Response of Metabolites in Cymbopogon distans Leaves to Water Addition in Karst Areas during Different Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area and Experimental Design
2.2. Sample Collection and Chemical Analysis
2.2.1. Sample Collection and Preparation
2.2.2. GC-MS Analysis of Metabolome
2.2.3. UPLC-MS Analysis of Metabolome
2.3. Data Analysis
3. Results
3.1. Changes of Soil Volumetric Water Content under Dry and Wet Seasons
3.2. Accumulation of Metabolites in Cymbopogon distans Leaves under Different Seasons
3.3. Primary Metabolites Pathways in Cymbopogon distans Leaves
3.4. Changes of Lipid Metabolites in Cymbopogon distans Leaves under Different Seasons
4. Discussions
4.1. Characteristic Polar Metabolites in Cymbopogon distans Leaves between Two Seasons and Three Water Addition Treatments
4.2. Characteristic Lipids in Cymbopogon distans Leaves between Two Seasons and Three Treatments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
DG | Diacylglycerols |
FA | Fatty acyls |
GC-MS | Gas chromatography-mass spectrometry |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MG | Monoradylglycerols |
MGDG | Monogalactosyldiacylglycerols |
PA | Phosphatidic acid |
PC | Phosphatidylcholines |
PE | Phosphatidylethanolamines |
PG | Phosphatidylglycerols |
PI | Phosphatidylinositols |
PR | Prenol lipids |
PS | Phosphatidylserines |
SL | Saccarolipids |
SP | Sphingolipids |
ST | Sterol lipids |
SQDG | Sulfoquinovosyldiacylglycerols |
SVWC | Soil volumetric water content |
TG | Triacylglycerols |
VIP | Variable importance in projection |
VWC | Volumetric water content |
References
- Yu, Z. The origin and evolution of the karst landscape. Yunnan Geol. 2003, 22, 1–15. [Google Scholar]
- Ford, D.; Williams, P. Karst Hydrogeology. In Karst Hydrogeology and Geomorphology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 103–144. [Google Scholar]
- Jackson, R.; Randerson, J.; Canadell, J.; Anderson, R.; Avissar, R.; Baldocchi, D.; Bonan, G.; Caldeira, K.; Diffenbaugh, N.; Field, C.; et al. Protecting climate with forests. Environ. Res. Lett. 2008, 3, 044006. [Google Scholar]
- Chen, B.; Xu, G.; Coops, N.; Ciais, P.; Innes, J.; Wang, G.; Myneni, R.; Wang, T.; Krzyzanowski, J.; Li, Q.; et al. Changes in vegetation photosynthetic activity trends across the Asia–Pacific region over the last three decades. Remote Sens. Environ. 2014, 144, 28–41. [Google Scholar]
- Berg, A.; Sheffield, J. Climate change and drought: The soil moisture perspective. Curr. Clim. Change Rep. 2018, 4, 180–191. [Google Scholar]
- Hanan, N.P.; Milne, E.; Aynekulu, E.; Yu, Q.; Anchang, J. A role for drylands in a carbon neutral world? Front. Environ. Sci. 2021, 9, 786087. [Google Scholar]
- Fàbregas, N.; Fernie, A.R. The metabolic response to drought. J. Exp. Bot. 2019, 70, 1077–1085. [Google Scholar]
- Rizhsky, L.; Liang, H.; Shuman, J.; Shulaev, V.; Davletova, S.; Mittler, R. When defense pathways collide. The response of arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004, 134, 1683–1696. [Google Scholar]
- Zhao, Y.; Du, P.; Chen, Z.; Bai, X.; Lin, R.; Xiao, K. Characterization on the water deprivation-associated physiological traits as well as the related differential genes during seed filling stage in wheat (T. aestivum L.). Plant Cell Tissue Organ Cult. 2020, 140, 605–618. [Google Scholar]
