Bioinformatics Analysis and Expression Features of Terpene Synthase Family in Cymbidium ensifolium
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Identification and Physicochemical Properties of CeTPS
2.3. Chromosome Localization and Phylogenetic Analysis
2.4. Conserved Motifs, Gene Structure, and Synteny Analysis
2.5. Cis-Acting Regulatory Elements Analysis
2.6. Expression Patterns and qRT-PCR Analysis
2.7. Subcellular Localization Analysis
3. Results
3.1. Identification and Physicochemical Properties of CeTPS
3.2. Chromosome Localization and Phylogenetic Analysis of CeTPS
3.3. Analysis of CeTPS Conserved Motifs, Gene Structure, and Synteny
3.4. Cis-Elements Analysis of CeTPS
3.5. Expression Patterns and qRT-PCR Analysis of CeTPS
3.6. Subcellular Localization of CeTPS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, X.M.; Zhou, S.S.; Liu, H.; Zhao, S.W.; Tian, X.C.; Shi, T.L.; Bao, Y.T.; Li, Z.C.; Jia, K.H.; Nie, S.; et al. Unraveling the evolutionary dynamics of the TPS gene family in land plants. Front. Plant Sci. 2023, 14, 1273648. [Google Scholar] [CrossRef]
- Zhou, F.; Pichersky, E. More is better: The diversity of terpene metabolism in plants. Curr. Opin. Plant Biol. 2020, 55, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar] [CrossRef] [PubMed]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Aprotosoaie, A.C.; Hăncianu, M.; Costache, I.I.; Miron, A. Linalool: A review on a key odor-ant molecule with valuable biological properties. Flavour Fragr. J. 2014, 29, 193–219. [Google Scholar] [CrossRef]
- Bohlmann, J.; Meyer-Gauen, G.; Croteau, R. Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. USA 1998, 95, 4126–4133. [Google Scholar] [CrossRef]
- Vranová, E.; Coman, D.; Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 2013, 64, 665–700. [Google Scholar] [CrossRef]
- Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 2006, 311, 808–811. [Google Scholar] [CrossRef]
- Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 2006, 9, 297–304. [Google Scholar] [CrossRef]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef] [PubMed]
- Boutanaev, A.M.; Moses, T.; Zi, J.; Nelson, D.R.; Mugford, S.T.; Peters, R.J.; Osbourn, A. Investigation of terpene diversification across multiple sequenced plant genomes. Proc. Natl. Acad. Sci. USA 2015, 112, E81–E88. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Osbourn, A. Engineering terpenoid production through transient expression in Nicotiana Benthamiana. Plant Cell Rep. 2018, 37, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.Y.; Jin, J.; Sarojam, R.; Ramachandran, S. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome Biol. Evol. 2019, 11, 2078–2098. [Google Scholar] [CrossRef]
- Karunanithi, P.S.; Zerbe, P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front. Plant Sci. 2019, 10, 1166. [Google Scholar] [CrossRef]
- Li, G.; Köllner, T.G.; Yin, Y.; Jiang, Y.; Chen, H.; Xu, Y.; Gershenzon, J.; Pichersky, E.; Chen, F. Nonseed plant Selaginella Moellendorffii has both seed plant and microbial types of terpene synthases. Proc. Natl. Acad. Sci. USA 2012, 109, 14711–14715. [Google Scholar] [CrossRef]
- Aubourg, S.; Lecharny, A.; Bohlmann, J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol. Genet. Genom. 2002, 267, 730–745. [Google Scholar] [CrossRef]
- Martin, D.M.; Aubourg, S.; Schouwey, M.B.; Daviet, L.; Schalk, M.; Toub, O.; Lund, S.T.; Bohlmann, J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol. 2010, 10, 226. [Google Scholar] [CrossRef]
- Zhang, A.; Xiong, Y.; Fang, J.; Jiang, X.; Wang, T.; Liu, K.; Peng, H.; Zhang, X. Diversity and functional evolution of terpene synthases in Rosaceae. Plants 2022, 11, 736. [Google Scholar] [CrossRef]
