Prolonging Cyclamen Flower Vase Life via 8-HQS and AgNO3 Treatments in a Controlled Release System
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Physiological and Postharvest Attributes
2.3.1. Vase Life, Weight Loss
2.3.2. Color
2.3.3. DPPH Scavenging Activity, Total Phenolic Content (TPC)
2.3.4. Enzyme Activities
2.4. Statistical Analysis
3. Results
3.1. Vase Life, Fresh Weight
3.2. Color
3.3. Antioxidant Enzyme Activity
3.4. Total Phenolic Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takamura, T. Cyclamen. In Flower Breeding and Genetics; Springer: Berlin/Heidelberg, Germany, 2006; pp. 459–478. [Google Scholar] [CrossRef]
- Cornea-Cipcigan, M.; Pamfil, D.; Sisea, C.R.; Mărgăoan, R. Gibberellic acid can improve seed germination and ornamental quality of selected cyclamen species grown under short and long days. Agronomy 2020, 10, 516. [Google Scholar] [CrossRef]
- Halevy, A.; Kohl, H.C.; Kofranek, A.M. Senescence and Postharvest Handling of Cyclamen Flowers. HortScience 2022, 19, 848–850. [Google Scholar] [CrossRef]
- Neumaier, D.; Bausbach, E.; Simon, M.; Tisch, M.; Winkelmann, T. Effect of time of harvest, water quality and cut flower food on vase life of Cyclamen cut flowers. Acta Hortic. 2009, 847, 269–274. [Google Scholar] [CrossRef]
- Abdel-Kader, H.H.; Hamza, A.M.; Elbaz, T.T.; Eissa, S.M. Effects of Some Chemicals on Vase Life of Some Cut Flowers I. Effect of 8-Hydroxyquinoline Sulfate, Silver Nitrate, Silver Nano Particles and Chitosan on Vase Life and Quality of Cut Rose Flowers (Rosa hybrida. Cv. ‘Black Magic’). J. Plant Prod. 2017, 8, 49–53. [Google Scholar] [CrossRef]
- Khella, E.A.; Abd-ElMoniem, A.M.; Mohamed, A.M. Influence of Some Preservative Solutions on Vase Life and Postharvest Qualities of Limonium Cut Flowers. Sci. J. Flowers Ornam. Plants 2018, 5, 89–103. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, J.; Dev, P.; Choudhary, K.; Agnihotri, K.M.; Kumar, A. Effect of Aluminum Sulphate and Silver Nitrate on Vase Life of Cut rose cv. First Red. Int. J. Curr. Microbiol. App. Sci. 2020, 11, 3714–3718. [Google Scholar]
- Doğan, A.; Yılmaz, G.; Erkan, M.; Baktır, I. Effects of sucrose and silver nitrate on the vase life of cut Ranunculus asiaticus L. Acta Hortic. 2013, 1002, 341–348. [Google Scholar] [CrossRef]
- Eldeen Nour Eldaime Elgimabi, M.; Mahmoud Sliai, A. Effects of Preservative Solutions on Vase Life and Postharvest Qualities of Taif Rose Cut Flowers (Rosa damascene cv. Trigintipetala). J. Agric. Environ. Sci. 2013, 13, 72–80. [Google Scholar] [CrossRef]
- Elhindi, K.M. Evaluation of several holding solutions for prolonging vase-life and keeping quality of cut sweet pea flowers (Lathyrus odoratus L.). Saudi J. Biol. Sci. 2012, 19, 195–202. [Google Scholar] [CrossRef]
