Host–Pest Interactions: Investigating Grapholita molesta (Busck) Larval Development and Survival in Apple Cultivars under Laboratory and Field Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Plant Material
2.3. Development Time and Survival of Two Populations of G. molesta under Laboratory Conditions
2.4. Development Time and Survival of Two Populations of G. molesta under Field Conditions
2.5. Statistical Analysis
3. Results
3.1. Survival
3.2. Development Time
3.2.1. Laboratory vs. Field Comparisons
3.2.2. Field Attached vs. Field Detached Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanga, L.H.; Pree, D.J.; Van Lier, J.L.; Walker, G.M. Management of insecticide resistance in oriental fruit moth (Grapholita molesta, Lepidoptera: Tortricidae) populations from Ontario. Pest Manag. Sci. 2003, 59, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Tomše, S.; Žežlina, I.; Milevoj, L. Dynamics of appearing Cydia molesta and Anarsia lineatella in peach orchards in Slovenia. IOBC/WPRS Bull. 2004, 27, 49–53. [Google Scholar]
- Welch, S.M.; Croft, B.A.; Brunner, J.F.; Michels, M.F. PETE: An extension phenology modeling system for management of multi-species pest complex. Environ. Entomol. 1978, 7, 487–494. [Google Scholar] [CrossRef]
- Bange, M.P.; Deutscher, S.A.; Larsen, D.; Linsley, D.; Whiteside, S. A handheld decision support system to facilitate improved insect pest management in Australian cotton systems. Comput. Electronn. Agric. 2004, 43, 131–147. [Google Scholar] [CrossRef]
- Höhn, H.; Höpli, H.U.; Schaub, L.; Samietz, J.; Graf, B. SOPRA: Phenology modelling of major orchard pests–from biological basics to decision support. Acta Hort. 2007, 803, 35–42. [Google Scholar]
- Rebaudo, F.; Rabhi, V.B. Modeling temperature-dependent development rate and phenology in insects: Review of major developments, challenges and future directions. Entomol. Exp. Appl. 2018, 166, 607–617. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, W.-N.; Zhao, L.-L.; Xiang, H.-M.; Zhang, L.-J.; Li, J.; Ridsdill-Smith, J.; Ma, R.-Y. Methods to measure performance of Grapholitha molesta on apples of five varieties. Entomol. Exp. Appl. 2018, 166, 162–170. [Google Scholar] [CrossRef]
- Gillott, C. (Ed.) The Abiotic Environment. In Entomology, 3rd ed.; Springer: Boston, MA, USA, 1980; pp. 655–690. [Google Scholar]
- Howe, R.W. Temperature effects on embryonic development in insects. Annu. Rev. Entomol. 1967, 12, 15–42. [Google Scholar] [CrossRef]
- Wagner, T.L.; Wu, H.I.; Sharpe, P.J.; Schoolfield, R.M.; Coulson, R.N. Modeling insect development rates: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 1984, 77, 208–220. [Google Scholar] [CrossRef]
- Damos, P.; Savopoulou-Soultani, M. Temperature-driven models for insect development and vital thermal requirements. Psyche 2012, 2012, 123405. [Google Scholar] [CrossRef]
- Silva, O.A.B.N.; Botton, M.; Garcia, M.S.; Bisognin, A.Z.; Nava, D.E. Desenvolvimento e reprodução da mariposa-oriental em macieira e pessegueiro. Pesqui. Agropecu. Bras. 2010, 45, 1082–1088. [Google Scholar] [CrossRef]
- Najar-Rodriguez, A.; Bellutti, N.; Dorn, S. Larval performance of the oriental fruit moth across fruits from primary and secondary hosts. Physiol. Entomol. 2013, 38, 63–70. [Google Scholar] [CrossRef]
- Yang, X.F.; Fan, F.; Ma, C.S.; Wang, C.; Wei, G.S. Effect of host plants on the development, survival and reproduction of Grapholita molesta (Lepidoptera: Tortricidae) under laboratory conditions. Aus. Entomol. 2016, 55, 433–438. [Google Scholar] [CrossRef]
- Sarker, S.; Woo, Y.H.; Lim, U.T. Developmental stages of peach, plum and apple fruit influence development and fecundity of Grapholita molesta (Lepidoptera: Tortricidae). Sci. Rep. 2021, 11, 2105. [Google Scholar] [CrossRef]
