Response to Deficit Irrigation of ‘Orogrande’ Mandarin Grafted onto Different Citrus Rootstocks in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Experimental Design
2.2. Irrigation Treatments
2.3. Tree Growth
2.4. Yield Parameters
2.5. Fruit Size Determinations
2.6. Fruit Internal Quality
2.7. Statistical Analysis
3. Results
3.1. Canopy Volume
3.2. Yield Parameters
3.3. Fruit Quality
3.3.1. Fruit Physical Parameters
3.3.2. Juice Quality Parameters
3.4. Correlation Analysis
4. Discussion
4.1. Effect of DI on Tree Development and Yield
4.2. Effect of DI on Fruit Internal Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). 2022. Available online: https://www.fao.org/home/es (accessed on 21 September 2023).
- Spanish Ministry of Agriculture, Fisheries, Food and Environment (MAGRAMA). 2022. Available online: https://www.mapa.gob.es/es/default.aspx (accessed on 21 September 2023).
- Ruiz Sánchez, M.C.; Domingo, R.; Castel, J.R. Deficit irrigation in fruit trees and vines in Spain: A review. Span. J. Agric. Res. 2010, 8 (Suppl. S2), S5–S20. [Google Scholar] [CrossRef]
- Spanish Meterology Statal Agency (AEMET). 2022. Available online: https://www.aemet.es/es/portada (accessed on 21 September 2023).
- Safriel, U.N. Status of Desertification in the Mediterranean Region. In Water Scarcity, Land Degradation and Desertification in the Mediterranean Region; Rubio, J.L., Safriel, U., Daussa, R., Blum, W.E.H., Pedrazzini, F., Eds.; NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2009; pp. 33–73. [Google Scholar]
- Vincent, C.; Morillon, R.; Arbona, V.; Gómez-Cadenas, A. Citrus in Changing Environments; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128122174. [Google Scholar]
- Ballester, C.; Castel, J.; Intrigliolo, D.S.; Castel, J.R. Response of Clementina de Nules citrus trees to regulated deficit irrigation. Yield components and fruit composition. Agric. Water Manag. 2011, 98, 1027–1032. [Google Scholar] [CrossRef]
- Ginestar, C.; Castel, J.R. Response of young ‘Clementine’ citrus trees to water stress during different phenological periods. J. Hortic. Sci. 1996, 71, 551–559. [Google Scholar] [CrossRef]
- González-Altozano, P.; Castel, J.R. Regulated deficit irrigation in ‘Clementina de Nules’ citrus trees. I: Yield and fruit quality effects. J. Hortic. Sci. Biotechnol. 1999, 74, 706–713. [Google Scholar] [CrossRef]
- Colmenero-Flores, J.M.; Arbona, V.; Morillon, R.; Gómez-Cadenas, A. Salinity and Water Deficit. In The Genus Citrus; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128121634. [Google Scholar]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; Pérez-Pérez, J.G.; García-Sánchez, F.; Gómez- Gómez, A.; Porras, I.; Martínez, V.; Botía, P. Deficit irrigation and rootstock: Their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiol. 2006, 26, 1537–1548. [Google Scholar] [CrossRef]
