The Genome-Wide Identification, Characterization, and Expression Patterns of the Auxin-Responsive PbGH3 Gene Family Reveal Its Crucial Role in Organ Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Treatments
2.3. Statistics of Calyx Shedding Rate of Pear Fruits
2.4. Measurement of Endogenous IAA Content in the Calyx Abscission Zone
2.5. Identification of GH3 Genes in Pear Genome
2.6. Chemical Properties and Chromosomal Location of Pear GH3 Protein Family
2.7. Phylogenetic Analysis of Pear GH3 Protein
2.8. Conserved Domain and Motif Analysis of Pear GH3 Protein
2.9. Collinearity Analysis
2.10. Analysis of Cis-Acting Elements of Pear GH3 Gene Family Promoter
2.11. Gene Ontology and Interactive Protein Network Analysis
2.12. RNA Extraction and qRT-PCR Analysis
2.13. The Source of Expression Analysis of PbGH3s
2.14. Statistical Analysis
3. Results
3.1. Effects of Different Chemical Treatments on the Calyx Removal Rate and Calyx IAA Content in‘Yuluxiangli’
3.2. Identification and Sequence Analysis of the Pear GH3 Gene Family
3.3. Chromosomal Mapping
3.4. Phylogenetic Analysis of Pear GH3 Family Proteins
3.5. Synteny Analysis of the PbGH3 Gene Family
3.6. Analysis of Conserved Motifs of Pear GH3 Protein Family
3.7. Cis-Acting Element of the Promoter of Pear GH3 Family Gene
3.8. Gene Ontology and Protein–Protein Interaction Analysis
3.9. Gene Expression in Calyx Tube and Calyx Retaining Pear Fruits
3.10. Expression Characteristics of GH3 Genes in Different Parts of Pear
3.11. Expression Characteristics of GH3 Genes in Different Organs and Cultivars of Pear
3.12. Graphical Representation of PbGH3.1 in Pear Tissues
4. Discussion
4.1. IAA Is Crucial in Controlling Pear Organ Shedding
4.2. PbGH3 Are Widely Distributed in Pear Genome
4.3. PbGH3 Regulate Sepal Shedding in Pear
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, R.; Ali, A.; Li, Y.; Zhang, X.; Sharif, R.; Feng, X.; Ding, B. Transcriptome-wide analysis revealed the influential role of PbrMTP (Metal Tolerance Protein) in the growth and fruit development of Chinese white pear. J. Plant Growth Regul. 2023. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Tang, C.; Lv, S.; Zhang, S.; Wu, J.; Wang, P. PbRbohH/J mediates ROS generation to regulate the growth of pollen tube in pear. Plant Physiol. Biochem. 2024, 207, 108342. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.T.; Gao, L.M.; Yang, J.B.; Li, D.Z.; Cannon, C.H.; Chen, J.; Li, Q.J. Phylogeny and evolution of bracts and bracteoles in Tacca (Dioscoreaceae). J. Integr. Plant Biol. 2011, 53, 901–911. [Google Scholar] [CrossRef]
- Taylor, J.E.; Whitelaw, C.A. Signals in abscission. New Phytol. 2001, 151, 323–340. [Google Scholar] [CrossRef]
- Li, X.; Wei, L.; Wei, S.; Wei, D.; Qin, L.; Li, C.; Huang, S.; Tian, D.; Zhang, J.; Zhou, W.; et al. Endogenous hormones in Musa. ABB Group Niujiaojiao and Guijia 6 and machanism of main enzymes regulating style abscission. J. South. Agric. 2018, 49, 1351. [Google Scholar] [CrossRef]
