Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Search Strategy
2.2. Bibliometric Analysis
2.3. Analysis of the Thematic Structure of the Publications
2.4. Systematic Review
3. A Brief History of the Agricultural LCA
4. Bibliometric Overview of LCA in Protected Agriculture
5. Main Research Lines concerning LCA in Protected Agriculture
6. Technical Discussion of the Operability of the LCA
6.1. Goal and Scope Definition
6.1.1. Goal
6.1.2. Scope
6.1.3. Types of Food Products Analyzed
6.1.4. System Boundaries
6.1.5. Functional Unit
6.2. Life Cycle Inventory
6.2.1. Water Consumption
6.2.2. Use of Fertilizers and Pesticides
6.2.3. Greenhouse Structure
6.2.4. Energy Consumption in Air-Conditioning
6.2.5. Harvesting, Post-Harvesting, and Commercialization
6.3. Life Cycle Impact Assessment
6.3.1. Eutrophication Potential
6.3.2. Global Warming Potential
6.3.3. Acidification Potential
6.3.4. Human Toxicity Potential
6.3.5. Ozone Depletion
6.3.6. Abiotic Depletion
6.4. Interpretation
7. Opportunities for Future LCA in Protected Agriculture
7.1. Comply with the Standards Required by Phase
7.2. Strengthen Under-Addressed Impact Issues
7.3. Synergistically Integrate LCA with Other Frameworks
7.4. Build Regional Databases
7.5. New Research Horizons
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rocha, G.A.O.; Medina, A.N.C.; Arias, L.G.; Caita, J.F.A.; Villagran, E. Análisis Sobre La Actividad Científica Referente a Las Estrategias de Climatización Pasiva Usada En Invernaderos: Parte 2: Análisis Técnico. Cienc. Lat. Rev. Científica Multidiscip. 2022, 6, 2220–2245. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Baeza Romero, E.J.; Bojacá, C.R. Transient CFD Analysis of the Natural Ventilation of Three Types of Greenhouses Used for Agricultural Production in a Tropical Mountain Climate. Biosyst. Eng. 2019, 188, 288–304. [Google Scholar] [CrossRef]
- Akrami, M.; Salah, A.H.; Javadi, A.A.; Fath, H.E.S.; Hassanein, M.J.; Farmani, R.; Dibaj, M.; Negm, A. Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield. Sustainability 2020, 12, 2794. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Impacts of Protected Vegetable Cultivation on Climate Change and Adaptation Strategies for Cleaner Production—A Review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Ben Amara, H.; Bouadila, S.; Fatnassi, H.; Arici, M.; Allah Guizani, A. Climate Assessment of Greenhouse Equipped with South-Oriented PV Roofs: An Experimental and Computational Fluid Dynamics Study. Sustain. Energy Technol. Assess. 2021, 45, 101100. [Google Scholar] [CrossRef]
- Zhang, H.; Burr, J.; Zhao, F. A Comparative Life Cycle Assessment (LCA) of Lighting Technologies for Greenhouse Crop Production. J. Clean. Prod. 2017, 140, 705–713. [Google Scholar] [CrossRef]
- Butler, G.; Cooper, J.M.; Leifert, C. Green House Gas Emissions from Organic and Conventional Systems of Food Production, with and without Bio-Energy Options. Options Méditerranéennes Série A Mediterr. Semin. 2013, 107, 243–252. [Google Scholar]
- Khatri, N.; Tyagi, S. Influences of Natural and Anthropogenic Factors on Surface and Groundwater Quality in Rural and Urban Areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Villagran, E.; Leon, R.; Rodriguez, A.; Jaramillo, J. 3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions. Sustainability 2020, 12, 8101. [Google Scholar] [CrossRef]
- Rocha, G.A.O.; Medina, A.N.C.; Arias, L.G.; Caita, J.F.A.; Villagran, E. Análisis Sobre La Actividad Científica Referente a Las Estrategias de Climatización Pasiva Usada En Invernaderos: Parte 1: Análisis Bibliométrico. Cienc. Lat. Rev. Científica Multidiscip. 2022, 6, 4596–4623. [Google Scholar] [CrossRef]
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A Systematic Review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef]
- Disler, R.T.; Gallagher, R.D.; Davidson, P.M.; Sun, S.-W.; Chen, L.-C.; Zhou, M.; Wu, J.-H.; Meng, Z.-J.; Han, H.-L.; Miao, S.-Y.; et al. Factors Impairing the Postural Balance in COPD Patients and Its Influence upon Activities of Daily Living. Eur. Respir. J. 2019, 15, 142–148. [Google Scholar]
- ISO 14040:2006; Environmental Management: Cycle Assessment—Principles Framew. ISO: Geneva, Switzerland, 2006; pp. 235–248.
- Chung, M.M.S.; Bao, Y.; Zhang, B.Y.; Le, T.M.; Huang, J.-Y. Life Cycle Assessment on Environmental Sustainability of Food Processing. Annu. Rev. Food Sci. Technol. 2022, 13, 217–237. [Google Scholar] [CrossRef]
- Dong, Y.; Miraglia, S.; Manzo, S.; Georgiadis, S.; Sørup, H.J.D.; Boriani, E.; Hald, T.; Thöns, S.; Hauschild, M.Z. Environmental Sustainable Decision Making–The Need and Obstacles for Integration of LCA into Decision Analysis. Environ. Sci. Policy 2018, 87, 33–44. [Google Scholar] [CrossRef]
- Michael, Z.H.; Ralph, K.R.; Stig, I.O. Life Cycle Assessment: Theory and Practice; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Owsianiak, M.; Bjørn, A.; Laurent, A.; Molin, C.; Ryberg, M.W. LCA Applications. In Life Cycle Assessment: Theory and Practice; Springer: Cham, Switzerland, 2018; pp. 31–41. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Koutsos, T.M.; Menexes, G.C.; Dordas, C.A. An Efficient Framework for Conducting Systematic Literature Reviews in Agricultural Sciences. Sci. Total Environ. 2019, 682, 106–117. [Google Scholar] [CrossRef]
- Romero-Perdomo, F.; Carvajalino-Umaña, J.D.; Moreno-Gallego, J.L.; Ardila, N.; González-Curbelo, M.Á. Research Trends on Climate Change and Circular Economy from a Knowledge Mapping Perspective. Sustainability 2022, 14, 521. [Google Scholar] [CrossRef]
- Romero-Perdomo, F.; González-Curbelo, M.Á. Integrating Multi-Criteria Techniques in Life-Cycle Tools for the Circular Bioeconomy Transition of Agri-Food Waste Biomass: A Systematic Review. Sustainability 2023, 15, 5026. [Google Scholar] [CrossRef]
- Salinas-Velandia, D.A.; Romero-Perdomo, F.; Numa-Vergel, S.; Villagrán, E.; Donado-Godoy, P.; Galindo-Pacheco, J.R. Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies. Int. J. Environ. Res. Public Health 2022, 19, 12053. [Google Scholar] [CrossRef]
- Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [Google Scholar] [CrossRef]
- Zhen, H.; Qiao, Y.; Zhao, H.; Ju, X.; Zanoli, R.; Waqas, M.A.; Lun, F.; Knudsen, M.T. Developing a Conceptual Model to Quantify Eco-Compensation Based on Environmental and Economic Cost-Benefit Analysis for Promoting the Ecologically Intensified Agriculture. Ecosyst. Serv. 2022, 56, 101442. [Google Scholar] [CrossRef]
- Urbano, B.; Barquero, M.; González-Andrés, F. The Environmental Impact of Fresh Tomatoes Consumed in Cities: A Comparative LCA of Long-Distance Transportation and Local Production. Sci. Hortic. 2022, 301, 111126. [Google Scholar] [CrossRef]
- Cayuela, C.M.F.; Perea, R.G.; Poyato, E.C.; Montesinos, P. An ICT-Based Decision Support System for Precision Irrigation Management in Outdoor Orange and Greenhouse Tomato Crops. Agric. Water Manag. 2022, 269, 107686. [Google Scholar] [CrossRef]
- Canaj, K.; Parente, A.; D’Imperio, M.; Boari, F.; Buono, V.; Toriello, M.; Mehmeti, A.; Montesano, F.F. Can Precise Irrigation Support the Sustainability of Protected Cultivation? A Life-Cycle Assessment and Life-Cycle Cost Analysis. Water 2021, 14, 6. [Google Scholar] [CrossRef]
- Rupawalla, Z.; Robinson, N.; Schmidt, S.; Li, S.; Carruthers, S.; Buisset, E.; Roles, J.; Hankamer, B.; Wolf, J. Algae Biofertilisers Promote Sustainable Food Production and a Circular Nutrient Economy–An Integrated Empirical-Modelling Study. Sci. Total Environ. 2021, 796, 148913. [Google Scholar] [CrossRef] [PubMed]
- Martin-Gorriz, B.; Maestre-Valero, J.F.; Gallego-Elvira, B.; Marín-Membrive, P.; Terrero, P.; Martínez-Alvarez, V. Recycling Drainage Effluents Using Reverse Osmosis Powered by Photovoltaic Solar Energy in Hydroponic Tomato Production: Environmental Footprint Analysis. J. Environ. Manag. 2021, 297, 113326. [Google Scholar] [CrossRef] [PubMed]
- Toboso-Chavero, S.; Madrid-López, C.; Villalba, G.; Gabarrell Durany, X.; Hückstädt, A.B.; Finkbeiner, M.; Lehmann, A. Environmental and Social Life Cycle Assessment of Growing Media for Urban Rooftop Farming. Int. J. Life Cycle Assess. 2021, 26, 2085–2102. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, J.; Zheng, J. Comparative Analysis of Carbon Footprint between Conventional Smallholder Operation and Innovative Largescale Farming of Urban Agriculture in Beijing, China. PeerJ 2021, 9, e11632. [Google Scholar] [CrossRef]
- Muñoz-Liesa, J.; Toboso-Chavero, S.; Beltran, A.M.; Cuerva, E.; Gallo, E.; Gassó-Domingo, S.; Josa, A. Building-Integrated Agriculture: Are We Shifting Environmental Impacts? An Environmental Assessment and Structural Improvement of Urban Greenhouses. Resour. Conserv. Recycl. 2021, 169, 105526. [Google Scholar] [CrossRef]
- Cellura, M.; Longo, S.; Mistretta, M. Life Cycle Assessment (LCA) of Protected Crops: An Italian Case Study. J. Clean. Prod. 2012, 28, 56–62. [Google Scholar] [CrossRef]
- Gil, R.; Bojacá, C.R.; Schrevens, E. Accounting for Correlational Structures in Stochastic Comparative Life Cycle Assessments through Copula Modeling. Int. J. Life Cycle Assess. 2021, 26, 604–615. [Google Scholar] [CrossRef]
- Pineda, I.T.; Lee, Y.D.; Kim, Y.S.; Lee, S.M.; Park, K.S. Review of Inventory Data in Life Cycle Assessment Applied in Production of Fresh Tomato in Greenhouse. J. Clean. Prod. 2021, 282, 124395. [Google Scholar] [CrossRef]
- Flores-Cayuela, C.M.; González-Perea, R.; Camacho-Poyato, E.; Montesinos, P. Verifiable Water Use Inventory Using ICTs in Industrial Agriculture. In Water Footprint: Assessment and Case; Springer: Singapore, 2021; pp. 1–34. [Google Scholar]
- Evangelista, A.; Lan, Y.-C.; Chen, Z.; Tam, V.W.Y.; Datt, R. Adopting Life Cycle Assessment for Various Greenhouse Typologies in Multiple Cropping Environment in Australia. In EcoDesign and Sustainability II: Social Perspectives and Sustainability Assessment; Springer: Singapore, 2021; pp. 347–360. [Google Scholar]
- Chen, P.; Zhu, G.; Kim, H.-J.; Brown, P.B.; Huang, J.-Y. Comparative Life Cycle Assessment of Aquaponics and Hydroponics in the Midwestern United States. J. Clean. Prod. 2020, 275, 122888. [Google Scholar] [CrossRef]
- RamÃrez-Arias, A.; Campos-Salazar, V.; Pineda-Pineda, J.; Fitz-RodrÃguez, E. Analysis of Energy Consumption for Tomato Production in Low Technology Greenhouses of Mexico. In Proceedings of the International Symposium on Advanced Technologies and Management for Innovative Greenhouses: GreenSys2019, Angers, France, 16–20 June 2019; Volume 1296, pp. 753–758. [Google Scholar]
- Tittarelli, F.; Alsanius, B.W.; Kemper, L.; Koefoed Petersen, K.; Willekens, K. GREENRESILIENT-Applying Agroecology to Organic Greenhouse Production. In Proceedings of the International Symposium on Advanced Technologies and Management for Innovative Greenhouses: GreenSys2019, Angers, France, 16–20 June 2019; Volume 1296, pp. 1099–1106. [Google Scholar]
- Torres Pineda, I.; Cho, J.H.; Lee, D.; Lee, S.M.; Yu, S.; Lee, Y.D. Environmental Impact of Fresh Tomato Production in an Urban Rooftop Greenhouse in a Humid Continental Climate in South Korea. Sustainability 2020, 12, 9029. [Google Scholar] [CrossRef]
- Zhen, H.; Gao, W.; Jia, L.; Qiao, Y.; Ju, X. Environmental and Economic Life Cycle Assessment of Alternative Greenhouse Vegetable Production Farms in Peri-Urban Beijing, China. J. Clean. Prod. 2020, 269, 122380. [Google Scholar] [CrossRef]
- Azeb, L.; Hartani, T.; Aitmouheb, N.; Pradeleix, L.; Hajjaji, N.; Aribi, S. Life Cycle Assessment of Cucumber Irrigation: Unplanned Water Reuse versus Groundwater Resources in Tipaza (Algeria). J. Water Reuse Desalin. 2020, 10, 227–238. [Google Scholar] [CrossRef]