- Gun, S.; Uzun, L.; Tuysuz, M.; Erturk, O.; Ilhan, H.; Acıkgoz, M.A.; Ozturk, B. Nanofiber mats containing lavender oil and Methyl jasmonate as an innovative treatment to extend vase life in cut rose flowers. Postharvest Biol. Technol. 2023, 201, 112343. [Google Scholar] [CrossRef]
- Chuysinuan, P.; Pengsuk, C.; Lirdprapamongkol, K.; Techasakul, S.; Svasti, J.; Nooeaid, P. Enhanced Structural Stability and Controlled Drug Release of Hydrophilic Antibiotic-Loaded Alginate/Soy Protein Isolate Core-Sheath Fibers for Tissue Engineering Applications. Fibers Polym. 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Zhao, D.; Cheng, M.; Tang, W.; Liu, D.; Zhou, S.; Meng, J.; Tao, J. Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. Protoplasma 2018, 255, 1001–1013. [Google Scholar] [CrossRef]
- Dag, D.; Kilercioglu, M.; Oztop, M.H. LWT—Food Science and Technology Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT-Food Sci. Technol. 2017, 83, 86–94. [Google Scholar] [CrossRef]
- De Ancos, B.; Sgroppo, S.; Plaza, L.; Cano, M.P. Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. J. Sci. Food Agric. 2002, 82, 790–796. [Google Scholar] [CrossRef]
- Sayah, K.; Marmouzi, I.; Mrabti, H.N.; Cherrah, Y.; Faouzi, M.E.A. Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. BioMed Res. Int. 2017, 2017, 2789482. [Google Scholar] [CrossRef]
- Koushesh Saba, M.; Arzani, K.; Barzegar, M. Postharvest polyamine application alleviates chilling injury and affects apricot storage ability. J. Agric. Food Chem. 2012, 60, 8947–8953. [Google Scholar] [CrossRef]
- Nguyen, T.B.T.; Ketsa, S.; van Doorn, W.G. Relationship between browning and the activities of polyphenol oxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biol. Technol. 2003, 30, 187–193. [Google Scholar] [CrossRef]
- Manzoor, A.; Bashir, M.A.; Naveed, M.S.; Akhtar, M.T.; Saeed, S. Postharvest Chemical Treatment of Physiologically Induced Stem End Blockage Improves Vase Life and Water Relation of Cut Flowers. Horticulturae 2024, 10, 271. [Google Scholar] [CrossRef]
- Naing, A.H.; Win, N.M.; Han, J.-S.; Lim, K.B.; Kim, C.K. Role of nano-silver and the bacterial strain Enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Front. Plant Sci. 2017, 8, 1590. [Google Scholar] [CrossRef]
- Mirjalili, S.A.; Kavoosi, B.; Peyro, Y. Assessment of vase life and postharvest quality of cut rose (Rosa hybrida cv. angelina) flowers by application of cumin (Cuminum cyminum L.) essential oil and 8-hydroxyquinoline sulfate. Adv. Hortic. Sci. 2018, 32, 363–369. [Google Scholar] [CrossRef]
- Chand, S.; Kumar, V.; Kumar, J. EFFECT OF AgNO3 AND 8-HQC ON VASE LIFE OF CUT ROSES. HoriFlora Res. Spectum 2012, 1, 380–382. [Google Scholar]
- Lü, P.; Cao, J.; He, S.; Liu, J.; Li, H.; Cheng, G.; Ding, Y.; Joyce, D.C. Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol. Technol. 2010, 57, 196–202. [Google Scholar] [CrossRef]