- Ding, B.; Li, X.; Lin, Y.; Hu, C.; Yang, R.; Wei, B.; Cao, Y.; Bai, Y.; Yan, R.; Li, L. Study on cloning and bioinformatics of auxin nicotinamide synthase gene GH3 in ‘Yuluxiangli’. J. Shanxi Agric. Univ. (Nat. Sci.) 2024, 44, 14–23. [Google Scholar] [CrossRef]
- Yao, J.; Kang, C.; Gu, C.; Gleave, A.P. The roles of floral organ genes in regulating Rosaceae fruit development. Front. Plant Sci. 2022, 12, 644424. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Chen, Y.; Shah, A.Z.; Wang, H.; Xi, C.; Zhu, H.; Ge, L. The homeodomain-leucine zipper genes family regulates the jinggangmycin mediated immune response of Oryza sativa to Nilaparvata lugens, and Laodelphax striatellus. Bioengineering 2022, 9, 398. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, T.; Wang, Y.; Wang, W.; Sharif, R.; Liu, J.; Dong, Q.; Luan, H.; Zhang, X.; Li, H.; et al. The apple MdGA2ox7 modulates the balance between growth and stress tolerance in an anthocyanin-dependent manner. Plant Physiol. Biochem. 2024, 212, 108707. [Google Scholar] [CrossRef]
- Sharif, R.; Su, L.; Chen, X.; Qi, X. Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. Hortic. Res. 2022, 9, uhab024. [Google Scholar] [CrossRef]
- Pan, J.; Song, J.; Sohail, H.; Sharif, R.; Yan, W.; Hu, Q.; Qi, X.; Yang, X.; Xu, X.; Chen, X. RNA-seq-based comparative transcriptome analysis reveals the role of CsPrx73 in waterlogging triggered adventitious root formation in cucumber. Hortic. Res. 2024, 11, uhae062. [Google Scholar] [CrossRef]
- Yu, D.; Qanmber, G.; Lu, L.; Wang, L.; Li, J.; Yang, Z.; Liu, Z.; Li, Y.; Chen, Q.; Mendu, V.; et al. Genome-wide analysis of cotton GH3 subfamily II reveals functional divergence in fiber development, hormone response and plant architecture. BMC Plant Biol. 2018, 18, 350. [Google Scholar] [CrossRef]
- Wojtaczka, P.; Ciarkowska, A.; Starzynska, E.; Ostrowski, M. The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. Phytochemistry 2022, 194, 113039. [Google Scholar] [CrossRef] [PubMed]
- Ulmasov, T.; Murfett, J.; Hagen, G.; Guilfoyle, T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 1997, 9, 1963–1971. [Google Scholar] [CrossRef]
- Ding, B.; Hu, H.; Cao, Y.; Xu, R.; Lin, Y.; Muhammad, T.U.Q.; Song, Y.; He, G.; Han, Y.; Guo, H.; et al. Pear genomes display significant genetic diversity and provide novel insights into the fruit quality traits diferentiation. Hortic Plant J. 2024, 10, 1274–1290. [Google Scholar] [CrossRef]
- Pan, J.; Sohail, H.; Sharif, R.; Hu, Q.; Song, J.; Qi, X.; Chen, X.; Xu, X. Cucumber JASMONATE ZIM-DOMAIN 8 interaction with transcription factor MYB6 impairs waterlogging-triggered adventitious rooting. Plant Physiol. 2024. [Google Scholar] [CrossRef]
- Jia, P.; Sharif, R.; Li, Y.; Sun, T.; Li, S.; Zhang, X.; Dong, Q.; Luan, H.; Guo, S.; Ren, X.; et al. The BELL1-like homeobox gene MdBLH14 from apple controls flowering and plant height via repression of MdGA20ox3. Int. J. Biol. Macromol. 2023, 242, 124790. [Google Scholar] [CrossRef]