- García-Tejero, I.; Romero-Vicente, R.; Jiménez-Bocanegra, J.A.; Martínez-García, G.; Durán-Zuazo, V.H.; Muriel-Fernández, J.L. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity. Agric. Water Manag. 2010, 97, 689–699. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Robles, J.M.; Botía, P. Influence of deficit irrigation in phase III of fruit growth on fruit quality in ‘Lane Late’ sweet orange. Agric. Water Manag. 2009, 96, 969–974. [Google Scholar] [CrossRef]
- Cohen, A.; Goell, A. Fruit growth and dry matter accumulation in grapefruit during periods of water withholding and after reirrigation. Aust. J. Plant Physiol. 1988, 15, 633–639. [Google Scholar] [CrossRef]
- Martínez-Cuenca, M.R.; Primo-Capella, A.; Forner-Giner, M.A. Influence of rootstock on Citrus tree growth: Effects on photosynthesis and carbohydrate distribution, plant size, yield, fruit quality, and dwarfing genotypes. Plant Growth 2016, 16, 107. [Google Scholar]
- Pestana, M.; de Varennes, A.; Abadía, J.; Faria, E.A. Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Sci. Hortic. 2005, 104, 25–36. [Google Scholar] [CrossRef]
- Forner-Giner, M.A.; Continella, A.; Grosser, J.W. Citrus Rootstock Breeding and Selection. In The Citrus Genome; Gentile, A., La Malfa, S., Deng, Z., Eds.; Springer: Cham, Switzerland, 2020; pp. 49–74. [Google Scholar]
- Arbona, V.; Iglesias, D.J.; Jacas, J.; Primo-Millo, E.; Talon, M.; Gómez-Cadenas, A. Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 2005, 270, 73–82. [Google Scholar] [CrossRef]
- Pedroso, F.K.J.V.; Prudente, D.A.; Carolina, A.; Bueno, R.; Machado, E.C.; Ribeiro, R.V. Drought tolerance in citrus trees is enhanced by rootstock-dependent changes in root growth and carbohydrate availability. Environ. Exp. Bot. 2014, 101, 26–35. [Google Scholar] [CrossRef]
- Gómez-Cadenas, A.; Iglesias, D.J.; Arbona, V.; Colmenero-Flores, J.M.; Primo-Millo, E.; Talon, M. Physiological and molecular responses of citrus to salinity. Rec. Res. Develop. Plant Mol. Biol. 2003, 1, 281–298. [Google Scholar]
- Georgiou, A. Evaluation of rootstocks for ‘Clementine’ mandarin in Cyprus. Sci. Hortic. 2002, 93, 29–38. [Google Scholar] [CrossRef]
- Legua, P.; Martinez-Cuenca, M.R.; Bellver, R.; Forner-Giner, M.Á. Rootstock’s and scion’s impact on lemon quality in southeast Spain. Int. Agrophys. 2018, 32, 325–333. [Google Scholar] [CrossRef]
- Martínez-Cuenca, M.R.; Molina, M.D.; Forner-Giner, M.Á. Performance of Two Very Early-Season Clementines, ‘Clemenrubi’and ‘Orogros’ Mandarins on Three Rootstocks in Spain: Yield and Quality Study. Agronomy 2022, 12, 1072. [Google Scholar] [CrossRef]
- Yildiz, E.; Kaplankiran, M. Performances of ‘Okıtsu’ and ‘Clausellına’ Satsuma Mandarıns on Dıfferent Rootstocks in Eastern Medıterranean of Turkey. Ege Üniv. Ziraat Fak. Derg. 2018, 55, 139–145. [Google Scholar] [CrossRef]
- Tudela, D.; Primo-Millo, E. 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings rehydrated after water stress. Plant Physiol. 1992, 100, 131–137. [Google Scholar] [CrossRef]