- Yang, Z.; Zhan, T.; Xie, C.; Huang, S.; Zheng, X. Genome-wide analyzation and functional characterization on the TPS family provide insight into the biosynthesis of mono-terpenes in the camphor tree. Plant Physiol. Biochem. 2023, 196, 55–64. [Google Scholar] [CrossRef]
- Zhou, H.C.; Shamala, L.F.; Yi, X.K.; Yan, Z.; Wei, S. Analysis of terpene synthase family genes in Camellia sinensis with an emphasis on abiotic stress conditions. Sci. Rep. 2020, 10, 933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhao, X.; Li, Y.; Ke, S.; Yin, W.; Lan, S.; Liu, Z. Advances and prospects of orchid research and industrialization. Hortic. Res. 2022, 9, uhac220. [Google Scholar] [CrossRef] [PubMed]
- Schiestl, F.P.; Ayasse, M.; Paulus, H.F.; Löfstedt, C.; Hansson, B.S.; Ibarra, F.; Francke, W. Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): Patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J. Comp. Physiol. A 2000, 186, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.; Pan, Z.; Hsu, C.; Yang, Y.; Hsu, Y.; Chuang, Y.; Shih, H.; Chen, W.; Tsai, W.; Chen, H. Research on orchid biology and biotechnology. Plant Cell Physiol. 2011, 52, 1467–1486. [Google Scholar] [CrossRef] [PubMed]
- Ramya, M.; An, H.R.; Baek, Y.S.; Reddy, K.E.; Park, P.H. Orchid floral volatiles: Biosynthesis genes and transcriptional regulations. Sci. Hortic. 2018, 235, 62–69. [Google Scholar] [CrossRef]
- Hsiao, Y.Y.; Tsai, W.C.; Kuoh, C.S.; Huang, T.H.; Wang, H.C.; Wu, T.S.; Leu, Y.L.; Chen, W.H.; Chen, H.H. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol. 2006, 6, 14. [Google Scholar] [CrossRef]
- Ramya, M.; Park, P.H.; Chuang, Y.; Kwon, O.K.; An, H.R.; Park, P.M.; Baek, Y.S.; Kang, B.; Tsai, W.; Chen, H. RNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes. BMC Plant Biol. 2019, 19, 337. [Google Scholar] [CrossRef]
- Huang, L.M.; Huang, H.; Chuang, Y.C.; Chen, W.H.; Wang, C.N.; Chen, H.H. Evolution of terpene synthases in Orchidaceae. Int. J. Mol. Sci. 2021, 22, 6947. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, C.; Zhang, G.; Teixeira, D.S.J.; Duan, J. Genome-wide identification and expression profile of tps gene family in Dendrobium officinale and the role of DoTPS10 in linalool biosynthesis. Int. J. Mol. Sci. 2020, 21, 5419. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Zhu, M.J.; Yu, X.; Bi, Y.Y.; Zhou, Z.; Chen, M.K.; Chen, J.; Zhang, D.; Ai, Y.; Liu, Z.J.; et al. Genome-wide identification and expression analysis of terpene synthase genes in Cymbidium faberi. Front. Plant Sci. 2021, 12, 751853. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, G.; Huang, J.; Liu, D.; Xue, F.; Chen, X.; Chen, S.; Liu, C.; Liu, H.; Ma, H.; et al. The Cymbidium goeringii genome provides insight into organ development and adaptive evolution in orchids. Ornam. Plant Res. 2021, 1, 10. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Zhang, D.; Liu, X.; Xu, X.; Sun, W.; Yu, X.; Zhu, X.; Wang, Z.; Zhao, X.; et al. Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution. Hortic. Res. 2021, 8, 183. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Yu, Z.; Silva, J.; He, C.; Wang, H.; Si, C.; Zhang, M.; Zeng, D.; Duan, J. Functional characterization of a Dendrobium officinale geraniol synthase DOGES1 involved in floral scent formation. Int. J. Mol. Sci. 2020, 21, 7005. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Kuo, Y.W.; Chuang, Y.C.; Yang, Y.P.; Huang, L.M.; Jeng, M.F.; Chen, W.H.; Chen, H.H. Terpene synthase-b and terpene synthase-e/f genes produce monoterpenes for Phalaenopsis bellina floral scent. Front. Plant Sci. 2021, 12, 700958. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Li, Z.; Sun, W.H.; Chen, J.; Zhang, D.; Ma, L.; Zhang, Q.H.; Chen, M.K.; Zheng, Q.D.; Liu, J.F.; et al. The Cymbidium genome reveals the evolution of unique morphological traits. Hortic. Res. 2021, 8, 255. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.; Tosat-to, S.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic. Acids. Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic. Acids. Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- He, Z.; Zhang, H.; Gao, S.; Lercher, M.J.; Chen, W.H.; Hu, S. Evolview v2: An online visualization and management tool for customized and annotated phylogenetic trees. Nucleic. Acids. Res. 2016, 44, W236–W241. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic. Acids. Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rom-bauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic. Acids. Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Dudareva, N.; Martin, D.; Kish, C.M.; Kolosova, N.; Gorenstein, N.; Fäldt, J.; Miller, B.; Bohlmann, J. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: Function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant. Cell. 2003, 15, 1227–1241. [Google Scholar] [CrossRef] [PubMed]
- Nekrutenko, A.; Makova, K.D.; Li, W.H. The K(A)/K(S) ratio test for assessing the protein-coding potential of genomic regions: An empirical and simulation study. Genome Res. 2002, 12, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Matsuba, Y.; Nguyen, T.T.; Wiegert, K.; Falara, V.; Gonzales-Vigil, E.; Leong, B.; Schäfer, P.; Kudrna, D.; Wing, R.A.; Bolger, A.M.; et al. Evolution of a complex locus for terpene biosynthesis in solanum. Plant. Cell. 2013, 25, 2022–2036. [Google Scholar] [CrossRef]
- Reichardt, S.; Budahn, H.; Lamprecht, D.; Riewe, D.; Ulrich, D.; Dunemann, F.; Kopertekh, L. The carrot monoterpene synthase gene cluster on chromosome 4 harbours genes encoding flavour-associated sabinene synthases. Hortic. Res. 2020, 7, 190. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef]
- Qiao, Z.; Hu, H.; Shi, S.; Yuan, X.; Yan, B.; Chen, L. An update on the function, biosynthesis and regulation of floral volatile terpenoids. Horticulturae 2021, 7, 451. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.; Zhou, Y.; Yu, Y.; Waseem, M.; Ashraf, U.; Wang, C.; Wang, X.; Li, X.; Yue, Y.; et al. Genome-wide analysis reveals the potential role of MYB transcription factors in floral scent formation in Hedychium coronarium. Front. Plant Sci. 2021, 12, 623742. [Google Scholar] [CrossRef]
- Chuang, Y.; Hung, Y.; Tsai, W.; Chen, W.; Chen, H. PbbHLH4 regulates floral monoterpene biosynthesis in phalaenopsis orchids. J. Exp. Bot. 2018, 69, 4363–4377. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, G.; Teixeira Da Silva, J.A.; Zhao, C.; Duan, J. The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development. Plant Sci. 2021, 309, 110952. [Google Scholar] [CrossRef] [PubMed]
Name | ID | AA (aa) | Mw (kDa) | pI | II | GRAVY | Subcellular Localization |
---|---|---|---|---|---|---|---|
CeTPS1 | JL015507 | 413 | 48.61 | 5.97 | 57.61 | −0.500 | Chloroplast. |
CeTPS2 | JL027127 | 378 | 44.71 | 6.04 | 33.18 | −0.273 | Chloroplast. Cytoplasm. |
CeTPS3 | JL025499 | 218 | 25.05 | 5.59 | 61.68 | −0.405 | Chloroplast. |
CeTPS4 | JL026288 | 552 | 63.55 | 5.36 | 49.99 | −0.142 | Chloroplast. |
CeTPS5 | JL028400 | 549 | 64.38 | 5.62 | 52.65 | −0.194 | Chloroplast. Cytoplasm. |
CeTPS6 | JL028504 | 549 | 64.60 | 5.62 | 50.51 | −0.210 | Chloroplast. Cytoplasm. |
CeTPS7 | JL024344 | 408 | 47.55 | 5.28 | 48.98 | −0.106 | Chloroplast. Cytoplasm. |