- Abdel Kader, H.H. Effects of nanosilver holding and pulse treatments, in comparison with traditional silver nitrate pulse on water relations and vase life and quality of the cut flowers of Rosa hybrida L. cv. ‘Tineke’. World Appl. Sci. J. 2012, 20, 130–137. [Google Scholar] [CrossRef]
- Ciriello, M.; Campana, E.; Colla, G.; De Pascale, S.; Rouphael, Y. Preharvest calcium application boosts the biostimulatory effect of protein hydrolysate by improving the postharvest life of gerbera cut flower. Sci. Hortic. 2024, 331, 113140. [Google Scholar] [CrossRef]
- Bin Arif, A.; Susanto, S.; Widayanti, S.M.; Matra, D.D. Effect of ripening stage on postharvest quality of abiu (Pouteria caimito) fruit during storage. Agric. Nat. Resour. 2022, 56, 441–454. [Google Scholar] [CrossRef]
- Gerabeygi, K.; Roein, Z.; Rezvanipour, S. Control of stem bending in cut gerbera flowers through application of dithiothreitol and thioglycolic acid as wound reaction inhibitors. J. Hortic. Sci. Biotechnol. 2021, 96, 653–662. [Google Scholar] [CrossRef]
- da Silva Vieira, M.R.; Santos, C.M.G.; de Souza, A.V.; de Alencar Paes, R.; da Silva, L.F. Physiological blockage in plants in response to postharvest stress. Afr. J. Biotechnol. 2013, 1168, 1168–1170. [Google Scholar] [CrossRef]
- Blaschek, L.; Pesquet, E. Phenoloxidases in Plants—How Structural Diversity Enables Functional Specificity. Front. Plant Sci. 2021, 12, 754601. [Google Scholar] [CrossRef]
- Wold-McGimsey, F.; Krosch, C.; Alarcón-Reverte, R.; Ravet, K.; Katz, A.; Stromberger, J.; Mason, R.E.; Pearce, S. Multi-target genome editing reduces polyphenol oxidase activity in wheat (Triticum aestivum L.) grains. Front. Plant Sci. 2023, 14, 1247680. [Google Scholar] [CrossRef]
- Shabanian, S.; Esfahani, M.N.; Karamian, R.; Tran, L.-S.P. Physiological and biochemical modifications by postharvest treatment with sodium nitroprusside extend vase life of cut flowers of two gerbera cultivars. Postharvest Biol. Technol. 2018, 137, 1–8. [Google Scholar] [CrossRef]
- Elatafi, E.; Fang, J. Effect of Silver Nitrate (AgNO3) and Nano-Silver (Ag-NPs) on Physiological Characteristics of Grapes and Quality during Storage Period. Horticulturae 2022, 8, 419. [Google Scholar] [CrossRef]
- Yadav, V.; Wang, Z.; Wei, C.; Amo, A.; Ahmed, B.; Yang, X.; Zhang, X. Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens 2020, 9, 312. [Google Scholar] [CrossRef] [PubMed]
- Nasibi, F.; Farahmand, H.; Kamyab, A.; Alipour, S. Effects of Arginine, Cysteine and 5-Sulfosalicylic Acid on of Vase Life of Tuberose Cut Flowers. Agric. Commun. 2014, 2, 35–41. [Google Scholar]
