Viticultural Climate Indexes and Their Role in The Prediction of Anthocyanins and Other Flavonoids Content in Seedless Table Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Condition
2.2. Climate Data
2.3. Chemicals
2.4. Sampling and Chemical Analysis
2.5. Extraction and HPLC-DAD-MS Analysis of Flavonoids
2.6. Experimental Design and Statistical Analyses
3. Results and Discussion
3.1. Climate Indexes
3.2. Yield and Chemical Parameters
3.3. Anthocyanins, Flavonols and Flavan-3-ols Content in the Grape Cultivars
3.4. Relationship between Yield Paramenters, Flavonoids, and Climate Indexes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Crupi, P.; Antonacci, D.; Savino, M.; Genghi, R.; Perniola, R.; Coletta, A. Girdling and gibberellic acid effects on yield and quality of a seedless red table grape for saving irrigation water supply. Europ. J. Agronomy 2016, 80, 21–31. [Google Scholar] [CrossRef]
- Roselli, L.; Casieri, A.; De Gennaro, B.C.; Sardaro, R.; Russo, G. Environmental and economic sustainability of table grape production in Italy. Sustainability 2020, 12, 3670. [Google Scholar] [CrossRef]
- OIV. Statistical Report on World Vitiviniculture. 2019. Available online: https://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 14 November 2023).
- ISTAT. 2020. Available online: http://dati.istat.it/Index.aspx?QueryId=33706 (accessed on 14 November 2023).
- Theodorou, N.; Nikolaou, N.; Zioziou, E.; Kyraleou, M.; Kallithraka, S.; Kotseridis, Y.; Koundouras, S. Anthocyanin content and composition in four red winegrape cultivars (Vitis vinifera L.) under variable irrigation: Anthocyanin content and composition under variable irrigation. Oeno One 2019, 53, e59956. [Google Scholar] [CrossRef]
- Makris, D.P.; Kallithraka, S.; Kefalas, P. Flavonols in grapes, grape products and wines: Burden, profile and influential parameters. J. Food Comp. Anal. 2006, 19, 396–404. [Google Scholar] [CrossRef]
- De Freitas, V.A.P.; Glories, Y.; Bourgeois, G.; Virty, C. Characterization of oligomeric and polymeric procyanidins from grape seeds by liquid secondary ion mass spectrometry. Phytochemistry 1998, 49, 1435–1441. [Google Scholar] [CrossRef]
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food. Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Cohen, S.D.; Tarara, J.M.; Kennedy, J.A. Assessing the impact of temperature on grape phenolic metabolism. Anal. Chim. Acta 2008, 621, 57–67. [Google Scholar] [CrossRef]
- Milella, R.A.; Antonacci, D.; Crupi, P.; Incampo, F.; Carrieri, C.; Semeraro, N.; Colucci, M. Skin extracts from 2 Italian table grapes (Italia and Palieri) inhibit tissue factor expression by human blood mononuclear cells. J. Food Sci. 2012, 77, H154–H159. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espìn, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food. Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Derlot, S.; Geros, H. Biochemical changes throughout grape berry development and fruit and wine quality. Food 2007, 1, 1–22. [Google Scholar]
- He, F.; Mu, L.; Yan, G.L.; Liang, N.N.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef]