- Potters, G.; Pasternak, T.P.; Guisez, Y.; Palme, K.J.; Jansen, M.A. Stress-induced morphogenic responses: Growing out of trouble? Trends Plant Sci. 2007, 12, 98–105. [Google Scholar] [CrossRef]
- Montaña, C.; Carot, M.; Quinones, A.; Martínez-Alcántara, B.; Primo-Millo, E.; Legaz, F. Riego deficitario en goteo superficial y subterráneo. Vida Rural 2005, 210, 40–44. [Google Scholar]
- Figueiredo, J.O.; Negri, J.D.; Mattos, D., Jr.; Pio, R.M.; Laranjeira, F.F.; Garcia, V.P. Behavior of fourteen rootstocks for eureka lemon (Citrus limon (L.) Burm. F.) cv. Km 47, in Araraquara, SP, Brazil. Rev. Bras. Frutic. 2005, 1, 73–76. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Castillo, I.P.; García-Lidón, A.; Botia, P.; García-Sánchez, F. Fino lemon clones compared with the lemon varieties Eureka and Lisbon on two rootstocks in Murcia (Spain). Sci. Hortic. 2005, 106, 530–538. [Google Scholar] [CrossRef]
- Forner-Giner, M.A.; Rodriguez-Gamir, J.; Martinez-Alcantara, B.; Quiñones, A.; Iglesias, D.J.; Primo-Millo, E.; Forner, J. Performance of Navel orange trees grafted onto two new dwarfing rootstocks (Forner-Alcaide 517 and Forner-Alcaide 418). Sci. Hortic. 2014, 179, 376–387. [Google Scholar] [CrossRef]
- Webster, A.D. Rootstock and interstock effects on deciduous fruit tree vigour, precocity, and yield productivity. N. Z. J. Crop Hortic. Sci. 1995, 23, 373–382. [Google Scholar] [CrossRef]
- Castle, W.S.; Baldwin, J.C.; Muraro, R.P. Rootstocks and the performance and economic returns of ‘Hamlin’ sweet orange trees. HortScience 2010, 45, 875–881. [Google Scholar] [CrossRef]
- Cheng, F.S.; Roose, M.L. Origin and inheritance of dwarfing by the citrus rootstock Poncirus trifoliata ‘flying dragon’. J. Am. Soc. Hortic. Sci. 1995, 120, 286–291. [Google Scholar] [CrossRef]
- Fallahi, E.; Rodney, D.R. Tree size, yield, fruit quality, and leaf mineral nutrient concentration of fair child mandarin on six rootstocks. J. Am. Soc. Hortic. Sci. 1992, 117, 28–31. [Google Scholar] [CrossRef]
- García-Orellana, Y.; Ruiz-Sánchez, M.C.; Alarcón, J.J.; Conejero, W.; Ortuño, M.F.; Nicolás, E.; Torrecillas, A. Preliminary assessment of the feasibility of using maximum daily trunk shrinkage for irrigation scheduling in lemon trees. Agric. Water Manag. 2007, 89, 167–171. [Google Scholar] [CrossRef]
- Ginestar, C.; Sánchez, J.R.C. Utilización de dendrómetros como indicador de estrés hídrico en mandarinos jóvenes regados por goteo. Riegos Y Dren. XXI 1996, 89, 40–46. [Google Scholar]
- Gisbert-Mullor, R.; Pascual-Seva, N.; Martínez-Gimeno, M.A.; López-Serrano, L.; Badal Marín, E.; Pérez-Pérez, J.G.; López-Galarza, S. Grafting onto an appropriate rootstock reduces the impact on yield and quality of controlled deficit irrigated pepper crops. Agronomy 2020, 10, 1529. [Google Scholar] [CrossRef]
- Iglesias, D.J.; Lliso, I.; Tadeo, F.R.; Talon, M. Regulation of photosynthesis through source: Sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiol. Plant. 2002, 116, 563–572. [Google Scholar] [CrossRef]