- Rufí-Salís, M.; Petit-Boix, A.; Villalba, G.; Sanjuan-Delmás, D.; Parada, F.; Ercilla-Montserrat, M.; Arcas-Pilz, V.; Munoz-Liesa, J.; Rieradevall, J.; Gabarrell, X. Recirculating Water and Nutrients in Urban Agriculture: An Opportunity towards Environmental Sustainability and Water Use Efficiency? J. Clean. Prod. 2020, 261, 121213. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Rouphael, Y.; Colla, G.; Colantoni, A.; Cardarelli, M. Biostimulants as a Tool for Improving Environmental Sustainability of Greenhouse Vegetable Crops. Sustainability 2020, 12, 5101. [Google Scholar] [CrossRef]
- Adsal, K.A.; ÜÇTUĞ, F.G.; Arikan, O.A. Environmental Life Cycle Assessment of Utilizing Stem Waste for Banana Production in Greenhouses in Turkey. Sustain. Prod. Consum. 2020, 22, 110–125. [Google Scholar] [CrossRef]
- Colley, T.A.; Birkved, M.; Olsen, S.I.; Hauschild, M.Z. Using a Gate-to-Gate LCA to Apply Circular Economy Principles to a Food Processing SME. J. Clean. Prod. 2020, 251, 119566. [Google Scholar] [CrossRef]
- Rufí-Salís, M.; Petit-Boix, A.; Villalba, G.; Ercilla-Montserrat, M.; Sanjuan-Delmás, D.; Parada, F.; Arcas, V.; Muñoz-Liesa, J.; Gabarrell, X. Identifying Eco-Efficient Year-Round Crop Combinations for Rooftop Greenhouse Agriculture. Int. J. Life Cycle Assess. 2020, 25, 564–576. [Google Scholar] [CrossRef]
- Canaj, K.; Mehmeti, A.; Cantore, V.; Todorović, M. LCA of Tomato Greenhouse Production Using Spatially Differentiated Life Cycle Impact Assessment Indicators: An Albanian Case Study. Environ. Sci. Pollut. Res. 2020, 27, 6960–6970. [Google Scholar] [CrossRef]
- Baum, R.; Bieńkowski, J. Eco-Efficiency in Measuring the Sustainable Production of Agricultural Crops. Sustainability 2020, 12, 1418. [Google Scholar] [CrossRef]
- Moioli, S.; Hijazi, O.; Pellegrini, L.A.; Bernhardt, H. Simulation of Different Biogas Upgrading Processes and LCA for the Selection of the Best Technology. In Proceedings of the 2020 ASABE Annual International Virtual Meeting, virtual, 13–15 July 2020; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2020; p. 1. [Google Scholar]
- Mencet Yelboğa, M. LCA Analysis of Greenhouse Tomato Producers’ Waste Disposal Methods: A Case Study in Turkey. Polish J. Environ. Stud. 2020, 29, 3431–3439. [Google Scholar] [CrossRef]
- Cumo, F.; Piras, G.; Pennacchia, E.; Cinquepalmi, F. Optimization of Design and Management of a Hydroponic Greenhouse by Using BIM Application Software. Int. J. Sustain. Dev. Plan 2020, 15, 157–163. [Google Scholar] [CrossRef]
- Mencet Yelboğa, M.N. LCA Analysis of Grafted Tomato Seedling Production in Turkey. Sustainability 2019, 12, 25. [Google Scholar] [CrossRef]
- Hosseini-Fashami, F.; Motevali, A.; Nabavi-Pelesaraei, A.; Hashemi, S.J.; Chau, K. Energy-Life Cycle Assessment on Applying Solar Technologies for Greenhouse Strawberry Production. Renew. Sustain. Energy Rev. 2019, 116, 109411. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, J.; Kong, X.; Sun, J.; Li, Y. Carbon Footprint and Economic Efficiency of Urban Agriculture in Beijing—A Comparative Case Study of Conventional and Home-Delivery Agriculture. J. Clean. Prod. 2019, 234, 615–625. [Google Scholar] [CrossRef]
- Morales, M.; Hélias, A.; Bernard, O. Optimal Integration of Microalgae Production with Photovoltaic Panels: Environmental Impacts and Energy Balance. Biotechnol. Biofuels 2019, 12, 239. [Google Scholar] [CrossRef]
- De Laurentiis, V.; Hunt, D.V.L.; Lee, S.E.; Rogers, C.D.F. EATS: A Life Cycle-Based Decision Support Tool for Local Authorities and School Caterers. Int. J. Life Cycle Assess. 2019, 24, 1222–1238. [Google Scholar] [CrossRef]
- Piezer, K.; Petit-Boix, A.; Sanjuan-Delmás, D.; Briese, E.; Celik, I.; Rieradevall, J.; Gabarrell, X.; Josa, A.; Apul, D. Ecological Network Analysis of Growing Tomatoes in an Urban Rooftop Greenhouse. Sci. Total Environ. 2019, 651, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, R.; Thoma, G.; Matlock, M.D. Environmental Sustainability of Fruit and Vegetable Production Supply Chains in the Face of Climate Change: A Review. Sci. Total Environ. 2019, 650, 2863–2879. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A.; Hamm, M.W. Consolidating the Current Knowledge on Urban Agriculture in Productive Urban Food Systems: Learnings, Gaps and Outlook. J. Clean. Prod. 2019, 209, 1637–1655. [Google Scholar] [CrossRef]
- Liang, L.; Ridoutt, B.G.; Lal, R.; Wang, D.; Wu, W.; Peng, P.; Hang, S.; Wang, L.; Zhao, G. Nitrogen Footprint and Nitrogen Use Efficiency of Greenhouse Tomato Production in North China. J. Clean. Prod. 2019, 208, 285–296. [Google Scholar] [CrossRef]
- Qosim, A.; Anies, A.; Sunoko, H.R. Empirical Scenarios of Emission Control and Economic Sustainability for Energy Input and Intervention of Agricultural Pesticides. Int. J. Energy Econ. Policy 2019, 9, 91–96. [Google Scholar] [CrossRef]
- Leon, A.; Ishihara, K.N. Assessment of New Functional Units for Agrivoltaic Systems. J. Environ. Manag. 2018, 226, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, B.; Wu, G.; Sun, Y.; Guo, X.; Jin, Z.; Xu, W.; Zhao, Y.; Zhang, F.; Zou, C. Environmental Costs and Mitigation Potential in Plastic-Greenhouse Pepper Production System in China: A Life Cycle Assessment. Agric. Syst. 2018, 167, 186–194. [Google Scholar] [CrossRef]
- Taki, M.; Soheili-Fard, F.; Rohani, A.; Chen, G.; Yildizhan, H. Life Cycle Assessment to Compare the Environmental Impacts of Different Wheat Production Systems. J. Clean. Prod. 2018, 197, 195–207. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Ouyang, X.; Hao, J.; Yang, X. Comparative Environmental Impact Assessments of Green Food Certified Cucumber and Conventional Cucumber Cultivation in China. Renew. Agric. Food Syst. 2018, 33, 432–442. [Google Scholar] [CrossRef]
- Bosona, T.; Gebresenbet, G. Life Cycle Analysis of Organic Tomato Production and Supply in Sweden. J. Clean. Prod. 2018, 196, 635–643. [Google Scholar] [CrossRef]