CeTPS8 | JL026235 | 364 | 42.91 | 5.99 | 51.56 | −0.126 | Chloroplast. Cytoplasm. |
CeTPS9 | JL028294 | 424 | 50.01 | 6.38 | 52.50 | −0.258 | Chloroplast. Cytoplasm. |
CeTPS10 | JL024700 | 436 | 51.15 | 5.46 | 46.80 | −0.280 | Chloroplast. Cytoplasm. |
CeTPS11 | JL024633 | 498 | 58.14 | 5.46 | 47.35 | −0.231 | Chloroplast. Cytoplasm. |
CeTPS12 | JL008157 | 329 | 37.99 | 6.52 | 40.16 | −0.107 | Chloroplast. Cytoplasm. |
CeTPS13 | JL026427 | 703 | 82.25 | 6.15 | 38.04 | −0.383 | Chloroplast. |
CeTPS14 | JL027333 | 446 | 53.01 | 6.17 | 37.95 | −0.358 | Chloroplast. |
CeTPS15 | JL025789 | 446 | 52.80 | 6.16 | 37.71 | −0.345 | Chloroplast. |
CeTPS16 | JL022471 | 703 | 82.20 | 6.14 | 41.84 | −0.395 | Chloroplast. |
CeTPS17 | JL024194 | 194 | 22.24 | 5.36 | 42.68 | −0.185 | Chloroplast. Cytoplasm. |
CeTPS18 | JL012496 | 602 | 70.07 | 5.99 | 49.94 | −0.271 | Chloroplast. |
CeTPS19 | JL004677 | 807 | 91.98 | 5.95 | 48.28 | −0.286 | Chloroplast. |
CeTPS20 | JL027803 | 535 | 63.06 | 5.67 | 33.24 | −0.211 | Chloroplast. Cytoplasm. |
CeTPS21 | JL001410 | 287 | 33.47 | 5.73 | 32.94 | −0.175 | Chloroplast. Cytoplasm. |
CeTPS22 | JL026564 | 508 | 59.71 | 6.22 | 29.24 | −0.233 | Chloroplast. Cytoplasm. |
CeTPS23 | JL027817 | 529 | 62.46 | 5.74 | 33.84 | −0.208 | Chloroplast. Cytoplasm. |
CeTPS24 | JL028318 | 528 | 62.47 | 5.36 | 39.28 | −0.192 | Chloroplast. Cytoplasm. |
CeTPS25 | JL028319 | 535 | 63.31 | 5.60 | 33.94 | −0.227 | Chloroplast. Cytoplasm. |
CeTPS26 | JL027638 | 485 | 57.50 | 5.45 | 37.85 | −0.161 | Chloroplast. Cytoplasm. |
CeTPS27 | JL028133 | 320 | 36.79 | 5.14 | 31.87 | −0.372 | Chloroplast. |
CeTPS28 | JL027059 | 535 | 63.11 | 5.83 | 34.91 | −0.219 | Chloroplast. Cytoplasm. |
CeTPS29 | JL028844 | 501 | 59.04 | 5.46 | 37.25 | −0.153 | Chloroplast. Cytoplasm. |
CeTPS30 | JL028984 | 528 | 62.54 | 5.35 | 39.80 | −0.158 | Chloroplast. Cytoplasm. |
Gene Pairs | Ka | Ks | Ka/Ks | Duplication Type | Purify Selection | |
---|---|---|---|---|---|---|
CeTPS5 | CeTPS6 | 0.017950909 | 0.032074859 | 0.559656681 | Tandem | Yes |
CeTPS6 | CeTPS7 | 0.029937944 | 0.054806694 | 0.546246113 | Tandem | Yes |
CeTPS8 | CeTPS9 | 0.146080662 | 0.22792656 | 0.6409111 | Tandem | Yes |
CeTPS17 | CeTPS18 | 0.442114425 | 0.987765176 | 0.447590618 | Segmental | Yes |
CeTPS23 | CeTPS24 | 0.0254454 | 0.037389324 | 0.68055256 | Tandem | Yes |
CeTPS24 | CeTPS25 | 0.027606516 | 0.040278134 | 0.685397089 | Tandem | Yes |
CeTPS25 | CeTPS26 | 0.002618184 | 0.003262648 | 0.802472277 | Tandem | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Liu, B.; Li, J.; Huang, N.; Tian, Y.; Guo, L.; Feng, C.; Ai, Y.; Fu, C. Bioinformatics Analysis and Expression Features of Terpene Synthase Family in Cymbidium ensifolium. Horticulturae 2024, 10, 1015. https://doi.org/10.3390/horticulturae10101015
Wang M, Liu B, Li J, Huang N, Tian Y, Guo L, Feng C, Ai Y, Fu C. Bioinformatics Analysis and Expression Features of Terpene Synthase Family in Cymbidium ensifolium. Horticulturae. 2024; 10(10):1015. https://doi.org/10.3390/horticulturae10101015
Chicago/Turabian StyleWang, Mengyao, Baojun Liu, Jinjin Li, Ningzhen Huang, Yang Tian, Liting Guo, Caiyun Feng, Ye Ai, and Chuanming Fu. 2024. "Bioinformatics Analysis and Expression Features of Terpene Synthase Family in Cymbidium ensifolium" Horticulturae 10, no. 10: 1015. https://doi.org/10.3390/horticulturae10101015
APA StyleWang, M., Liu, B., Li, J., Huang, N., Tian, Y., Guo, L., Feng, C., Ai, Y., & Fu, C. (2024). Bioinformatics Analysis and Expression Features of Terpene Synthase Family in Cymbidium ensifolium. Horticulturae, 10(10), 1015. https://doi.org/10.3390/horticulturae10101015