- Rezai, S.; Nikbakht, A.; Zarei, H.; Sabzalian, M.R. Physiological, biochemical, and postharvest characteristics of two cut rose cultivars are regulated by various supplemental light sources. Sci. Hortic. 2023, 313, 111934. [Google Scholar] [CrossRef]
- Simões, A.D.N.; Diniz, N.B.; Vieira, M.R.d.S.; Ferreira-Silva, S.L.; da Silva, M.B.; Minatel, I.O.; Lima, G.P.P. Impact of GA3 and spermine on postharvest quality of anthurium cut flowers (Anthurium andraeanum) cv. Arizona. Sci. Hortic. 2018, 241, 178–186. [Google Scholar] [CrossRef]
- Minibayeva, F.; Beckett, R.P.; Kranner, I. Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry 2015, 112, 122–129. [Google Scholar] [CrossRef]
- Karsten, J.; Finger, F.L.; Barbosa, J.G.; Chaves, D.V. Characterisation of peroxidase activity in bird-of-paradise (Strelitzia reginae Ait.) stems. J. Hortic. Sci. Biotechnol. 2012, 87, 668–672. [Google Scholar] [CrossRef]
- Çelikel, F.G.; Joyce, D.C.; Faragher, J.D. Inhibitors of oxidative enzymes affect water uptake and vase life of cut Acacia holosericea and Chamelaucium uncinatum stems. Postharvest Biol. Technol. 2011, 60, 149–157. [Google Scholar] [CrossRef]
- Luo, H.; Deng, S.; Fu, W.; Zhang, X.; Zhang, X.; Zhang, Z.; Pang, X. Characterization of active anthocyanin degradation in the petals of Rosa chinensis and Brunfelsia calycina reveals the effect of gallated catechins on pigment maintenance. Int. J. Mol. Sci. 2017, 18, 699. [Google Scholar] [CrossRef] [PubMed]
- Sharifzadeh, K.; Asil, M.H.; Roein, Z.; Sharifzadeh, M. Effect of 8-hydroxyquinoline citrate, sucrose and peroxidase inhibitors on vase life of lisianthus (Eustoma grandiflorum L.) cut flowers. J. Hortic. Res. 2014, 22, 41–47. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, R.; Sridhar, C.; Reddy, Y.S.R.; De, B. Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. Int. J. Pharm. Sci. Rev. Res. 2010, 3, 91–100. [Google Scholar]
- Saeed, T.; Hassan, I.; Abbasi, N.A.; Jilani, G. Antioxidative activities and qualitative changes in gladiolus cut flowers in response to salicylic acid application. Sci. Hortic. 2016, 210, 236–241. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Naderi, R.; Sarcheshmeh, M.A.A.; Babalar, M. Amelioration of postharvest chilling injury in anthurium cut flowers by γ-aminobutyric acid (GABA) treatments. Postharvest Biol. Technol. 2015, 110, 70–76. [Google Scholar] [CrossRef]
- Chakrabarty, D.; Chatterjee, J.; Datta, S.K. Oxidative stress and antioxidant activity as the basis of senescence in chrysanthemum florets. Plant Growth Regul. 2007, 53, 107–115. [Google Scholar] [CrossRef]
- Hassan, F.; Fetouh, M. Does moringa leaf extract have preservative effect improving the longevity and postharvest quality of gladiolus cut spikes? Sci. Hortic. 2019, 250, 287–293. [Google Scholar] [CrossRef]