- Sanjuan-Delmás, D.; Llorach-Massana, P.; Nadal, A.; Ercilla-Montserrat, M.; Muñoz, P.; Montero, J.I.; Josa, A.; Gabarrell, X.; Rieradevall, J. Environmental Assessment of an Integrated Rooftop Greenhouse for Food Production in Cities. J. Clean. Prod. 2018, 177, 326–337. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Martinez-Blanco, J.; Finkbeiner, M.; Cerdà, M.; Camargo, M.; Ometto, A.R.; Velásquez, L.S.; Villada, G.; Niza, S.; Pina, A. Urban Horticulture in Retail Parks: Environmental Assessment of the Potential Implementation of Rooftop Greenhouses in European and South American Cities. J. Clean. Prod. 2018, 172, 3081–3091. [Google Scholar] [CrossRef]
- Maaoui, M.; Boukchina, R.; Hajjaji, N. LCA and Cherry Tomato Production in the South of Tunisia. In Proceedings of the Euro-Mediterranean Conference for Environmental Integration, Sousse, Tunisia, 20–25 November 2017; Springer: Cham, Switzerland, 2017; pp. 1105–1106. [Google Scholar]
- Montero, J.I.; Antón, A.; Lorenzo, P. Innovative Systems for Sustainable Greenhouse Production. In Proceedings of the International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant, Beijing, China, 20–24 August 2017; Volume 1227, pp. 13–24. [Google Scholar]
- Romeo, D.; Vea, E.B.; Thomsen, M. Environmental Impacts of Urban Hydroponics in Europe: A Case Study in Lyon. Procedia Cirp 2018, 69, 540–545. [Google Scholar] [CrossRef]
- Sarlio, S.; Sarlio, S. “Sustainability Is More than Reducing Greenhouse Emissions”: Different Perspectives on Sustainability. In Towards Healthy and Sustainable Diets: Perspectives and Policy to Promote the Health of People and the Planet; Springer: Cham, Switzerland, 2018; pp. 1–21. [Google Scholar]
- Nordey, T.; Basset-Mens, C.; De Bon, H.; Martin, T.; Déletré, E.; Simon, S.; Parrot, L.; Despretz, H.; Huat, J.; Biard, Y. Protected Cultivation of Vegetable Crops in Sub-Saharan Africa: Limits and Prospects for Smallholders. A Review. Agron. Sustain. Dev. 2017, 37, 53. [Google Scholar] [CrossRef]
- Soode-Schimonsky, E.; Richter, K.; Weber-Blaschke, G. Product Environmental Footprint of Strawberries: Case Studies in Estonia and Germany. J. Environ. Manag. 2017, 203, 564–577. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Antón, A.; Leyva, R.; Suárez-Rey, E.M. Inclusion of Uncertainty in the LCA Comparison of Different Cherry Tomato Production Scenarios. Int. J. Life Cycle Assess. 2017, 22, 798–811. [Google Scholar] [CrossRef]
- Gil, R.; Bojacá, C.R.; Schrevens, E. Environmental Savings in Tomato Production under Optimal Agrochemicals Management: A Modeling Approach. In Proceedings of the V International Symposium on Applications of Modelling as an Innovative Technology in the Horticultural Supply Chain-Model-IT, Wageningen, The Netherlands, 11–14 October 2015; Volume 1154, pp. 137–144. [Google Scholar]
- Bonaguro, J.E.; Coletto, L.; Zanin, G. Environmental and Agronomic Performance of Fresh Rice Hulls Used as Growing Medium Component for Cyclamen Persicum L. Pot Plants. J. Clean. Prod. 2017, 142, 2125–2132. [Google Scholar] [CrossRef]
- Pergola, M.; Persiani, A.; Pastore, V.; Palese, A.M.; Arous, A.; Celano, G. A Comprehensive Life Cycle Assessment (LCA) of Three Apricot Orchard Systems Located in Metapontino Area (Southern Italy). J. Clean. Prod. 2017, 142, 4059–4071. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. The Role of Interdisciplinarity in Evaluating the Sustainability of Urban Rooftop Agriculture. Future Food J. Food Agric. Soc. 2017, 5, 46–58. [Google Scholar]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Testing the Environmental Performance of Urban Agriculture as a Food Supply in Northern Climates. J. Clean. Prod. 2016, 135, 984–994. [Google Scholar] [CrossRef]
- He, X.; Qiao, Y.; Liu, Y.; Dendler, L.; Yin, C.; Martin, F. Environmental Impact Assessment of Organic and Conventional Tomato Production in Urban Greenhouses of Beijing City, China. J. Clean. Prod. 2016, 134, 251–258. [Google Scholar] [CrossRef]
- Irabien, A.; Darton, R.C. Energy–Water–Food Nexus in the Spanish Greenhouse Tomato Production. Clean Technol. Environ. Policy 2016, 18, 1307–1316. [Google Scholar] [CrossRef]
- Gorgitano, M.T.; Pirilli, M. Life Cycle Economic and Environmental Assessment for a Greening Agriculture. Calitatea 2016, 17, 181. [Google Scholar]
- Fusi, A.; Castellani, V.; Bacenetti, J.; Cocetta, G.; Fiala, M.; Guidetti, R. The Environmental Impact of the Production of Fresh Cut Salad: A Case Study in Italy. Int. J. Life Cycle Assess. 2016, 21, 162–175. [Google Scholar] [CrossRef]
- Harris, T.M.; Hottle, T.A.; Soratana, K.; Klane, J.; Landis, A.E. Life Cycle Assessment of Sunflower Cultivation on Abandoned Mine Land for Biodiesel Production. J. Clean. Prod. 2016, 112, 182–195. [Google Scholar] [CrossRef]
- Liu, X.; Lei, B.; Liu, Y. The Application of Phosphor in Agricultural Field. Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications: Volume 2; Springer: Singapore, 2016; pp. 119–137. [Google Scholar]
- Llorach-Massana, P.; Peña, J.; Rieradevall, J.; Montero, J.I. LCA & LCCA of a PCM Application to Control Root Zone Temperatures of Hydroponic Crops in Comparison with Conventional Root Zone Heating Systems. Renew. Energy 2016, 85, 1079–1089. [Google Scholar]
- Bartzas, G.; Zaharaki, D.; Komnitsas, K. Life Cycle Assessment of Open Field and Greenhouse Cultivation of Lettuce and Barley. Inf. Process. Agric. 2015, 2, 191–207. [Google Scholar] [CrossRef]
- Stegelin, F.E. Adopting Strategic Alliances to Enhance Horticulture Supply Chain Sustainability and Profitability. In Proceedings of the I International Symposium on Horticulture Economics, Marketing and Consumer Research, Portland, OR, USA, 19–21 August 2013; Volume 1090, pp. 61–66. [Google Scholar]
- Rosenbaum, R.K.; Anton, A.; Bengoa, X.; Bjørn, A.; Brain, R.; Bulle, C.; Cosme, N.; Dijkman, T.J.; Fantke, P.; Felix, M. The Glasgow Consensus on the Delineation between Pesticide Emission Inventory and Impact Assessment for LCA. Int. J. Life Cycle Assess. 2015, 20, 765–776. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. An Environmental and Economic Life Cycle Assessment of Rooftop Greenhouse (RTG) Implementation in Barcelona, Spain. Assessing New Forms of Urban Agriculture from the Greenhouse Structure to the Final Product Level. Int. J. Life Cycle Assess. 2015, 20, 350–366. [Google Scholar] [CrossRef]