- Sharif, R.; Xie, C.; Wang, J.; Cao, Z.; Zhang, H.; Chen, P.; Yuhong, L. Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses. Int. J. Biol. Macromol. 2020, 158, 502–520. [Google Scholar] [CrossRef]
- Shalmani, A.; Ullah, U.; Muhammad, I.; Zhang, D.; Sharif, R.; Jia, P.; Saleem, N.; Gul, N.; Rakhmanova, A.; Tahir, M.M.; et al. The TAZ domain-containing proteins play important role in the heavy metals stress biology in plants. Environ. Res. 2021, 197, 111030. [Google Scholar] [CrossRef]
- Fei, L.; Liu, J.; Liao, Y.; Sharif, R.; Liu, F.; Lei, J.; Chen, G.; Zhu, Z.; Chen, C. The CaABCG14 transporter gene regulates the capsaicin accumulation in Pepper septum. Int. J. Biol. Macromol. 2024, 280, 136122. [Google Scholar] [CrossRef]
- Ahmad, S.; Jeridi, M.; Siddiqui, S.; Ali, S.; Shah, A.Z. Genome-wide identification, characterization, and expression analysis of the Chalcone Synthase gene family in Oryza sativa under Abiotic Stresses. Plant Stress 2023, 202, 100201. [Google Scholar] [CrossRef]
- Jiang, L.; Li, X.; Lv, K.; Wang, H.; Li, Z.; Qi, W.; Zhang, L.; Cao, Y. Rosaceae phylogenomic studies provide insights into the evolution of new genes. Hortic Plant J. 2024, in press. [Google Scholar] [CrossRef]
- Ahmad, S.; Ali, S.; Shah, A.Z.; Khan, A.; Faria, S. Chalcone synthase (CHS) family genes regulate the growth and response of cucumber (Cucumis sativus L.) to Botrytis cinerea and abiotic stresses. Plant Stress 2023, 8, 100159. [Google Scholar] [CrossRef]
- Ullah, U.; Shalmani, A.; Ilyas, M.; Raza, A.; Ahmad, S.; Shah, A.Z.; Khan, F.U.; AzizUd, D.; Bibi, A.; Rehman, S.U.; et al. BZR proteins: Identification, evolutionary and expression analysis under various exogenous growth regulators in plants. Mol. Biol. Rep. 2022, 49, 12039–12053. [Google Scholar] [CrossRef]
- Jia, P.; Wang, Y.; Sharif, R.; Ren, X.; Qi, G. MdIPT1, an adenylate isopentenyltransferase coding gene from Malus domestica, is involved in branching and flowering regulation. Plant Sci. 2023, 333, 111730. [Google Scholar] [CrossRef]
- Yi, Z.; Sharif, R.; Gulzar, S.; Huang, Y.; Ning, T.; Zhan, H.; Meng, Y.; Xu, C. Changes in hemicellulose metabolism in banana peel during fruit development and ripening. Plant Physiol. Biochem. 2024, 215, 109025. [Google Scholar] [CrossRef]
- Su, L.; Rahat, S.; Ren, N.; Kojima, M.; Takebayashi, Y.; Sakakibara, H.; Wang, M.; Chen, X.; Qi, X. Cytokinin and auxin modulate cucumber parthenocarpy fruit development. Sci. Hortic. 2021, 282, 110026. [Google Scholar] [CrossRef]
- Su, L.; Wang, M.; Wang, Y.; Sharif, R.; Ren, N.; Qian, C.; Xu, J.; Chen, X.; Qi, X. Forchlorfenuron application induced parthenocarpic fruit formation without affecting fruit quality of cucumber. Horticulturae 2021, 7, 128. [Google Scholar] [CrossRef]
- Bao, D.; Chang, S.; Li, X.; Qi, Y. Advances in the study of auxin early response genes: Aux/IAA, GH3, and SAUR. Crop J. 2024, 12, 964–978. [Google Scholar] [CrossRef]