- Gaiotti, F.; Pastore, C.; Filippetti, I.; Lovat, L.; Belfiore, N.; Tomasi, D. Low night temperature at veraison enhances the ac-cumulation of anthocyanins in Corvina grapes (Vitis vinifera L.). Sci. Rep. 2018, 8, 8719. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Fujita, A.; Soma, N.; Goto-Yamamoto, N.; Mizuno, A.; Kiso, K.; Hashizume, K. Effect of shading on proanthocyanidin biosynthesis in the grape berry. J. Jpn. Hort. Sci. 2007, 76, 112–119. [Google Scholar] [CrossRef]
- Bergqvist, J.; Dokoozlian, N.; Ebisuda, N. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin valley of California. Am. J. Enol. Vitic. 2001, 52, 1–7. [Google Scholar] [CrossRef]
- Iacono, F.; Bertamini, M.; Scienza, A.; Coombe, B.G. Differential effects of canopy manipulation and shading of Vitis vinifera L. cv Cabernet Sauvignon. Leaf gas exchange, photosynthetic electron transport rate and sugar accumulation in berries. Vitis 1995, 34, 201–206. [Google Scholar]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of anthocyanins in red-wine grape under high temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef]
- Goto-Yamamoto, N.; Mori, K.; Numata, M.; Koyama, K.; Kitayama, M. Effects of temperature and water regimes on flavonoid contents and composition in the skin of red-wine grapes. J. Int. Sci. Vigne Vin 2009, 43, 75–80. [Google Scholar]
- Jones, G.V.; Duff, A.A.; Hall, A.; Myers, J.W. Spatial analysis of climate in winegrape growing regions in the Western United States. Am. J. Enol. Vitic. 2010, 61, 313–326. [Google Scholar] [CrossRef]
- Huglin, P. Comptes Rendus de l’Académie d’Agriculture; Académie d’Agriculture de France: Paris, France, 1978; pp. 1117–1126. [Google Scholar]
- Amerine, M.A.; Winkler, A.J. Composition and quality of musts and wines of California grapes. Hilgardia 1944, 15, 493–675. [Google Scholar] [CrossRef]
- Gladstones, J. Viticulture and Environment; Winetitles: Adelaide, Australia, 1992. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef]
- Badr, G.; Hoogenboom, G.; Abouali, M.; Moyer, M.; Keller, M. Analysis of several bioclimatic indices for viticultural zoning in the Pacific Northwest. Clim. Res. 2018, 76, 203–223. [Google Scholar] [CrossRef]
- Blanco-Ward, D.; Monteiro, A.; Lopes, M.; Borrego, C.; Silveira, C.; Viceto, C.; Rocha, A.; Ribeiro, A.J.; Feliciano, M.; Castro, J.; et al. Analysis of climate change indices in relation to wine production. A case study in the Douro region (Portugal). In Proceedings of the 40th World Vine and Wine Congress, BIO Web of Conferences 2017, Sofia, Bulgaria, 29 May–2 June 2017; Volume 9, p. 01011. [Google Scholar] [CrossRef]
- Alba, V.; Natrella, G.; Gambacorta, G.; Crupi, P.; Coletta, A. Effect of over crop and reduced yield by cluster thinning on phenolic and volatile compounds of grapes and wines of Sangiovese trained to Tendone. J. Sci. Food Agric. 2022, 102, 7155–7163. [Google Scholar] [CrossRef] [PubMed]
- Mattia, C.; Bischetti, G.B.; Gentile, F. Biotechnical characteristics of root systems of typical Mediterranean species. Plant Soil 2005, 278, 23–32. [Google Scholar] [CrossRef]
- Rana, G.; Nader, K.; Introna, M.; Hammami, A. Microclimate and plant water relationship of the overhead table grape vineyard managed with three different covering techniques. Sci. Horti. 2004, 102, 105–120. [Google Scholar] [CrossRef]