- Pons, O.; Nadal, A.; Sanyé-Mengual, E.; Llorach-Massana, P.; Cuerva, E.; Sanjuan-Delmàs, D.; Muñoz, P.; Oliver-Solà, J.; Planas, C.; Rovira, M.R. Roofs of the Future: Rooftop Greenhouses to Improve Buildings Metabolism. Procedia Eng. 2015, 123, 441–448. [Google Scholar] [CrossRef]
- Freda, R.; Borrello, M.; Cembalo, L. Innovation in Floriculture When Environmental and Economics Criteria Are Conflicting. Calitatea 2015, 16, 110. [Google Scholar]
- Payen, S.; Basset-Mens, C.; Perret, S. LCA of Local and Imported Tomato: An Energy and Water Trade-Off. J. Clean. Prod. 2015, 87, 139–148. [Google Scholar] [CrossRef]
- Zhang, S.; Bi, X.T.; Clift, R. Life Cycle Analysis of a Biogas-Centred Integrated Dairy Farm-Greenhouse System in British Columbia. Process Saf. Environ. Prot. 2015, 93, 18–30. [Google Scholar] [CrossRef]
- Almeida, J.; Achten, W.M.J.; Verbist, B.; Heuts, R.F.; Schrevens, E.; Muys, B. Carbon and Water Footprints and Energy Use of Greenhouse Tomato Production in Northern Italy. J. Ind. Ecol. 2014, 18, 898–908. [Google Scholar] [CrossRef]
- Page, G.; Ridoutt, B.; Bellotti, B. Location and Technology Options to Reduce Environmental Impacts from Agriculture. J. Clean. Prod. 2014, 81, 130–136. [Google Scholar] [CrossRef]
- Anton, A.; Torrellas, M.; Nunez, M.; Sevigne, E.; Amores, M.J.; Muñoz, P.; Montero, J.I. Improvement of Agricultural Life Cycle Assessment Studies through Spatial Differentiation and New Impact Categories: Case Study on Greenhouse Tomato Production. Environ. Sci. Technol. 2014, 48, 9454–9462. [Google Scholar] [CrossRef] [PubMed]
- Bojacá, C.R.; Wyckhuys, K.A.G.; Schrevens, E. Life Cycle Assessment of Colombian Greenhouse Tomato Production Based on Farmer-Level Survey Data. J. Clean. Prod. 2014, 69, 26–33. [Google Scholar] [CrossRef]
- Huang, J.; Ridoutt, B.G.; Zhang, H.; Xu, C.; Chen, F. Water Footprint of Cereals and Vegetables for the Beijing Market: Comparison between Local and Imported Supplies. J. Ind. Ecol. 2014, 18, 40–48. [Google Scholar] [CrossRef]
- Vyn, R.J.; Virani, T.; Deen, B. Examining the Economic Feasibility of Miscanthus in Ontario: An Application to the Greenhouse Industry. Energy Policy 2012, 50, 669–676. [Google Scholar] [CrossRef]
- Torrellas, M.; Antón, A.; López, J.C.; Baeza, E.J.; Parra, J.P.; Muñoz, P.; Montero, J.I. LCA of a Tomato Crop in a Multi-Tunnel Greenhouse in Almeria. Int. J. Life Cycle Assess. 2012, 17, 863–875. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Suárez-Rey, E.M.; Antón, A.; Castilla, N.; Soriano, T. Environmental Impact of Screenhouse and Open-Field Cultivation Using a Life Cycle Analysis: The Case Study of Green Bean Production. J. Clean. Prod. 2012, 28, 63–69. [Google Scholar] [CrossRef]
- Stoessel, F.; Juraske, R.; Pfister, S.; Hellweg, S. Life Cycle Inventory and Carbon and Water Foodprint of Fruits and Vegetables: Application to a Swiss Retailer. Environ. Sci. Technol. 2012, 46, 3253–3262. [Google Scholar] [CrossRef] [PubMed]
- Haruvy, N.; Shalhevet, S. Integrating Technology Foresight Methods with Environmental Life Cycle Assessment to Promote Sustainable Agriculture. Int. J. Foresight Innov. Policy 2012, 8, 129–142. [Google Scholar] [CrossRef]
- Page, G.; Ridoutt, B.; Bellotti, B. Fresh Tomato Production for the Sydney Market: An Evaluation of Options to Reduce Freshwater Scarcity from Agricultural Water Use. Agric. Water Manag. 2011, 100, 18–24. [Google Scholar] [CrossRef]
- Boulard, T.; Raeppel, C.; Brun, R.; Lecompte, F.; Hayer, F.; Carmassi, G.; Gaillard, G. Environmental Impact of Greenhouse Tomato Production in France. Agron. Sustain. Dev. 2011, 31, 757–777. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Muñoz, P.; Antón, A.; Rieradevall, J. Assessment of Tomato Mediterranean Production in Open-Field and Standard Multi-Tunnel Greenhouse, with Compost or Mineral Fertilizers, from an Agricultural and Environmental Standpoint. J. Clean. Prod. 2011, 19, 985–997. [Google Scholar] [CrossRef]
- Muñoz, I.; del Mar Gómez, M.; Fernández-Alba, A.R. Life Cycle Assessment of Biomass Production in a Mediterranean Greenhouse Using Different Water Sources: Groundwater, Treated Wastewater and Desalinated Seawater. Agric. Syst. 2010, 103, 1–9. [Google Scholar] [CrossRef]
- Andrews, E.; Lesage, P.; Benoît, C.; Parent, J.; Norris, G.; Revéret, J. Life Cycle Attribute Assessment: Case Study of Quebec Greenhouse Tomatoes. J. Ind. Ecol. 2009, 13, 565–578. [Google Scholar] [CrossRef]
- Usva, K.; Saarinen, M.; Katajajuuri, J.-M. Supply Chain Integrated LCA Approach to Assess Environmental Impacts of Food Production in Finland. Agric. Food Sci. 2009, 18, 460–476. [Google Scholar] [CrossRef]
- Russo, G.; De Lucia Zeller, B. Environmental Evaluation by Means of LCA Regarding the Ornamental Nursery Production in Rose and Sowbread Greenhouse Cultivation. In Proceedings of the International Symposium on High Technology for Greenhouse System Management: Greensys2007, Naples, Italy, 4–6 October 2007; Volume 801, pp. 1597–1604. [Google Scholar]
- Bos, U.; Makishi, C.; Fischer, M. Life Cycle Assessment of Common Used Agricultural Plastic Products in the EU. In Proceedings of the International Symposium on High Technology for Greenhouse System Management: Greensys2007, Naples, Italy, 4–6 October 2007; Volume 801, pp. 341–350. [Google Scholar]
- Russo, G.; Scarascia Mugnozza, G.; De Lucia Zeller, B. Environmental Improvements of Greenhouse Flower Cultivation by Means of LCA Methodology. In Proceedings of the International Symposium on High Technology for Greenhouse System Management: Greensys, Naples, Italy, 4–6 October 2007; Volume 801, pp. 301–308. [Google Scholar]
- Castilla, N. Current Situation and Future Prospects of Protected Crops in the Mediterranean Region. In Proceedings of the Acta Horticulturae, Cairo, Egypt, 30 June 2002; Volume 582, pp. 135–147. [Google Scholar]