- Du, J.; Li, G.; Xu, X.; Wu, J. Development and fecundity performance of oriental fruit moth (Lepidoptera: Tortricidae) reared on shoots and fruits of peach and pear in different seasons. Environ. Entomol. 2015, 44, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, G.H.L.; Vickers, R.A. Biology, ecology and control of oriental fruit moth. In Tortricid Pests, Their Biology, Natural Enemies & Control; van der Geest, L.P.S., Evenhuis, H.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 389–412. [Google Scholar]
- Myers, C.T.; Hull, L.A.; Krawczyk, G. Comparative survival rates of oriental fruit moth (Lepidoptera: Tortricidae) larvae on shoots and fruit of apple and peach. J. Econ. Entomol. 2006, 99, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Myers, C.T.; Hull, L.A.; Krawczyk, G. Effects of orchard host plants (apple and peach) on development of oriental fruit moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 2007, 100, 421–430. [Google Scholar] [CrossRef]
- Bisognin, M.; Zanardi, O.Z.; Nava, D.E.; Arioli, C.J.; Botton, M.; Garcia, M.S.; Cabezas, M.F. Burrknots as food source for larval development of Grapholita molesta (Lepidoptera: Tortricidae) on apple trees. Environ. Entomol. 2012, 41, 849–854. [Google Scholar] [CrossRef]
- Knight, A.L.; Judd, G.J.; Gilligan, T.; Fuentes-Contreras, E.; Walker, W.B. Integrated management of tortricid pests of tree fruit. In Integrated Management of Diseases and Insect Pests of Tree Fruit; Xu, X., Fountain, M., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 377–424. [Google Scholar]
- Croft, B.A.; Michels, M.F.; Rice, R.E. Validation of a PETE timing model for the oriental fruit moth in Michigan and central California (Lepidoptera: Olethreutidae). Environ. Entomol. 1980, 10, 425–432. [Google Scholar]
- Rice, R.; Barnett, W.; Flaherty, D.; Bentley, W.; Jones, R. Monitoring and modeling oriental fruit moth in California. Calif. Agric. 1982, 36, 11–12. [Google Scholar]
- Rothschild, G.H.L.; Minks, A.K. Time of activity of male oriental fruit moths at pheromone sources in the field. Environ. Entomol. 1974, 3, 1003–1007. [Google Scholar] [CrossRef]
- Sciarretta, A.; Trematerra, P. Geostatistical characterization of the spatial distribution of Grapholita molesta and Anarsia lineatella males in an agricultural landscape. J. Appl. Entomol. 2006, 130, 73–83. [Google Scholar] [CrossRef]
- Escudero-Colomar, L.-A.; Vilajeliu, M.; Bosch, D.; Vilardell, P.; Batllori, L. Seguimiento y control de grafolita en manzano. Vida Rural 2012, 350, 30–34. [Google Scholar]
- Amat, C.; Bosch-Serra, D.; Avilla, J.; Escudero-Colomar, L.-A. Different population phenologies of Grapholita molesta (Busck) in two hosts and two nearby regions in the NE of Spain. Insects 2021, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Ivaldi-Sender, C. Techniques simples pour un elevage permanent de la tordeuse orientale, Grapholita molesta (Lepidoptera, Tortricidae) sur milieu artificiel. Ann. Zool Ecol. Anim. 1974, 6, 337–343. [Google Scholar]
- Batllori, L.; Vilajeliu, M.; Escudero-Colomar, L.-A.; Vilardell, P.; Usall, J. Guia Técnica Fruit. Net per a la Producción de Poma, DAAM Dossier Tècnic n° 57 Juliol 2012. Available online: http://www.ruralcat.net/recull3/Recull-DT51-67.pdf (accessed on 18 July 2024).
- Damos, P.; Escudero-Colomar, L.-A.; Ioriatti, C. Integrated fruit production and pest management in Europe: The apple case study and how far we are from the original concept? Insects 2015, 6, 626–657. [Google Scholar] [CrossRef]
- Ruralcat. Available online: https://ruralcat.gencat.cat/web/guest/agrometeo (accessed on 18 July 2024).