- Gómez-Cadenas, A.; Tadeo, F.R.; Talon, M.; Primo-Millo, E. Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol. 1996, 112, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Cruse, R.R.; Wiegand, C.L.; Swanson, W.A. The Effects of Rainfall and Irrigation Management on Citrus Juice Quality in Texas. J. Am. Soc. Hortic. Sci. 1982, 107, 767–770. [Google Scholar] [CrossRef]
- Castel, J.R.; Buj, A. Response of Salustiana oranges to high frequency deficit irrigation. Irrig. Sci. 1990, 11, 121–127. [Google Scholar] [CrossRef]
- Peng, Y.H.; Rabe, E. Effect of differing irrigation regimes on fruit quality, yield, fruit size and net CO2 assimilation of ‘Mihowase’ satsuma. J. Hortic. Sci. Biotechnol. 1998, 73, 229–234. [Google Scholar] [CrossRef]
- Chi-Bacab, U.; Quinones, A.; Martínez-Alcántara, B.; Montaña, C.; Legaz, F. Reducción del aporte hídrico a los cítricos con el riego deficitario y la pluviometría en riego superficial y subterráneo. Levante Agríc. 2007, 384, 21–30. [Google Scholar]
2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|
Mean Maximum Temperature (°C) | 25.37 | 25.88 | 25.96 | 25.13 |
Mean Minimum Temperature (°C) | 11.73 | 11.31 | 12.07 | 12.38 |
Relative Humidity (%) | 70.39 | 68.6 | 71.8 | 73.7 |
Total Annual Evapotranspiration (ETo, mm) | 1148.71 | 1176.15 | 1159.48 | 1081.25 |
Solar Radiation (MJ m−2 day−1) | 16.67 | 17.19 | 16.56 | 15.26 |
Annual Rainfall (P, mm) | 666.3 | 699.6 | 867.89 | 725.01 |
2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|
Kc | 0.67 | 0.65 | 0.65 | 0.66 |
PAs | 60% | 70% | 60% | 65% |
Fpe | 0.75 | 0.80 | 0.75 | 0.80 |
Cins | 0.75 | 0.60 | 0.75 | 0.60 |
Rootstock/Treatment | 2018 | 2019 | 2020 | 2021 | Mean | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fruit tree−1 number | CC Ct | 1086 | a | 890 | 761 | - | 1269 | 1001 | |||
CC DI | 969 | ab | 873 | 808 | - | 1468 | 1029 | ||||
FA-5 Ct | 933 | ab | 843 | 840 | - | 1335 | 988 | ||||
FA-5 DI | 709 | b | 828 | 894 | - | 1399 | 958 | ||||
Fruit FW (g) | CC Ct | 90 | b | 94 | b | 107 | a | 95 | a | 99 | b |
CC DI | 82 | c | 87 | b | 95 | b | 72 | b | 85 | d | |
FA-5 Ct | 100 | a | 103 | a | 110 | a | 101 | a | 105 | a | |
FA-5 DI | 99 | a | 94 | b | 97 | b | 98 | b | 97 | b | |
Yield (kg tree−1) | CC Ct | 98 | a | 84 | 81 | 120 | a | 95 | a | ||
CC DI | 80 | ab | 76 | 76 | 106 | b | 86 | b | |||
FA-5 Ct | 94 | a | 87 | 93 | 135 | a | 105 | a | |||
FA-5 DI | 75 | b | 82 | 90 | 111 | b | 91 | ab |
Yield | F | Ø (mm) | % | AI | TSS | RI | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | FW | D/H | Th | <46 | 46–50 | 50–54 | 54–58 | 58–62 | 62–66 | 66–70 | 70–74 | >74 | Peel | Rag | Juice | |||||
Vc | 0.80 | -0.86 | 0.44 | 0.27 | −0.95 * | −0.79 | −0.93 | −0.91 | −0.73 | 0.89 | 0.95 * | 0.81 | 0.78 | 0.45 | −0.99 ** | 0.99 ** | 0.99 ** | −0.97 * | −0.96 * | 0.91 |
Yield | −0.67 | 0.71 | 0.15 | −0.94 * | −0.88 | −0.89 | −0.97 * | −0.96 * | 0.87 | 0.93 | 0.99 ** | 0.99 ** | 0.84 | −0.76 | 0.74 | 0.78 | −0.92 | −0.81 | 0.98 * | |