- Hayashi, K. Environmental Indicators for Agricultural Management: The Problem of Integration. In Advances in Safety and Reliability: ESREL; Taylor & Francis Group: London, UK, 2005. [Google Scholar]
- Russo, G.; Scarascia Mugnozza, G. LCA Methodology Applied to Various Typology of Greenhouses. In Proceedings of the International Conference on Sustainable Greenhouse Systems-Greensys2004, Leuven, Belgium, 12–16 September 2004; Volume 691, pp. 837–844. [Google Scholar]
- Jungbluth, N.; Tietje, O.; Scholz, R.W. Food Purchases: Impacts from the Consumers’ Point of View Investigated with a Modular LCA. Int. J. Life Cycle Assess. 2000, 5, 134–142. [Google Scholar] [CrossRef]
- Abd-Alrazaq, A.; Schneider, J.; Mifsud, B.; Alam, T.; Househ, M.; Hamdi, M.; Shah, Z. A Comprehensive Overview of the COVID-19 Literature: Machine Learning–Based Bibliometric Analysis. J. Med. Internet Res. 2021, 23, e23703. [Google Scholar] [CrossRef] [PubMed]
- Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Gao, X.; Hanis, K.; Tenuta, M.; Campbell, C.A.; McConkey, B.G.; Nemecek, T.; et al. A Comparison of Methods to Quantify Greenhouse Gas Emissions of Cropping Systems in LCA. J. Clean. Prod. 2018, 172, 4010–4017. [Google Scholar] [CrossRef]
- Jordaan, S.M. Life Cycle Impact Assessment. Wells to Wire: Life Cycle Assessment of Natural Gas-Fired Electricity; Springer: Cham, Switzerland, 2021; pp. 45–66. [Google Scholar]
- Amahmoud, A.; El Attar, M.M.; Meleishy, A. The Evolution of Life Cycle Assessment Approach: A Review of Past and Future Prospects. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Cairo, Egypt, 27–28 November 2021; IOP Publishing: London, UK, 2022; Volume 992, p. 12002. [Google Scholar]
- Hunt, R.G.; Sellers, J.D.; Franklin, W.E. Resource and Environmental Profile Analysis: A Life Cycle Environmental Assessment for Products and Procedures. Environ. Impact Assess. Rev. 1992, 12, 245–269. [Google Scholar] [CrossRef]
- Da Silva, F.M.; Bártolo, H.M.; Bártolo, P.; Almendra, R.; Roseta, F.; Almeida, H.A.; Lemos, A.C. Challenges for Technology Innovation: An Agenda for the Future. In Proceedings of the International Conference on Sustainable Smart Manufacturing (S2M 2016), Lisbon, Portugal, 20–22 October 2016; CRC Press: Boca Raton, FL, USA, 2017. ISBN 1351772007. [Google Scholar]
- Guinee, J.B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life Cycle Assessment: Past, Present, and Future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef] [PubMed]
- McLaren, S.; Berardy, A.; Henderson, A.; Holden, N.; Huppertz, T.; Jolliet, O.; De Camillis, C.; Renouf, M.; Rugani, B. Integration of Environment and Nutrition in Life Cycle Assessment of Food Items: Opportunities and Challenges; Food & Agriculture Organization: Rome, Italy, 2021. [Google Scholar]
- Audsley, E.; Alber, S.; Clift, R.; Cowell, S.; Crettaz, P.; Gaillard, G.; Hausheer, J.; Jolliet, O.; Kleijn, R.; Mortensen, B. Harmonisation of Environmental Life Cycle Assessment for Agriculture. In Final Report, Concerted Action AIR3-CT94-2028. European Commission, DG VI Agriculture; European Commission: Brussels, Belgium, 1997; Volume 139. [Google Scholar]
- Notarnicola, B. 7th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2010), 22–24 September 2010, Bari (Italy). Int. J. Life Cycle Assess. 2011, 16, 102–105. [Google Scholar] [CrossRef]
- Nemecek, T.; Jungbluth, N.; i Canals, L.M.; Schenck, R. Environmental Impacts of Food Consumption and Nutrition: Where Are We and What Is Next? Int. J. Life Cycle Assess. 2016, 21, 607–620. [Google Scholar] [CrossRef]
- Sala, S.; McLaren, S.J.; Notarnicola, B.; Saouter, E.; Sonesson, U. In Quest of Reducing the Environmental Impacts of Food Production and Consumption. J. Clean. Prod. 2017, 140, 387–398. [Google Scholar] [CrossRef]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The Role of Life Cycle Assessment in Supporting Sustainable Agri-Food Systems: A Review of the Challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Chen, W.; Oldfield, T.L.; Patsios, S.I.; Holden, N.M. Hybrid Life Cycle Assessment of Agro-Industrial Wastewater Valorisation. Water Res. 2020, 170, 115275. [Google Scholar] [CrossRef]
- Zimmermann, A.; Baumgartner, D.; Nemecek, T.; Gaillard, G. Are Public Payments for Organic Farming Cost-Effective? Combining a Decision-Support Model with LCA. Int. J. Life Cycle Assess. 2011, 16, 548–560. [Google Scholar] [CrossRef]
- Ziegler, F.; Nilsson, K.; Levermann, N.; Dorph, M.; Lyberth, B.; Jessen, A.A.; Desportes, G. Local Seal or Imported Meat? Sustainability Evaluation of Food Choices in Greenland, Based on Life Cycle Assessment. Foods 2021, 10, 1194. [Google Scholar] [CrossRef] [PubMed]
- Camps-Posino, L.; Batlle-Bayer, L.; Bala, A.; Song, G.; Qian, H.; Aldaco, R.; Xifré, R.; Fullana-i-Palmer, P. Potential Climate Benefits of Reusable Packaging in Food Delivery Services. A Chinese Case Study. Sci. Total Environ. 2021, 794, 148570. [Google Scholar] [CrossRef]
- Goossens, Y.; Berrens, P.; Charleer, L.; Coremans, P.; Houbrechts, M.; Vervaet, C.; De Tavernier, J.; Geeraerd, A. Qualitative Assessment of Eco-Labels on Fresh Produce in Flanders (Belgium) Highlights a Potential Intention–Performance Gap for the Supply Chain. J. Clean. Prod. 2017, 140, 986–995. [Google Scholar] [CrossRef]
- Cook, J.; Beyea, J. Bioenergy in the United States: Progress and Possibilities. Biomass Bioenergy 2000, 18, 441–455. [Google Scholar] [CrossRef]
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; Camacho-Ferre, F.; Tello-Marquina, J.C. The Management of Agriculture Plastic Waste in the Framework of Circular Economy. Case of the Almeria Greenhouse (Spain). Int. J. Environ. Res. Public Health 2021, 18, 12042. [Google Scholar] [CrossRef] [PubMed]
- Ward, S. EIP-AGRI Focus Group Reducing Food Loss on the Farm. Available online: https://www.thuenen.de/en/cross-institutional-projects/eip-agri-focus-group-reducing-food-loss-on-the-farm (accessed on 10 October 2023).