- Jia, H.; Wang, L.; Li, J.; Sun, P.; Lu, M.; Hu, J. Comparative metabolomics analysis reveals different metabolic responses to drought in tolerant and susceptible poplar species. Physiol. Plant. 2020, 168, 531–546. [Google Scholar]
- Kumar, M.; Kumar Patel, M.; Kumar, N.; Bajpai, A.B.; Siddique, K.H.M. Metabolomics and molecular approaches reveal drought stress tolerance in plants. Int. J. Mol. Sci. 2021, 22, 9108. [Google Scholar]
- Yancey, P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Bot. 2005, 208, 2819–2830. [Google Scholar]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar]
- Wallis, J.G.; Browse, J. Mutants of Arabidopsis reveal many roles for membrane lipids. Prog. Lipid Res. 2002, 41, 254–278. [Google Scholar]
- Wang, X.; Chapman, K. Lipid signaling in plants. Front. Plant Sci. 2013, 4, 216. [Google Scholar]
- Boutté, Y.; Jaillais, Y. Metabolic cellular communications: Feedback mechanisms between membrane lipid homeostasis and plant development. Dev. Cell 2020, 54, 171–182. [Google Scholar]
- Falcone, D.L.; Ogas, J.P.; Somerville, C.R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 2004, 4, 17. [Google Scholar]
- Welti, R.; Li, W.; Li, M.; Sang, Y.; Biesiada, H.; Zhou, H.E.; Rajashekar, C.B.; Williams, T.D.; Wang, X. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 2002, 277, 31994–32002. [Google Scholar]
- Ge, S.; Liu, D.; Chu, M.; Liu, X.; Wei, Y.; Che, X.; Zhu, L.; He, L.; Xu, J. Dynamic and adaptive membrane lipid remodeling in leaves of sorghum under salt stress. Crop J. 2022, 10, 1557–1569. [Google Scholar]
- Dakhma, W.S.; Zarrouk, M.; Cherif, A. Effects of drought-stress on lipids in rape leaves. Phytochemistry 1995, 40, 1383–1386. [Google Scholar]
- Moradi, P.; Mahdavi, A.; Khoshkam, M.; Iriti, M. Lipidomics unravels the role of leaf lipids in thyme plant response to drought stress. Int. J. Mol. Sci. 2017, 18, 2067. [Google Scholar]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar]
- Zhao, Z.Q.; Chai, Y.; Cui, M.; Li, G.X.; He, L.P.; Ma, S.Y.; Liu, Y.G. Study on species diversity of plant communities in dry-hot valleys of northwest and southeast Yunnan. Res. Environ. Sci. 2022, 35, 2447–2457, (In Chinese with English Abstract). [Google Scholar]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Introduction of Cymbopogon distans (Nees ex Steud.) Wats to the sub-tropical India: Evaluation of essential-oil yield and chemical composition during annual growth. Ind. Crop. Prod. 2013, 49, 858–863. [Google Scholar]
- Wang, S.; Li, S.C.; Cheng, F.S.; Ren, T.; Li, F.; Mei, D.H.; Gao, K.; Song, Q.Y. Antifungal, repellency, and insecticidal activities of Cymbopogon distans and Ruta graveolens essential oils and their main chemical constituents. Chem. Biodivers. 2022, 19, e202200351. [Google Scholar]
- Umair, M.; Sun, N.; Du, H.; Chen, K.; Tao, H.; Yuan, J.; Abbasi, A.M.; Liu, C. Differential stoichiometric responses of shrubs and grasses to increased precipitation in a degraded karst ecosystem in Southwestern China. Sci. Total Environ. 2020, 700, 134421. [Google Scholar]
- Umair, M.; Sun, N.; Du, H.; Yuan, J.; Abbasi, A.M.; Wen, J.; Yu, W.; Zhou, J.; Liu, C. Differential metabolic responses of shrubs and grasses to water additions in arid karst region, southwestern China. Sci. Rep. 2019, 9, 9613. [Google Scholar]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat. Protoc. 2006, 1, 387–396. [Google Scholar]