- Follett, P.A.; DeLuz, S.; Lower, R.A.; Price, D.K. Suitability of lychee fruits on and off the tree for Cryptophlebia spp. Proc. Hawaii Entomol. Soc. 2003, 36, 89–94. [Google Scholar]
- Chakroun, S.; Rempoulakis, P.; Lebdi-Grissa, K.; Vreysen, M.J. Gamma irradiation of the carob or date moth Ectomyelois ceratoniae: Dose–response effects on egg hatch, fecundity and survival. Entomol. Exp. App. 2017, 164, 257–268. [Google Scholar] [CrossRef]
- Bareil, N.; Crépon, K.; Piraux, F. Prediction of insect mortality in cooled stored grain. J. Stored Prod. Res. 2018, 78, 110–117. [Google Scholar] [CrossRef]
- Martínez, L.C.; Plata-Rueda, A.; Serrão, J.E. Effects of insect growth regulators on mortality, survival and feeding of Euprosterna elaeasa (Lepidoptera: Limacodidae) larvae. Agronomy 2021, 11, 2002. [Google Scholar] [CrossRef]
- Ma, Z.S. A unified survival-analysis approach to insect population development and survival times. Sci. Rep. 2021, 11, 8223. [Google Scholar] [CrossRef] [PubMed]
- Bressers, M.; Meelis, E.; Haccou, P.; Kruk, M. When did it really start or stop: The impact of censored observations on the analysis of duration. Behav. Process 1991, 23, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. The logrank test. BMJ 2004, 328, 1073. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2022. Available online: https://www.R-project.org/ (accessed on 18 July 2024).
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. JASA 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Gutbrodt, B.; Dorn, S.; Mody, K. Drought stress affects constitutive but not induced herbivore resistance in apple plants. Arthropod-Plant Interact. 2012, 6, 171–179. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Xu, L.X.; Li, L.L.; Wu, H.B.; Xu, Y.Y. Effects of constant and fluctuating temperature on the development of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Bull. Entomol. Res. 2019, 109, 212–220. [Google Scholar] [CrossRef]
- Davis, T.S.; Garczynski, S.F.; Stevens-Rumann, C.; Landolt, P.J. A test of fruit varieties on entry rate and development by neonate larvae of the codling moth, Cydia pomonella. Entomol. Exp. Appl. 2013, 148, 259–266. [Google Scholar] [CrossRef]
- Stork, N.E. Role of waxblooms in preventing attachment to brassicas by the mustard beetle, Phaedon cochleariae. Entomol. Exp. Appl. 1980, 28, 100–107. [Google Scholar] [CrossRef]
- Stoner, K.A. Glossy leaf wax and plant resistance to insects in Brassica oleracea under natural infestation. Environ. Entomol. 1990, 19, 730–739. [Google Scholar] [CrossRef]
- Eigenbrode, S.D.; Espelie, K.E. Effects of plant epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 1995, 40, 171–194. [Google Scholar] [CrossRef]
- Pang, B.P.; Chen, J.A. Relationships between the plant surface and insects. Chin. J. Ecol. 1998, 4, 52–58. [Google Scholar]
- Lau, O.L.; Liu, Y.; Yang, S.F. Effects of fruit detachment on ethylene biosynthesis and loss of flesh firmness, skin color, and starch in ripening ‘Golden Delicious’ apples. J. Am. Soc. Hortic. Sci. 1986, 111, 731–734. [Google Scholar] [CrossRef]
- Lin, S.F.; Walsh, C.S. Studies of the “tree factor” and its role in the maturation and ripening of ‘‘Gala’’ and ‘‘Fuji’’ apples. Postharvest Biol. Technol. 2008, 48, 99–106. [Google Scholar] [CrossRef]
- Fernández-Cancelo, P.; Muñoz, P.; Echeverría, G.; Larrigaudière, C.; Teixidó, N.; Munné-Bosch, S.; Giné-Bardonaba, J. Ethylene and abscisic acid play a key role in modulating apple ripening after harvest and after cold-storage. Postharvest Biol. Technol. 2022, 188, 111902. [Google Scholar] [CrossRef]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef]