- Darras, A.I.; Demopoulos, V.; Tiniakou, C. UV-C irradiation induces defence responses and improves vase-life of cut gerbera flowers. Postharvest Biol. Technol. 2012, 64, 168–174. [Google Scholar] [CrossRef]
- Magri, A.; Adiletta, G.; Petriccione, M. Evaluation of antioxidant systems and ascorbate-glutathione cycle in feijoa edible flowers at different flowering stages. Foods 2020, 9, 95. [Google Scholar] [CrossRef]
- Hönig, M.; Plíhalová, L.; Husičková, A.; Nisler, J.; Doležal, K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 2018, 19, 4045. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
Groups | Treatments |
---|---|
T1 | Electrospun fibers + 8-HQS (100 mg L−1) + AgNO3 (15 mg L−1) |
T2 | Electrospun fibers + 8-HQS (100 mg L−1) + AgNO3 (20 mg L−1) |
T3 | Electrospun fibers + 8-HQS (150 mg L−1) + AgNO3 (15 mg L−1) |
T4 | Electrospun fibers + 8-HQS (150 mg L−1) + AgNO3 (20 mg L−1) |
T5 | Electrospun fibers + 8-HQS (200 mg L−1) + AgNO3 (15 mg L−1) |
T6 | Electrospun fibers + 8-HQS (200 mg L−1) + AgNO3 (20 mg L−1) |
C1 | Electrospun fibers (control 1) |
C2 | Water (control 2) |
Treatment | Fresh Weight (g) | |
---|---|---|
Pure White | Strauss | |
Electrospun fibers + 8-HQS (100) + AgNO3 (15) | 5.08 a | 3.34 fg |
Electrospun fibers + 8-HQS (100) + AgNO3 (20) | 5.22 a | 3.27 fg |
Electrospun fibers + 8-HQS (150) + AgNO3 (15) | 5.14 a | 3.85 c–e |
Electrospun fibers + 8-HQS (150) + AgNO3 (20) | 4.39 b | 3.25 fg |
Electrospun fibers + 8-HQS (200) + AgNO3 (15) | 4.57 b | 3.60 d–f |
Electrospun fibers + 8-HQS (200) + AgNO3 (20) | 4.17 bc | 3.41 e–g |
Electrospun fibers (control 1) | 4.13 bc | 3.05 g |
Water (control 2) | 4.08 c | 3.13 fg |
Significant | ||
Cultivar | *** | |
Treatment | *** | |
Time | *** | |
Cultivar × Treatment | *** | |
Cultivar × Time | ns | |
Treatment × Time | ns | |
Cultivar × Treatment × Time | ns | |
CV | 15.66 |
Hue | Chroma | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cultivar | Treatment Group | 1 d | 3 d | 6 d | 10 d | 1 d | 3 d | 6 d | 10 d |
Cultivar ‘Pure White’ | T1 | 181.0 ± 0.4 c–g | 180.7 ± 1.1 c–k | 181.3 ± 0.2 b–d | 180.7 ± 0.2 c–j | 3.0 ± 0.09 l–n | 2.7 ± 0.01 n | 3.3 ± 0.1 j–l | 2.2 ± 0.04 o |
T2 | 180.5 ± 1.0 c–k | 179.9 ± 1.1 g–l | 180.5 ± 0.3 c–k | 182.4 ± 0.1 a | 3.1 ± 0.05 l–n | 4.5 ± 0.04 d–f | 3.7 ± 0.3 ij | 3.2 ± 0.2 k–m | |
T3 | 181.0 ± 0.7 c–f | 180.9 ± 0.9 c–h | 181.4 ± 0.2 a–c | 181.0 ± 0.5 c–f | 2.2 ± 0.02 o | 4.7 ± 0.03 de | 4.8 ± 0.3 d | 4.5 ± 0.1 a–g | |
T4 | 179.8 ± 1.4 h–m | 181.0 ± 0.4 c–f | 180.4 ± 0.1 c–k | 180.5 ± 0.3 c–k | 4.4 ± 0.2 dg | 4.5 ± 0.1 d–f | 4.3 ± 0.1 e–g | 5.5 ± 0.2 c | |
T5 | 178.3 ± 0.6 p–r | 181.2 ± 0.6 b–e | 180.6 ± 0.2 c–k | 180.5 ± 0.05 c–k | 4.7 ± 0.2 de | 4.4 ± 0.3 d–g | 3.6 ± 0.3 i–k | 4.6 ± 0.3 de | |
T6 | 179.7 ± 1.0 j–n | 180.7 ± 1.8 c–j | 178.6 ± 0.3 o–r | 178.4 ± 0.1 p–r | 4.5 ± 0.04 d–g | 4.2 ± 0.2 fg | 4.1 ± 0.09 gh | 3.8 ± 0.1 hi | |