- Watanabe, M.; Netzer, F.; Tohge, T.; Orf, I.; Brotman, Y.; Dubbert, D.; Fernie, A.R.; Rennenberg, H.; Hoefgen, R.; Herschbach, C. Metabolome and lipidome profiles of Populus × canescens twig tissues during annual growth show phospholipid-linked storage and mobilization of C, N, and S. Front. Plant Sci. 2018, 9, 1292. [Google Scholar]
- Bloomfield, K.J.; Cernusak, L.A.; Eamus, D.; Ellsworth, D.S.; Colin Prentice, I.; Wright, I.J.; Boer, M.M.; Bradford, M.G.; Cale, P.; Cleverly, J.; et al. A continental-scale assessment of variability in leaf traits: Within species, across sites and between seasons. Funct. Ecol. 2018, 32, 1492–1506. [Google Scholar]
- Colmer, T.D.; Barton, L. A review of warm-season turfgrass evapotranspiration, responses to deficit irrigation, and drought resistance. Crop Sci. 2017, 57, S-98–S-110. [Google Scholar]
- Wheeler, G.L.; Jones, M.A.; Smirnoff, N. The biosynthetic pathway of vitamin C in higher plants. Nature 1998, 393, 365–369. [Google Scholar]
- Araniti, F.; Lupini, A.; Mauceri, A.; Zumbo, A.; Sunseri, F.; Abenavoli, M.R. The allelochemical trans-cinnamic acid stimulates salicylic acid production and galactose pathway in maize leaves: A potential mechanism of stress tolerance. Plant Physiol. Biochem. 2018, 128, 32–40. [Google Scholar]
- Devi, S.R.; Prasad, M.N.V. Membrane lipid alterations in heavy metal exposed plants. In Heavy Metal Stress in Plants: From Molecules to Ecosystems; Prasad, M.N.V., Hagemeyer, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 99–116. [Google Scholar]
- Yu, L.; Zhou, C.; Fan, J.; Shanklin, J.; Xu, C. Mechanisms and functions of membrane lipid remodeling in plants. Plant J. 2021, 107, 37–53. [Google Scholar]
- Kalisch, B.; Dörmann, P.; Hölzl, G. DGDG and Glycolipids in plants and algae. In Lipids in Plant and Algae Development; Nakamura, Y., Li-Beisson, Y., Eds.; Subcellular Biochemistry; Springer International Publishing: Cham, Switzerland, 2016; pp. 51–83. [Google Scholar]
- Benning, C. Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu. Rev. Cell Dev. Biol. 2009, 25, 71–91. [Google Scholar]
- Yang, Z.; Ohlrogge, J.B. Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and Switchgrass and in Arabidopsis β-Oxidation Mutants. Plant Physiol. 2009, 150, 1981–1989. [Google Scholar]
- Xu, C.; Shanklin, J. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu. Rev. Plant Biol. 2016, 67, 179–206. [Google Scholar]
- Xu, C.; Fan, J.; Shanklin, J. Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Prog. Lipid Res. 2020, 80, 101069. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, A.; Jing, H.; Umair, M.; Du, H. Response of Metabolites in Cymbopogon distans Leaves to Water Addition in Karst Areas during Different Seasons. Horticulturae 2024, 10, 16. https://doi.org/10.3390/horticulturae10010016
Huang A, Jing H, Umair M, Du H. Response of Metabolites in Cymbopogon distans Leaves to Water Addition in Karst Areas during Different Seasons. Horticulturae. 2024; 10(1):16. https://doi.org/10.3390/horticulturae10010016
Chicago/Turabian StyleHuang, Aiwei, Hongxia Jing, Muhammad Umair, and Hongmei Du. 2024. "Response of Metabolites in Cymbopogon distans Leaves to Water Addition in Karst Areas during Different Seasons" Horticulturae 10, no. 1: 16. https://doi.org/10.3390/horticulturae10010016
APA StyleHuang, A., Jing, H., Umair, M., & Du, H. (2024). Response of Metabolites in Cymbopogon distans Leaves to Water Addition in Karst Areas during Different Seasons. Horticulturae, 10(1), 16. https://doi.org/10.3390/horticulturae10010016