F N | −0.71 | −0.73 | 0.75 | 0.90 | 0.93 | 0.83 | 0.47 | −0.94 * | −0.87 | −0.74 | −0.62 | −0.16 | 0.87 | −0.82 | −0.89 | 0.85 | 0.96 * | −0.74 | ||
F FW | 0.69 | −0.54 | −0.89 | −0.75 | −0.72 | −0.51 | 0.80 | 0.69 | 0.79 | 0.68 | 0.40 | −0.42 | 0.35 | 0.48 | −0.62 | −0.65 | 0.61 | |||
F D/H | −0.14 | −0.61 | −0.50 | −0.32 | 0.13 | 0.56 | 0.36 | 0.28 | 0.09 | −0.35 | −0.31 | 0.23 | 0.36 | −0.29 | −0.51 | 0.16 | ||||
F Th | 0.83 | 0.93 | 0.97 * | 0.91 | −0.89 | −0.97 * | −0.93 | −0.93 | −0.71 | 0.92 | −0.92 | −0.92 | 0.97 * | 0.91 | −0.99 ** | |||||
Ø < 46 | 0.96 * | 0.94 | 0.71 | −0.98 * | −0.93 | −0.93 | −0.85 | −0.50 | 0.78 | −0.72 | −0.81 | 0.89 | 0.91 | −0.87 | ||||||
Ø 46–50 | 0.97 * | 0.75 | −0.99 ** | −0.97 * | −0.92 | −0.86 | −0.49 | 0.92 | −0.88 | −0.94 | 0.97 * | 0.98 | −0.93 | |||||||
Ø 50–54 | 0.88 | −0.96 * | 0.90 | −0.98 * | −0.95 * | −0.68 | 0.88 | −0.86 | −0.89 | 0.99 * | 0.93 | −0.99 * | ||||||||
Ø 54–58 | −0.72 | −0.84 | −0.91 | −0.98 * | −0.94 | 0.68 | −0.68 | −0.68 | 0.84 | 0.67 | −0.94 | |||||||||
Ø 58–62 | 0.97 * | 0.92 | 0.84 | 0.47 | −0.88 | 0.84 | 0.91 | −0.95 * | −0.97 * | 0.90 | ||||||||||
Ø 62–66 | 0.95 * | 0.91 | 0.61 | −0.93 | 0.90 | 0.94 | −0.99 ** | −0.97 * | 0.97 * | |||||||||||
Ø 66–70 | 0.98 | 0.77 | −0.77 | 0.74 | 0.79 | −0.93 | −0.85 | 0.96 * | ||||||||||||
Ø 70–47 | 0.87 | −0.74 | 0.72 | 0.75 | −0.90 | −0.78 | 0.97 * | |||||||||||||
Ø > 74 | −0.39 | 0.39 | 0.38 | −0.61 | −0.38 | 0.76 | ||||||||||||||
%Peel | −0.99 ** | −0.99 ** | 0.95 * | 0.96 * | −0.88 | |||||||||||||||
%Rag | 0.99 | −0.93 | −0.93 | 0.87 | ||||||||||||||||
%Juice | −0.96 * | −0.98 * | 0.89 | |||||||||||||||||
AI | 0.96 * | −0.98 * | ||||||||||||||||||
TSS | −0.89 | |||||||||||||||||||
RI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Primo-Capella, A.; Molina-Nadal, M.D.; Catalá-Senent, L.; de Miguel-Moreno, A.; Forner-Giner, M.Á.; Martínez-Cuenca, M.-R. Response to Deficit Irrigation of ‘Orogrande’ Mandarin Grafted onto Different Citrus Rootstocks in Spain. Horticulturae 2024, 10, 37. https://doi.org/10.3390/horticulturae10010037
Primo-Capella A, Molina-Nadal MD, Catalá-Senent L, de Miguel-Moreno A, Forner-Giner MÁ, Martínez-Cuenca M-R. Response to Deficit Irrigation of ‘Orogrande’ Mandarin Grafted onto Different Citrus Rootstocks in Spain. Horticulturae. 2024; 10(1):37. https://doi.org/10.3390/horticulturae10010037
Chicago/Turabian StylePrimo-Capella, Amparo, María Dolores Molina-Nadal, Laura Catalá-Senent, Agustí de Miguel-Moreno, María Ángeles Forner-Giner, and Mary-Rus Martínez-Cuenca. 2024. "Response to Deficit Irrigation of ‘Orogrande’ Mandarin Grafted onto Different Citrus Rootstocks in Spain" Horticulturae 10, no. 1: 37. https://doi.org/10.3390/horticulturae10010037
APA StylePrimo-Capella, A., Molina-Nadal, M. D., Catalá-Senent, L., de Miguel-Moreno, A., Forner-Giner, M. Á., & Martínez-Cuenca, M. -R. (2024). Response to Deficit Irrigation of ‘Orogrande’ Mandarin Grafted onto Different Citrus Rootstocks in Spain. Horticulturae, 10(1), 37. https://doi.org/10.3390/horticulturae10010037