- Mauch-Mani, B.; Baccelli, I.; Luna, E.; Flors, V. Defense priming: An adaptive part of induced resistance. Annu. Rev. Plant Biol. 2017, 68, 485–512. [Google Scholar] [CrossRef]
- Ruel, J.J.; Ayres, M.P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 1999, 14, 361–366. [Google Scholar] [CrossRef]
- Ayres, M.P.; Clausen, T.P.; MacLean, S.F., Jr.; Redman, A.M.; Reichardt, P.B. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 1997, 78, 1696–1712. [Google Scholar] [CrossRef]
- Leclair, G.; Williams, M.; Silk, P.; Eveleigh, E.; Mayo, P.; Brophy, M.; Francis, B. Spruce budworm (Lepidoptera: Tortricidae) oral secretions II: Chemistry. Environ. Entomol. 2015, 44, 1531–1543. [Google Scholar] [CrossRef]
- Williams, M.; Eveleigh, E.; Forbes, G.; Lamb, R.; Roscoe, L.; Silk, P. Evidence of a direct chemical plant defense role for maltol against spruce budworm. Entomol. Exp. Appl. 2019, 167, 755–762. [Google Scholar] [CrossRef]
- Chaudhry, G.U.C. The Development and Fecundity of the Oriental Fruit Moth, Grapholitha (Cydia) molesta (Busck) under controlled Temperatures and Humidities. Bull. Entomol. Res. 1956, 46, 869–898. [Google Scholar] [CrossRef]
- Cisneros, F.H.; Barnes, M.M. Contribution to the biological and ecological characterization of apple and walnut host races of codling moth, Laspeyresia pomonella (L.): Moth longevity and oviposition capacity. Environ. Entomol. 1974, 3, 402–406. [Google Scholar] [CrossRef]
- Goyer, R.A.; Paine, T.D.; Pashley, D.P.; Lenhard, G.J.; Meeker, J.R.; Hanlon, C.C. Geographic and host-associated differentiation in the fruittree leafroller (Lepidoptera: Tortricidae). Ann. Entomol. Soc. Am. 1995, 88, 391–396. [Google Scholar] [CrossRef]
- Monteiro, L.B.; Niederheitmann, M. Effect of a short-cycle apple tree cultivar on oriental fruit moth (Lepidoptera: Tortricidae) development and larval behavior. Braz. J. Biol. 2022, 82, e257991. [Google Scholar] [CrossRef]
- Kirk, H.; Dorn, S.; Mazzi, D. Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol. 2013, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Torriani, M.V.; Mazzi, D.; Hein, S.; Dorn, S. Structured populations of the oriental fruit moth in an agricultural ecosystem. Mol. Ecol. 2010, 19, 2651–2660. [Google Scholar] [CrossRef] [PubMed]
- Damos, P.; Bonsignore, C.P.; Gardi, F.; Avtzis, D.N. Phenological responses and a comparative phylogenetic insight of Anarsia lineatella and Grapholita molesta between distinct geographical regions within the Mediterranean basin. J. Appl. Entomol. 2014, 138, 528–538. [Google Scholar] [CrossRef]
- Mironidis, G.K. Development, survivorship and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under fluctuating temperatures. Bull. Entomol. Res. 2014, 104, 751–764. [Google Scholar] [CrossRef]
- Colinet, H.; Sinclair, B.J.; Vernon, P.; Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 2015, 60, 123–140. [Google Scholar] [CrossRef]
- Niehaus, A.C.; Angilletta, M.J., Jr.; Sears, M.W.; Franklin, C.E.; Wilson, R.S. Predicting the physiological performance of ectotherms in fluctuating thermal environments. J. Exp. Biol. 2012, 215, 694–701. [Google Scholar] [CrossRef]
- Kersting, S.; Satar, U.; Uygun, N. Effect of temperature on development rate and fecundity of apterous Aphis gossypii Glover (Hom., Aphididae) reared on Gossypium hirsutum L. J. Appl. Entomol. 1999, 123, 23–27. [Google Scholar] [CrossRef]
