influence of Substrate Hydraulic Conductivity on Plant Water Status of an Ornamental Container Crop Grown in Suboptimal Substrate Water Potentials. HortScience 2017, 52, 1419–1428. [Google Scholar] [CrossRef]
- Argo, B.; Fisher, P. Understanding Plant Nutrition: Irrigation Water Alkalinity and pH. 2008. Available online: https://www.greenhousegrower.com/production/fertilization/understanding-plant-nutrition-irrigation-water-alkalinity-ph/ (accessed on 13 January 2023).
- Dickson, R.W.; Fisher, P.R.; Argo, W.R. Quantifying the Acidic and Basic Effects of Fifteen Floriculture Species Grown in Peat-based Substrate. HortScience 2017, 52, 1065–1072. [Google Scholar] [CrossRef]
- Stamps, R.H.; Evans, M.R. Growth of Dieffenbachia maculata ‘Camille’ in Growing Media Containing Sphagnum Peat or Coconut Coir Dust. HortScience 1997, 32, 844–847. [Google Scholar] [CrossRef]
- Owen, W.G.; Henry, J.; Whipker, B. Fert, Dirt, and Squirt: Monitoring pH and EC of Greenhouse Crops. E-Gro Diagnostic Series, 12. 2018. Available online: http://www.fertdirtandsquirt.com/books.php (accessed on 19 January 2024).
Static Physical Properties z | Particle Size Distribution (g·g−1) y | |||||||
---|---|---|---|---|---|---|---|---|
Substrate | Container Capacity (cm3·cm−3) | Air Space (cm3·cm−3) | Total Porosity (cm3·cm−3) | Bulk Density (g·cm−3) | Extra-Large (>6.3 mm) | Large (2.0–6.3 mm) | Medium (0.7–2.0 mm) | Small (<0.7 mm) |
P w | 0.663 ± 0.007 a x | 0.170 ± 0.006 b | 0.833 ± 0.003 c | 0.150 ± 0.000 a | 0.257 ± 0.022 b | 0.334 ± 0.009 a | 0.194 ± 0.008 b | 0.216 ± 0.007 b |
C v | 0.720 ± 0.017 a | 0.207 ± 0.007 b | 0.923 ± 0.009 a | 0.107 ± 0.003 b | 0.181 ± 0.006 c | 0.254 ± 0.003 b | 0.259 ± 0.003 a | 0.306 ± 0.003 a |
W u | 0.553 ± 0.007 b | 0.343 ± 0.007 a | 0.900 ± 0.006 ab | 0.143 ± 0.013 a | 0.431 ± 0.007 a | 0.320 ± 0.018 a | 0.122 ± 0.002 c | 0.127 ± 0.009 d |
B t | 0.540 ± 0.021 b | 0.333 ± 0.015 a | 0.873 ± 0.009 b | 0.147 ± 0.003 a | 0.249 ± 0.011 b | 0.328 ± 0.011 a | 0.245 ± 0.012 a | 0.178 ± 0.012 c |
P-value (substrate) | <0.0001 | <0.0001 | <0.0001 | 0.0081 | <0.0001 | 0.0041 | <0.0001 | <0.0001 |
26 Days after Planting | 63 Days after Planting | |||||
---|---|---|---|---|---|---|
Substrate | GI z (cm) | pH y | EC x (mS/cm) | GI (cm) | pH | EC (mS/cm) |
100 ppm N | ||||||
P w | 16.83 ± 0.878 a s | 5.6 ± 0.109 b | 0.42 ± 0.037 a | 40.60 ± 0.938 a | 5.1 ± 0.146 c | 0.28 ± 0.007 b |
C v | 12.03 ± 0.299 b | 7.0 ± 0.073 a | 0.53 ± 0.024 a | 33.33 ± 0.782 b | 7.5 ± 0.061 a | 0.49 ± 0.064 a |
W u | 8.77 ± 0.844 c | 7.1 ± 0.033 a | 0.22 ± 0.006 b | 26.80 ± 0.873 c | 7.5 ± 0.052 a | 0.38 ± 0.012 ab |
B t | 8.73 0 ± 0.724 c | 5.6 ± 0.135 b | 0.45 ± 0.067 a | 20.20 ± 1.139 d | 5.9 ± 0.136 b | 0.33 ± 0.028 ab |
200 ppm N | ||||||
P w | 20.90 ± 1.344 a | 5.6 ± 0.056 b | 0.37 ± 0.038 b | 46.33 ± 0.810 a | 5.3 ± 0.187 c | 0.48 ± 0.048 a |
C v | 14.83 ± 0.772 b | 7.2 ± 0.061 a | 0.56 ± 0.050 a | 38.53 ± 1.254 b | 7.1 ± 0.162 a | 0.51 ± 0.042 a |
W u | 10.23 ± 0.553 c | 7.2 ± 0.026 a | 0.25 ± 0.007 b | 32.87 ± 1.386 c | 7.5 ± 0.026 a | 0.46 ± 0.020 a |
B t | 8.83 ± 0.264 c | 5.4 ± 0.175 b | 0.58 ± 0.045 a | 28.00 ± 1.456 c | 6.1 ± 0.091 b | 0.45 ± 0.050 a |