T7 | 180.4 ± 0.8 c–k | 179.7 ± 0.8 i–n | 178.7 ± 0.1 n–r | 181.1 ± 0.05 c–f | 4.4 ± 0.03 d–g | 3.5 ± 0.4 i–k | 3.3 ± 0.1 k–m | 2.9 ± 0.1 mn | |
T8 | 180.9 ± 0.6 c–h | 179.7 ± 0.2 i–n | 181.3 ± 0.1 b–e | 178.3 ± 0.2 p–r | 4.4 ± 0.3 d–g | 5.5 ± 0.5 c | 6.0 ± 0.06 b | 10.2 ± 0.3 a | |
Treatment Group | 1 d | 3 d | 6 d | 10 d | 1 d | 3 d | 6 d | 10 d | |
Cultivar ‘Strauss’ | T1 | 180.8 ± 0.3 c–j | 179.2 ± 0.4 l–p | 180.4 ± 0.2 c–k | 180.4 ± 0.3 c–k | 53.4 ± 0.3 g | 51.5 ± 0.2 ij | 59.6 ± 0.3 k | 55.8 ± 0.6 d |
T2 | 180.8 ± 0.6 c–i | 180.5 ± 0.8 c–k | 180.4 ± 0.2 c–k | 180.3 ± 0.1 d–l | 47.2 ± 0.1 m | 54.4 ± 0.2 ef | 51.1 ± 0.1 j | 52.1 ± 0.2 h | |
T3 | 179.6 ± 1.1 k–o | 180.2 ± 1.4 e–l | 180.5 ± 1.1 c–k | 180.5 ± 1.1 c–k | 59.5 ± 0.3 b | 54.9 ± 0.3 e | 52.1 ± 0.5 h | 51.3 ± 0.1 ij | |
T4 | 181.0 ± 0.8 c–g | 178.9 ± 0.7 m–q | 182.2 ± 0.2 ab | 180.5 ± 0.3 c–k | 57.1 ± 0.3 c | 51.4 ± 0.1 ij | 56.0 ± 0.1 n | 54.2 ± 0.1 f | |
T5 | 180.1 ± 1.3 e–l | 178.0 ± 0.4 qr | 180.4 ± 0.2 c–k | 180.5 ± 0.2 c–k | 59.5 ± 0.3 k | 52.0 ± 0.07 h | 49.2 ± 0.09 k | 48.6 ± 0.2 l | |
T6 | 180.8 ± 0.3 c–h | 177.8 ± 0.7 r | 180.5 ± 0.1 c–k | 180.4 ± 0.1 c–k | 59.9 ± 0.6 a | 46.2 ± 0.03 n | 59.9 ± 0.5 d | 53.0 ± 0.1 g | |
T7 | 181.3 ± 1.1 a–d | 178.5 ± 1.1 c–k | 181.4 ± 0.1 a–c | 180.5 ± 0.2 c–k | 57.3 ± 0.07 c | 51.1 ± 0.1 j | 51.6 ± 0.1 hi | 55.8 ± 0.1 d | |
T8 | 180.7 ± 0.8 c–k | 179.9 ± 0.5 h–m | 180.5 ± 0.2 c–k | 180.3 ± 0.1 d–k | 59.4 ± 0.1 b | 46.2 ± 0.3 n | 49.2 ± 0.2 k | 51.4 ± 0.1 ij |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollaei, S.; Mirdehghan, S.H.; Profico, C.M.; Nicola, S.; Caldera, F.; Trotta, F.; Devecchi, M.; Cecone, C. Prolonging Cyclamen Flower Vase Life via 8-HQS and AgNO3 Treatments in a Controlled Release System. Horticulturae 2024, 10, 1012. https://doi.org/10.3390/horticulturae10101012
Mollaei S, Mirdehghan SH, Profico CM, Nicola S, Caldera F, Trotta F, Devecchi M, Cecone C. Prolonging Cyclamen Flower Vase Life via 8-HQS and AgNO3 Treatments in a Controlled Release System. Horticulturae. 2024; 10(10):1012. https://doi.org/10.3390/horticulturae10101012
Chicago/Turabian StyleMollaei, Samane, Seyed Hossein Mirdehghan, Cosimo M. Profico, Silvana Nicola, Fabrizio Caldera, Francesco Trotta, Marco Devecchi, and Claudio Cecone. 2024. "Prolonging Cyclamen Flower Vase Life via 8-HQS and AgNO3 Treatments in a Controlled Release System" Horticulturae 10, no. 10: 1012. https://doi.org/10.3390/horticulturae10101012
APA StyleMollaei, S., Mirdehghan, S. H., Profico, C. M., Nicola, S., Caldera, F., Trotta, F., Devecchi, M., & Cecone, C. (2024). Prolonging Cyclamen Flower Vase Life via 8-HQS and AgNO3 Treatments in a Controlled Release System. Horticulturae, 10(10), 1012. https://doi.org/10.3390/horticulturae10101012