- Romero, P.; Fernández-Fernández, J.I.; Martinez-Cutillas, A. Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. Am. J. Enol. Vitic. 2010, 61, 300–312. [Google Scholar] [CrossRef]
- Rousseau, J.; Delteil, D. Présentation d’une méthode d’analyse sensorielles des raisins: Principe, méthodes et grille d’interprétation. Rev. Fr. Oenol. 2000, 183, 10–13. [Google Scholar]
- Cantos, E.; Espín, J.C.; Tomás-Barberán, F.A. Varietal differences among the polyphenols profiles of seven table grape cultivars studied by LC-DAD-MS-MS. J. Agric. Food Chem. 2002, 50, 5691–5696. [Google Scholar] [CrossRef]
- Mazza, G. Anthocyanins in grapes and grape products. Crit. Rev. Food Sci. Nutr. 1995, 35, 341–371. [Google Scholar] [CrossRef]
- Crupi, P.; Coletta, A.; Milella, R.A.; Perniola, R.; Gasparro, M.; Genghi, R.; Antonacci, D. HPLC-DAD-ESI-MS analysis of fla-vonoid compounds in 5 seedless table grapes grown in Apulian region. J. Food Sci. 2012, 77, C174–C181. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.A.; Villanueva, M.J.; Lissarague, J.R. Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L) grape berries during ripening. J. Sci. Food Agric. 2001, 81, 409–420. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Alfaro, E.J.; Quesada-Montano, B. Observed (1970–1999) climate variability in Central America using a high-resolution meteorological dataset with implication to climate change studies. Clim. Chang. 2017, 141, 13–28. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Carbonneau, A.; Ojeda, H.; Samson, A.; Pacos, J.; Jolivot, A.; Heywang, M. Methodological chain for analysis of quality: An overall example for vitiviniculture of studies of training of Syrah in dry areas at the Pech Rouge experimental unit. In Proceedings of the XIV International GESCO Viticulture Congress, Geisenheim, Germany, 23–27 August 2005; pp. 326–334. [Google Scholar]
- Ponti, L.; Gutierrez, A.P.; Boggia, A.; Neteler, M. Analysis of Grape Production in the Face of Climate Change. Climate 2018, 6, 20. [Google Scholar] [CrossRef]
- Tombesi, S.; Cincera, I.; Frioni, T.; Ughini, V.; Gatti, M.; Palliotti, A.; Poni, S. Relationship among night temperature, carbohydrate translocation and inhibition of grapevine leaf photosynthesis. Environ. Exp. Bot. 2019, 157, 293–298. [Google Scholar] [CrossRef]
- Rienth, M.; Torregrosa, L.; Sarah, G.; Ardisson, M.; Brillouet, J.M.; Romieu, C. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC Plant Biol. 2016, 16, 164. [Google Scholar] [CrossRef] [PubMed]
- Spayd, S.E.; Tarara, J.M.; Ferguson, J.C. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar] [CrossRef]
- Serrano-Megías, M.; Nùñez-Delicado, E.; Pérez-López, A.J.; López-Nicolás, J.M. Study of the effect of ripening stages and climatic conditions on the physicochemical and sensorial parameters of two varieties of Vitis vinifera L. by principal component analysis: Influence on enzymatic browning. J. Sci. Food Agric. 2006, 86, 592–599. [Google Scholar] [CrossRef]
Summer Royal a | ||||||
---|---|---|---|---|---|---|
2014 | 2015 | 2016 | ||||
Index | Value | Class | Value | Class | Value | Class |
HI (°C) | 2115 | Temperate warm | 2320 | Temperate warm | 2179 | Temperate warm |