300 ppm N | ||||||
P w | 23.70 ± 0.800 a | 6.0 ± 0.169 b | 0.32 ± 0.052 ab | 47.6 ± 1.657 a | 5.4 ± 0.091 d | 0.49 ± 0.042 a |
C v | 18.50 ± 0.879 b | 7.2 ± 0.045 a | 0.47 ± 0.028 a | 46.2 ± 2.133 a | 6.9 ± 0.113 b | 0.55 ± 0.058 a |
W u | 12.93 ± 0.318 c | 7.1 ± 0.047 a | 0.25 ± 0.007 b | 40.8 ± 1.659 ab | 7.5 ± 0.043 a | 0.49 ± 0.074 a |
B t | 10.80 ± 0.683 c | 5.6 ± 0.054 b | 0.50 ± 0.059 a | 36.5 ± 1.724 b | 6.3 ± 0.113 c | 0.62 ± 0.021 a |
P (substrate) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0595 |
P (fertility rate) | <0.0001 | 0.0893 | 0.1597 | <0.0001 | 0.9049 | <0.0001 |
P (subs. X fert.) | 0.0386 | 0.1708 | 0.3248 | 0.0355 | 0.0048 | 0.1287 |
Substrate | Root Mass (g) | Shoot Mass (g) | Root/Shoot t | Substrate Shrinkage (%) u | SPAD Chlorophyll | Blooms |
---|---|---|---|---|---|---|
100 ppm N | ||||||
P y | 1.30 ± 0.21 a z | 13.30 ± 0.58 a | 0.097 | 0.80 ± 0.80 a | 40.95 ± 1.31 a | 117 ± 4.70 a |
C x | 1.70 ± 0.35 a | 5.27 ± 0.07 b | 0.321 | −1.37 ± 0.98 a | 25.06 ± 0.78 bc | 55 ± 3.85 b |
W w | 1.27 ± 0.37 a | 2.33 ± 0.29 c | 0.523 | 1.11 ± 0.66 a | 22.93 ± 2.67 c | 31 ± 2.76 c |
B v | 0.93 ± 0.52 a | 1.47 ± 0.23 c | 0.563 | 3.47 ± 2.41 a | 31.08 ± 0.96 b | 20 ± 2.28 c |
200 ppm N | ||||||
P y | 2.77 ± 0.38 a | 19.60 ± 1.45 a | 0.142 | −0.43 ± 1.09 b | 46.31 ± 0.81 a | 164 ± 7.28 a |
C x | 3.20 ± 0.42 a | 11.97 ± 0.98 b | 0.271 | 0.00 ± 1.39 ab | 29.91 ± 3.02 b | 110 ± 18.45b |
W w | 0.60 ± 0.06 b | 5.83 ± 0.23 c | 0.104 | −3.53 ± 1.27 b | 27.53 ± 0.54 b | 62 ± 4.55c |
B v | 0.57 ± 0.15 b | 3.50 ± 0.55 c | 0.156 | 5.13 ± 1.13 a | 30.67 ± 1.05 b | 38 ± 2.29 c |
300 ppm N | ||||||
P y | 1.53 ± 0.32 b | 22.57 ± 1.94 a | 0.066 | −1.03 ± 0.22 a | 42.90 ± 3.29 a | 190 ± 8.71 a |
C x | 3.10 ± 0.22 a | 17.97 ± 0.90 a | 0.174 | −1.80 ± 2.11 a | 32.47 ± 3.57 a | 144 ± 6.29 b |
W w | 2.13 ± 0.38 ab | 10.90 ± 0.15 b | 0.195 | 2.10 ± 2.03 a | 33.62 ± 1.29 a | 109 ± 10.25 c |
B v | 1.77 ± 0.35 ab | 7.90 ± 0.71 b | 0.233 | 3.97 ± 0.23 a | 36.23 ± 1.18 a | 87 ± 3.21 c |
P (substrate) | <0.0001 | <0.0001 | -- | 0.0004 | <0.0001 | <0.0001 |
P (fertility rate) | 0.0056 | <0.0001 | -- | 0.7498 | 0.0007 | <0.0001 |
P (subs. x fert.) | 0.0021 | 0.0255 | -- | 0.1124 | 0.1744 | 0.2533 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiessen, M.E.; Fields, J.S.; Abdi, D.E. Physical Properties and Crop Performance of Four Substrate Fibers in Greenhouse Petunia Production. Horticulturae 2024, 10, 279. https://doi.org/10.3390/horticulturae10030279
Thiessen ME, Fields JS, Abdi DE. Physical Properties and Crop Performance of Four Substrate Fibers in Greenhouse Petunia Production. Horticulturae. 2024; 10(3):279. https://doi.org/10.3390/horticulturae10030279
Chicago/Turabian StyleThiessen, Maureen E., Jeb S. Fields, and Damon E. Abdi. 2024. "Physical Properties and Crop Performance of Four Substrate Fibers in Greenhouse Petunia Production" Horticulturae 10, no. 3: 279. https://doi.org/10.3390/horticulturae10030279
APA StyleThiessen, M. E., Fields, J. S., & Abdi, D. E. (2024). Physical Properties and Crop Performance of Four Substrate Fibers in Greenhouse Petunia Production. Horticulturae, 10(3), 279. https://doi.org/10.3390/horticulturae10030279