- Pan, J.; Tu, J.; Sharif, R.; Qi, X.; Xu, X.; Chen, X. Study of JASMONATE ZIM-Domain gene family to waterlogging stress in Cucumis sativus L. Veg. Res. 2021, 1, 14–25. [Google Scholar] [CrossRef]
- Xie, R.; Ge, T.; Zhang, J.; Pan, X.; Ma, Y.; Yi, S.; Zheng, Y. The molecular events of IAA inhibiting citrus fruitlet abscission revealed by digital gene expression profiling. Plant Physiol. Biochem. 2018, 130, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Sharif, R.; Su, L.; Chen, X.; Qi, X. Involvement of auxin in growth and stress response of cucumber. Veg. Res. 2022, 2, 13. [Google Scholar] [CrossRef]
- Jain, M.; Kaur, N.; Tyagi, A.K.; Khurana, J.P. The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct. Integr. Genom. 2006, 6, 36–46. [Google Scholar] [CrossRef]
- Böttcher, C.; Keyzers, R.A.; Boss, P.K.; Davies, C. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. J. Exp. Bot. 2010, 61, 3615–3625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Q.; Li, Z.; Staswick, P.E.; Wang, M.; Zhu, Y.; He, Z. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol. 2007, 145, 450–464. [Google Scholar] [CrossRef]
- Sharif, R.; Zhu, Y.; Huang, Y.; Sohail, H.; Li, S.; Chen, X.; Qi, X. microRNA regulates cytokinin induced parthenocarpy in Cucumber (Cucumis sativus L.). Plant Physiol. Biochem. 2024, 212, 108681. [Google Scholar] [CrossRef]
- Kong, W.; Zhang, Y.; Deng, X.; Li, S.; Zhang, C.; Li, Y. Comparative genomic and transcriptomic analysis suggests the evolutionary dynamic of GH3 genes in Gramineae crops. Front. Plant Sci. 2019, 10, 1297. [Google Scholar] [CrossRef]
- Gan, Z.; Fei, L.; Shan, N.; Fu, Y.; Chen, J. Identification and expression analysis of Gretchen Hagen 3 (GH3) in Kiwifruit (Actinidia chinensis) during postharvest process. Plants 2019, 8, 473. [Google Scholar] [CrossRef]
- Kuang, J.F.; Zhang, Y.; Chen, J.Y.; Chen, Q.J.; Jiang, Y.M.; Lin, H.T.; Xu, S.J.; Lu, W.J. Two GH3 genes from longan are differentially regulated during fruit growth and development. Gene 2011, 485, 1–6. [Google Scholar] [CrossRef]
- Liu, K.; Kang, B.-C.; Jiang, H.; Moore, S.L.; Li, H.; Watkins, C.B.; Setter, T.L.; Jahn, M.M. A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene*. Plant Mol. Biol. 2005, 58, 447–464. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Stone, J.M. Arabidopsis thaliana GH3.9 influences primary root growth. Planta 2007, 226, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wu, N.; Fu, J.; Wang, S.; Li, X.; Xiao, J.; Xiong, L. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot. 2012, 63, 6467–6480. [Google Scholar] [CrossRef] [PubMed]
Gene Named | Gene ID | Chromosome Location | Genomic Location | CDS Length (bp) | Protein | |||
---|---|---|---|---|---|---|---|---|
Length (bp) | PI | MW (kD) | Subcellular Localization | |||||
PbGH3.1 | Pb021060 | Chr1 | 3,422,119–3,427,546 | 1716 | 572 | 5.57 | 63.62 | cytoplasm |