CI (°C) | 17.5 | Temperate nights | 19.6 | Warm nights | 18.6 | Warm nights |
DI (mm) | −44.2 | Moderately dry | −75.1 | Moderately dry | −63.4 | Moderately dry |
DI + total seasonal irrigation (mm) | 14 | Moderately dry | 11 | Moderately dry | 23.3 | Moderately dry |
Crimson Seedless b | ||||||
HI (°C) | 2518 | Warm | 2689 | Warm | 2570 | Warm |
CI (°C) | 15.3 | Temperate nights | 13.6 | Cool nights | 14.7 | Temperate nights |
DI (mm) | 87.5 | Sub-humid | −100.4 | Very dry | −92.7 | Moderately dry |
DI + total seasonal irrigation (mm) | 87.5 | Sub-humid | −8.7 | Moderately dry | 6.4 | Moderately dry |
Summer Royal | ||||
---|---|---|---|---|
2014 | 2015 | 2016 | p Level | |
Yield (kg/vine) | 12.3 (0.4) b | 13.0 (0.2) a | 12.3 (0.3) b | * |
Bunch weight (g) | 730 (50) b | 810 (30) b | 1010 (30) a | * |
Berry weight (g) | 6.6 (0.6) | 6.2 (0.3) | 6.2 (0.4) | n.s. |
TSS (°Brix) | 15.4 (0.5) b | 17.3 (0.4) a | 15.7 (0.6) b | ** |
TA (g/L) | 5.4 (0.2) a | 4.6 (0.2) b | 5.57 (0.12) a | *** |
pH | 3.51 (0.03) | 3.64 (0.06) | 3.47 (0.04) | n.s. |
Crimson seedless | ||||
2014 | 2015 | 2016 | s | |
Yield (kg*vine) | 11.3 (0.4) b | 9.7 (0.3) c | 14.9 (0.4) a | *** |
Bunch weight (g) | 630 (50) b | 910 (30) a | 580 (30) b | *** |
Berry weight (g) | 4.3 (0.3) a | 3.4 (0.4) b | 4.8 (0.3) a | ** |
TSS (°Brix) | 18.0 (0.5) b | 20.4 (0.9) a | 19.3 (0.4) ab | * |
TA (g/L) | 5.45 (0.15) a | 4.4 (0.4) b | 5.06 (0.15) a | ** |
pH | 3.47 (0.06) a | 3.54 (0.04) a | 3.29 (0.08) b | * |
Compounds + | Summer Royal | Crimson Seedless | ||||||
---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | p Level | 2014 | 2015 | 2016 | p Level | |
Total anthocyanidins glucosides | 860 (40) a | 670 (70) b | 710 (60) b | * | 33 (7) b | 90 (20) a | 65 (11) ab | * |
Dp-3-O-gl | 125 (11) a | 103 (8) b | 108 (9) b | * | 0.20 (0.08) | 0.32 (0.06) | 0.27 (0.02) | n.s. |
Cy-3-O-gl | 29 (5) b | 45 (7) a | 26 (5) b | * | 3.6 (0.2) | 3.7 (1.3) | 3.7 (0.7) | n.s. |
Pt-3-O-gl | 117 (7) | 95 (10) | 104 (11) | n.s. | 0.23 (0.12) | 0.6 (0.3) | 0.44 (0.12) | n.s. |
Pn-3-O-gl | 160 (14) a | 102 (15) b | 117 (18) b | ** | 27 (6) b | 80 (20) a | 57 (10) ab | ** |
Mv-3-O-gl | 430 (50) a | 320 (30) b | 350 (40) ab | * | 1.9 (0.8) | 5 (3) | 3.6 (1.2) | n.s. |
Total anthocyanidins acetylglucosides | 26.4 (1.8) | 26.5 (1.9) | 23.8 (1.6) | n.s. | n.d. | n.d. | n.d. | |
Mv3-O-acetgl | 22 (2) | 21.6 (1.7) | 19.8 (1.8) | n.s. | n.d. | n.d. | n.d. | |
Df-3-O-acetgl | 1.28 (0.05) a | 0.97 (0.18) b | 1.15 (0.04) ab | * | n.d. | n.d. | n.d. | |
Pn3-O-acetgl | 1.01 (0.01) a | 0.92 (0.01) b | 1.02 (0.01) a | ** | n.d. | n.d. | n.d. | |
Cy-3-O-acetgl | 0.67 (0.04) b | 1.03 (0.02) a | 0.60 (0.03) b | *** | n.d. | n.d. | n.d. | |
Pt-3-O-acetgl | 1.42 (0.11) b | 2.07 (0.05) a | 1.28 (0.10) b | ** | n.d. | n.d. | n.d. | |
Total anthocyanidins cinnamoylglucosides | 284 (16) a | 187 (8) c | 236.6 (1.9) b | *** | 3.04 (0.06) | 2.8 (0.5) | 2.9 (0.3) | n.s. |
Mv-3-O-t-p-coumgl | 182 (15) a | 134 (3) b | 148 (3) b | ** | 0.33 (0.12) | 0.4 (0.3) | 0.36 (0.08) | n.s. |
Dp-3-O-t-p-coumgl | 1.33 (0.02) a | 0.77 (0.10) b | 1.19 (0.02) a | *** | n.d. | n.d. | n.d. | |
Pn-3-O-c-p-coumgl | 1.66 (0.11) a | 0.9 (0.2) b | 1.49 (0.09) a | ** | 0.19 (0.01) | 0.29 (0.12) | 0.25 (0.07) | n.s. |