- ESYRCE Encuesta Sobre Superficies y Rendimientos de Cultivos. Minist. Agric. Aliment. Medio Ambient. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/ (accessed on 11 October 2023).
- De Andalucía, J. Cartografía de Invernaderos En Almería, Granada y Málaga. Año 2020. Cons. Agric. Ganad. Pesca y Desarro. Sosten. 2020, 3, 1–24. [Google Scholar]
- Torrellas, M.; Antón, A.; Montero, J.I. An Environmental Impact Calculator for Greenhouse Production Systems. J. Environ. Manag. 2013, 118, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Jelínková, Z.; Moudrý, J., Jr.; Moudrý, J.; Kopecký, M.; Bernas, J. Life Cycle Assessment Method–Tool for Evaluation of Greenhouse Gases Emissions from Agriculture and Food Processing. Greenh. Gases 2016. [Google Scholar] [CrossRef]
- Cucurachi, S.; Scherer, L.; Guinée, J.; Tukker, A. Life Cycle Assessment of Food Systems. One Earth 2019, 1, 292–297. [Google Scholar] [CrossRef]
- Alhashim, R.; Deepa, R.; Anandhi, A. Environmental Impact Assessment of Agricultural Production Using LCA: A Review. Climate 2021, 9, 164. [Google Scholar] [CrossRef]
- Vidergar, P.; Perc, M.; Lukman, R.K. A Survey of the Life Cycle Assessment of Food Supply Chains. J. Clean. Prod. 2021, 286, 125506. [Google Scholar] [CrossRef]
- Wiegleb, V.; Bruns, A. What Is Driving the Water-Energy-Food Nexus? Discourses, Knowledge, and Politics of an Emerging Resource Governance Concept. Front. Environ. Sci. 2018, 6, 128. [Google Scholar] [CrossRef]
- Naseer, M.; Persson, T.; Hjelkrem, A.-G.R.; Ruoff, P.; Verheul, M.J. Life Cycle Assessment of Tomato Production for Different Production Strategies in Norway. J. Clean. Prod. 2022, 372, 133659. [Google Scholar] [CrossRef]
- Lan, Y.-C.; Tam, V.W.Y.; Xing, W.; Datt, R.; Chan, Z. Life Cycle Environmental Impacts of Cut Flowers: A Review. J. Clean. Prod. 2022, 369, 133415. [Google Scholar] [CrossRef]
- Villagran, E.; Ortiz, G.A.; Mojica, L.; Flores-Velasquez, J.; Aguilar, C.E.; Gomez, L.; Antolinez, E.; Numa, S. Bibliometric Study of Cut Flower Research. Ornam. Hortic. 2023, 29, 500–514. [Google Scholar] [CrossRef]
- Li, M.; Subramaniam, B. LCA for Green Chemical Synthesis—Terephthalic Acid. 2017. Earth Systems and Environmental Sciences. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780124095489100867?via%3Dihub (accessed on 11 October 2023).
- Cimini, A.; Cibelli, M.; Moresi, M. Environmental Impact of Dry Pasta Using Different Standard Methods. In Environmental Impact of Agro-Food Industry and Food Consumption; Elsevier: Amsterdam, The Netherlands, 2021; pp. 101–127. [Google Scholar]
- Arzoumanidis, I.; D’Eusanio, M.; Raggi, A.; Petti, L. Functional Unit Definition Criteria in Life Cycle Assessment and Social Life Cycle Assessment: A Discussion. In Proceedings of the Perspectives on Social LCA: Contributions from the 6th International Conference, Pescara, Italy, 10–12 September 2018; Springer: Cham, Switzerland, 2020; pp. 1–10. [Google Scholar]
- Guénard, B.; Weiser, M.D.; Gomez, K.; Narula, N.; Economo, E.P. The Global Ant Biodiversity Informatics (GABI) Database: Synthesizing Data on the Geographic Distribution of Ant Species (Hymenoptera: Formicidae). Myrmecol. News/Osterreichische Ges. Fur Entomofaunist. 2017, 24, 83–89. [Google Scholar]
- Ike, S.-I. Chinese Life Cycle Database (CLCD). Available online: https://ghgprotocol.org/Third-Party-Databases/CLCD (accessed on 12 October 2023).
- Nrel, L.C.A. US Life-Cycle Inventory Database; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Dijkman, T.J.; Basset-Mens, C.; Antón, A.; Núñez, M. LCA of Food and Agriculture. In Life Cycle Assessment: Theory and Practice; Springer: Cham, Switzerland, 2018; pp. 723–754. [Google Scholar]
- Acero, A.P.; Rodríguez, C.; Ciroth, A. LCIA Methods. Impact Assessment Methods in Life Cycle Assessment and Their Impact Categories; GreenDelta GmbH: Berlin, Germany, 2016; pp. 1–23. [Google Scholar]
- Flores-Velazquez, J.; Akrami, M.; Villagrán, E. The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops. Agronomy 2022, 12, 2593. [Google Scholar] [CrossRef]
- Sinisterra-Solís, N.; Sanjuán, N.; Ribal, J.; Estruch, V.; Clemente, G. An Approach to Regionalise the Life Cycle Inventories of Spanish Agriculture: Monitoring the Environmental Impacts of Orange and Tomato Crops. Sci. Total Environ. 2023, 856, 158909. [Google Scholar] [CrossRef]
- Montero, J.I.; Stanghellini, C.; Castilla, N. Invernadero Para La Producción Sostenible En Áreas de Clima de Invierno Suaves. Hortic. Int. 2008, 65, 31. [Google Scholar]
- Petropoulos, S.A. Practical Applications of Plant Biostimulants in Greenhouse Vegetable Crop Production. Agronomy 2020, 10, 1569. [Google Scholar] [CrossRef]
- Romero-Perdomo, F.; Ocampo-Gallego, J.; Camelo-Rusinque, M.; Bonilla, R. Plant Growth Promoting Rhizobacteria and Their Potential as Bioinoculants on Pennisetum clandestinum (Poaceae). Rev. Biol. Trop. 2019, 67, 825–832. [Google Scholar] [CrossRef]
- Sánchez López, D.B.; Romero Perdomo, F.A.; Bonilla Buitrago, R.R. Respuesta de Physalis peruviana L. a La Inoculación Con Bacterias Solubilizadoras de Fosfato. Rev. Mex. Cienc. Agríc. 2014, 5, 901–906. [Google Scholar]
- Li, J.; Wang, J.; Liu, H.; Macdonald, C.A.; Singh, B.K. Application of Microbial Inoculants Significantly Enhances Crop Productivity: A Meta-analysis of Studies from 2010 to 2020. J. Sustain. Agric. Environ. 2022, 1, 216–225. [Google Scholar] [CrossRef]
- Lastochkina, O.; Aliniaeifard, S.; SeifiKalhor, M.; Bosacchi, M.; Maslennikova, D.; Lubyanova, A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. Horticulturae 2022, 8, 910. [Google Scholar] [CrossRef]