PbGH3.2 | Pb025212 | Chr2 | 12,797,476–12,800,533 | 1800 | 600 | 5.97 | 67.51 | cytoplasm |
PbGH3.3 | Pb007550 | Chr5 | 9,944,262–9,946,297 | 1806 | 602 | 5.45 | 67.48 | cytoplasm |
PbGH3.4 | Pb030571 | Chr5 | 10,665,377–10,667,400 | 1806 | 602 | 5.80 | 67.51 | cytoplasm |
PbGH3.5 | Pb030587 | Chr5 | 10,922,247-10,924,270 | 1806 | 602 | 5.80 | 67.51 | cytoplasm |
PbGH3.6 | Pb027334 | Chr5 | 13,774,253–13,776,424 | 1845 | 615 | 6.62 | 69.28 | plasma membrane |
PbGH3.7 | Pb030688 | Chr9 | 20,040,241–20,043,789 | 1770 | 590 | 6.04 | 66.87 | cytoplasm |
PbGH3.8 | Pb018629 | Chr13 | 8,170,306–8,172,681 | 1824 | 608 | 5.28 | 69.21 | cytoplasm |
PbGH3.9 | Pb021158 | Chr15 | 9,092,247–9,094,625 | 1845 | 615 | 7.14 | 69.58 | plasma membrane |
PbGH3.10 | Pb015325 | Chr15 | 24,177,962–24,180,054 | 1800 | 600 | 5.32 | 67.34 | cytoplasm |
PbGH3.11 | Pb037834 | Chr16 | 5,069,847–5,072,238 | 1836 | 612 | 5.23 | 69.46 | cytoplasm |
PbGH3.12 | Pb006240 | scaffold1310.0 | 40,731–41,132 | 402 | 134 | 9.13 | 152.62 | cytoplasm |
PbGH3.13 | Pb034084 | scaffold633.0 | 110,010–112,450 | 1779 | 593 | 6.13 | 67.00 | cytoplasm |
PbGH3.14 | Pb041132 | scaffold921.0 | 133,377–135,548 | 1845 | 615 | 7.09 | 69.31 | plasma membrane |
PbGH3.15 | Pb034085 | scaffold633.0 | 149,274–150,901 | 1368 | 456 | 5.57 | 51.52 | mitochondrial matrix space |
PbGH3.16 | Pb034086 | scaffold633.0 | 151,196–151,716 | 435 | 145 | 8.81 | 16.30 | mitochondrial matrix space |
PbGH3.17 | Pb026872 | scaffold435.0.1 | 214,889–216,981 | 1800 | 600 | 5.32 | 67.34 | cytoplasm |
PbGH3.18 | Pb026873 | scaffold435.0.1 | 270,065–272,157 | 1800 | 600 | 5.32 | 67.34 | cytoplasm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, B.; Hu, C.; Cheng, Q.; Tanveer Akhtar, M.; Noor, M.; Cui, X. The Genome-Wide Identification, Characterization, and Expression Patterns of the Auxin-Responsive PbGH3 Gene Family Reveal Its Crucial Role in Organ Development. Horticulturae 2024, 10, 1094. https://doi.org/10.3390/horticulturae10101094
Ding B, Hu C, Cheng Q, Tanveer Akhtar M, Noor M, Cui X. The Genome-Wide Identification, Characterization, and Expression Patterns of the Auxin-Responsive PbGH3 Gene Family Reveal Its Crucial Role in Organ Development. Horticulturae. 2024; 10(10):1094. https://doi.org/10.3390/horticulturae10101094
Chicago/Turabian StyleDing, Baopeng, Chaohui Hu, Qing Cheng, Muhammad Tanveer Akhtar, Maryam Noor, and Xingyu Cui. 2024. "The Genome-Wide Identification, Characterization, and Expression Patterns of the Auxin-Responsive PbGH3 Gene Family Reveal Its Crucial Role in Organ Development" Horticulturae 10, no. 10: 1094. https://doi.org/10.3390/horticulturae10101094
APA StyleDing, B., Hu, C., Cheng, Q., Tanveer Akhtar, M., Noor, M., & Cui, X. (2024). The Genome-Wide Identification, Characterization, and Expression Patterns of the Auxin-Responsive PbGH3 Gene Family Reveal Its Crucial Role in Organ Development. Horticulturae, 10(10), 1094. https://doi.org/10.3390/horticulturae10101094