- García-Ruiz, E.; Marco, V.; Pérez-Moreno, I. Effects of variable and constant temperatures on the embryonic development and survival of a new grape pest, Xylotrechus arvicola (Coleoptera: Cerambycidae). Environ. Entomol. 2011, 40, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef] [PubMed]
- Chown, S.L.; Terblanche, J.S.; Simpson, S.J. Physiological diversity in insects: Ecological and evolutionary contexts. Adv. Insect Physiol. 2006, 33, 50–152. [Google Scholar]
- Paul, V.; Pandey, R.; Srivastava, G.C. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—An overview. J. Food Sci. Technol. 2012, 49, 1–21. [Google Scholar] [CrossRef]
- Dustan, G.G. The oriental fruit moth, Grapholitha molesta (Busck) (Lepidoptera: Olethreutidae) in Ontario. Proc. Entomol. Soc. Ont. 1960, 91, 215–227. [Google Scholar]
Cultivar Period | T (°C) | n | Egg Plus Larval Development Time (DD) | |||
---|---|---|---|---|---|---|
25% | 50% | 75% | ||||
‘Gala’ | 25.01 | 249 | 237.04 | 255.91 | 255.91 | a |
‘Golden’ | 24.56 | 362 | 249.55 | 264.37 | 280.45 | b |
‘Fuji’ | 22.15 | 440 | 269.44 | 282.64 | 294.88 | c |
Fruit Condition | Year | T (°C) | Cultivar | n | Egg + Larval Development Time | |||
---|---|---|---|---|---|---|---|---|
25% | 50% | 75% | ||||||
Detached Lab. | 26 | 470 | 279.62 | 300.96 | 319.59 | a | ||
Detached Lab. | 22 | 498 | 290.30 | 315.17 | 339.69 | b | ||
Detached Lab. | 30 | 444 | 296.10 | 317.97 | 362.03 | c | ||
Detached Lab. | 18 | 395 | 329.36 | 341.83 | 372.22 | d | ||
Detached Lab. | 14 | 114 | 373.90 | 406.06 | 454.00 | e | ||
Detached Field | 2020 | 25.20 | ‘Golden’ | 36 | 343.27 | 372.79 | 448.51 | e |
Detached Field | 2020 | 22.80 | ‘Fuji’ | 68 | 375.17 | 441.63 | 509.89 | fg |
Detached Field | 2020 | 28.42 | ‘Gala’ | 33 | 412.92 | 450.26 | 486.76 | fg |
Attached Field | 2019 | 24.17 | ‘Golden’ | 131 | 356.29 | 450.70 | NA | f |
Attached Field | 2019 | 25.03 | ‘Gala’ | 45 | 419.76 | 473.35 | NA | fg |
Attached Field | 2019 | 21.11 | ‘Fuji’ | 108 | 401.87 | 455.26 | NA | g |
Attached Field | 2018 | 25.64 | ‘Gala’ | 75 | 487.89 | NA | NA | h |
Attached Field | 2018 | 21.72 | ‘Fuji’ | 182 | 492.74 | NA | NA | h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amat, C.; Bosch-Serra, D.; Avilla, J.; Escudero-Colomar, L.-A. Host–Pest Interactions: Investigating Grapholita molesta (Busck) Larval Development and Survival in Apple Cultivars under Laboratory and Field Conditions. Horticulturae 2024, 10, 1016. https://doi.org/10.3390/horticulturae10101016
Amat C, Bosch-Serra D, Avilla J, Escudero-Colomar L-A. Host–Pest Interactions: Investigating Grapholita molesta (Busck) Larval Development and Survival in Apple Cultivars under Laboratory and Field Conditions. Horticulturae. 2024; 10(10):1016. https://doi.org/10.3390/horticulturae10101016
Chicago/Turabian StyleAmat, Carles, Dolors Bosch-Serra, Jesús Avilla, and Lucía-Adriana Escudero-Colomar. 2024. "Host–Pest Interactions: Investigating Grapholita molesta (Busck) Larval Development and Survival in Apple Cultivars under Laboratory and Field Conditions" Horticulturae 10, no. 10: 1016. https://doi.org/10.3390/horticulturae10101016
APA StyleAmat, C., Bosch-Serra, D., Avilla, J., & Escudero-Colomar, L.-A. (2024). Host–Pest Interactions: Investigating Grapholita molesta (Busck) Larval Development and Survival in Apple Cultivars under Laboratory and Field Conditions. Horticulturae, 10(10), 1016. https://doi.org/10.3390/horticulturae10101016