Pn-3-O-t-p-coumgl | 53 (2) a | 22 (4) b | 47 (2) a | *** | 1.78 (0.10) | 1.03 (0.07) | 1.36 (0.08) | *** |
Cy-3-O-t-p-coumgl + Mv-3-O-caffgl | 14.9 (0.7) a | 8.0 (1.1) b | 13.4 (0.7) a | ** | 0.54 (0.02) | 0.49 (0.04) | 0.51 (0.01) | n.s. |
Pt-3-O-t-p-coumgl | 2.30 (0.12) | 2.0 (0.5) | 2.07 (0.10) | n.s. | 0.17 (0.03) | 0.5 (0.3) | 0.37 (0.16) | n.s. |
Pt-3-O-c-p-coumgl + Mv-3-O-c-p-coumgl | 24 (3) a | 16 (2) ab | 18 (2) b | * | n.d. | n.d. | n.d. |
Compounds + | Summer Royal | Crimson Seedless | ||||||
---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | p Level | 2014 | 2015 | 2016 | p Level | |
Total flavan-3-ols | 11.2 (0.6) a | 26 (2) c | 21.0 (1.2) b | *** | 15 (2) a | 8.4(0.4) b | 11.9 (0.9) a | ** |
PrB1 | 3.52 (0.15) b | 7.3 (1.3) a | 6.2 (0.9) a | ** | 3.7 (0.7) a | 2.3(0.3) b | 3.1 (0.3) ab | * |
Catechin | 2.3 (0.3) b | 5.8 (0.7) a | 4.6 (0.4) a | *** | 3.5 (0.6) | 3.09 (0.05) | 3.3 (0.4) | n.s. |
PrB2 | 5.4 (0.6) b | 12.6 (1.9) a | 10.2 (1.2) a | ** | 7.3 (1.2) a | 3.01 (0.02) b | 5.5 (0.5) a | ** |
Total flavonols | 9.6 (1.3) c | 30 (4) a | 18.3 (1.6) b | *** | 7.69 (0.17) a | 4.1 (0.5) c | 6.70 (0.12) b | *** |
Qr-3-O-gal | 0.15 (0.01) b | 1.2 (0.6) a | 1.08 (0.05) a | * | n.d. | n.d. | n.d. | |
Qr-3-O-rut + Qr-3-O-glucur | 2.9 (0.6) c | 11.0 (0.9) a | 6.7 (0.7) b | *** | 4.18 (0.16) a | 1.56 (0.05) c | 2.99 (0.09) b | *** |
Qr-3-O-gl | 2.4 (0.6) b | 6.8 (1.1) a | 4.9 (1.2) a | ** | 1.44 (0.17) | 1.1 (0.3) | 1.29 (0.13) | n.s |
Iso-3-O-gal | 1.34 (0.07) b | 3.1 (1.0) a | 1.55 (0.08) b | * | 0.59 (0.14) ab | 0.6 (0.2) b | 1.03 (0.14) a | * |
Kf-3-O-gl | 0.15 (0.05) b | 0.6 (0.4) ab | 1.1 (0.4) a | * | n.d. | n.d. | n.d. | |
Iso-3-O-gl | 1.17 (0.12) | 2.0 (0.6) | 1.32 (0.14) | n.s. | 1.0 (0.3) | 0.54 (0.11) | 0.8 (0.2) | n.s |
Qr-3-O-acetgl | 1.51 (0.12) b | 5.4 (0.4) a | 1.65 (0.13) b | *** | 0.44 (0.09) ab | 0.34 (0.02) b | 0.57 (0.09) a | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crupi, P.; Alba, V.; Gentilesco, G.; Gasparro, M.; Ferrara, G.; Mazzeo, A.; Coletta, A. Viticultural Climate Indexes and Their Role in The Prediction of Anthocyanins and Other Flavonoids Content in Seedless Table Grapes. Horticulturae 2024, 10, 28. https://doi.org/10.3390/horticulturae10010028
Crupi P, Alba V, Gentilesco G, Gasparro M, Ferrara G, Mazzeo A, Coletta A. Viticultural Climate Indexes and Their Role in The Prediction of Anthocyanins and Other Flavonoids Content in Seedless Table Grapes. Horticulturae. 2024; 10(1):28. https://doi.org/10.3390/horticulturae10010028
Chicago/Turabian StyleCrupi, Pasquale, Vittorio Alba, Giovanni Gentilesco, Marica Gasparro, Giuseppe Ferrara, Andrea Mazzeo, and Antonio Coletta. 2024. "Viticultural Climate Indexes and Their Role in The Prediction of Anthocyanins and Other Flavonoids Content in Seedless Table Grapes" Horticulturae 10, no. 1: 28. https://doi.org/10.3390/horticulturae10010028
APA StyleCrupi, P., Alba, V., Gentilesco, G., Gasparro, M., Ferrara, G., Mazzeo, A., & Coletta, A. (2024). Viticultural Climate Indexes and Their Role in The Prediction of Anthocyanins and Other Flavonoids Content in Seedless Table Grapes. Horticulturae, 10(1), 28. https://doi.org/10.3390/horticulturae10010028