- Romero-Perdomo, F.; Camelo-Rusinque, M.; Criollo-Campos, P.; Bonilla-Buitrago, R. Efecto de La Temperatura y El PH En La Producción de Biomasa de Azospirillum Brasilense C16 Aislada de Pasto Guinea. Pastos y Forrajes 2015, 38, 171–175. [Google Scholar]
- Lamichhane, J.R.; Corrales, D.C.; Soltani, E. Biological Seed Treatments Promote Crop Establishment and Yield: A Global Meta-Analysis. Agron. Sustain. Dev. 2022, 42, 45. [Google Scholar] [CrossRef]
- Romero-Perdomo, F.A.; Camelo, M.; Bonilla, R. Response of Bradyrhizobium Japonicum to Alginate in Presence of Pelleted Fungicides on Soybean Seeds. Rev. UDCA Actual. Divulg. Cient. 2015, 18, 359–364. [Google Scholar]
- Mendoza Beltran, A.; Scheel, C.N.; Fitton, N.; Schmidt, J.; Kløverpris, J.H. Assessing Life Cycle Environmental Impacts of Inoculating Soybeans in Argentina with Bradyrhizobium Japonicum. Int. J. Life Cycle Assess. 2021, 26, 1570–1585. [Google Scholar] [CrossRef]
- Rosowski, M.; Puchowicz, D.; Jaskulska, M.; Kozłowski, J.; Cieślak, M. Bioactive Modified Non-Wovens as a Novel Approach of Plants Protection against Invasive Slugs. Materials 2021, 14, 7403. [Google Scholar] [CrossRef]
- Salazar, B.; Ortiz, A.; Keswani, C.; Minkina, T.; Mandzhieva, S.; Pratap Singh, S.; Rekadwad, B.; Borriss, R.; Jain, A.; Singh, H.B. Bacillus spp. as Bio-Factories for Antifungal Secondary Metabolites: Innovation beyond Whole Organism Formulations. Microb. Ecol. 2023, 86, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Labrador, J.; Romero-Perdomo, F.; Abril, J.; Hernández, J.-P.; Uribe-Vélez, D.; Buitrago, R.B. Bacillus Strains Immobilized in Alginate Macrobeads Enhance Drought Stress Adaptation of Guinea Grass. Rhizosphere 2021, 19, 100385. [Google Scholar] [CrossRef]
- Sajid, M.U.; Khan, S.A.; Koc, M.; Al-Ghamdi, S.G.; Bicer, Y. Life Cycle Assessment of Spectra-Managed Greenhouses for Sustainable Agriculture. Clean. Environ. Syst. 2023, 9, 100127. [Google Scholar] [CrossRef]
- Silva, F.B.; Yoshida, O.S.; Diestelkamp, E.D.; de Oliveira, L.A. Is It Relevant to Include Capital Goods in the Life Cycle Assessment of Construction Products? In Proceedings of the VI Congresso Brasileiro em Gestão do Ciclo de Vida, Brasília, Brazil, 17–20 June 2018; pp. 711–724. [Google Scholar]
- Theurl, M.C.; Haberl, H.; Erb, K.-H.; Lindenthal, T. Contrasted Greenhouse Gas Emissions from Local versus Long-Range Tomato Production. Agron. Sustain. Dev. 2014, 34, 593–602. [Google Scholar] [CrossRef]
- Antón, A.; Torrellas, M.; Montero, J.I.; Ruijs, M.; Vermeulen, P.; Stanghellini, C. Environmental Impact Assessment of Dutch Tomato Crop Production in a Venlo Glasshouse. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium, Lisbon, Portugal, 22–27 August 2010; Volume 927, pp. 781–791. [Google Scholar]
- Hendricks, P. Life Cycle Assessment of Greenhouse Tomato (Solanum lycopersicum L.) Production in Southwestern Ontario. Ph.D. Dissertation, University of Guelph, Guelph, ON, Canada, 2012. [Google Scholar]
- Ortiz, G.A.; Chamorro, A.N.; Acuña-Caita, J.F.; López-Cruz, I.L.; Villagran, E. Calibration and Implementation of a Dynamic Energy Balance Model to Estimate the Temperature in a Plastic-Covered Colombian Greenhouse. AgriEngineering 2023, 5, 2284–2302. [Google Scholar] [CrossRef]
- Torrellas, M.; Antón, A.; Ruijs, M.; Victoria, N.G.; Stanghellini, C.; Montero, J.I. Environmental and Economic Assessment of Protected Crops in Four European Scenarios. J. Clean. Prod. 2012, 28, 45–55. [Google Scholar] [CrossRef]
- Voglhuber-Slavinsky, A.; Zicari, A.; Smetana, S.; Moller, B.; Dönitz, E.; Vranken, L.; Zdravkovic, M.; Aganovic, K.; Bahrs, E. Setting Life Cycle Assessment (LCA) in a Future-Oriented Context: The Combination of Qualitative Scenarios and LCA in the Agri-Food Sector. Eur. J. Futur. Res. 2022, 10, 15. [Google Scholar] [CrossRef]
- Fan, J.; Liu, C.; Xie, J.; Han, L.; Zhang, C.; Guo, D.; Niu, J.; Jin, H.; McConkey, B.G. Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. Int. J. Environ. Res. Public Health 2022, 19, 9817. [Google Scholar] [CrossRef]
- Roesch, A.; Sala, S.; Jungbluth, N. Normalization and Weighting: The Open Challenge in LCA. Int. J. Life Cycle Assess. 2020, 25, 1859–1865. [Google Scholar] [CrossRef]
- Pizzol, M.; Laurent, A.; Sala, S.; Weidema, B.; Verones, F.; Koffler, C. Normalisation and Weighting in Life Cycle Assessment: Quo Vadis? Int. J. Life Cycle Assess. 2017, 22, 853–866. [Google Scholar] [CrossRef]
- Benini, L.; Sala, S. Uncertainty and Sensitivity Analysis of Normalization Factors to Methodological Assumptions. Int. J. Life Cycle Assess. 2016, 21, 224–236. [Google Scholar] [CrossRef]
- Ahlroth, S. The Use of Valuation and Weighting Sets in Environmental Impact Assessment. Resour. Conserv. Recycl. 2014, 85, 34–41. [Google Scholar] [CrossRef]
- Togarcheti, S.C.; kumar Mediboyina, M.; Chauhan, V.S.; Mukherji, S.; Ravi, S.; Mudliar, S.N. Life Cycle Assessment of Microalgae Based Biodiesel Production to Evaluate the Impact of Biomass Productivity and Energy Source. Resour. Conserv. Recycl. 2017, 122, 286–294. [Google Scholar] [CrossRef]
- Chen, L.; Miller, S.A.; Ellis, B.R. Comparative Human Toxicity Impact of Electricity Produced from Shale Gas and Coal. Environ. Sci. Technol. 2017, 51, 13018–13027. [Google Scholar] [CrossRef] [PubMed]
- Bojacá, C.R.; Schrevens, E. Parameter Uncertainty in LCA: Stochastic Sampling under Correlation. Int. J. Life Cycle Assess. 2010, 15, 238–246. [Google Scholar] [CrossRef]
- Di Filippo, R.; Bursi, O.S.; Di Maggio, R. Global Warming and Ozone Depletion Potentials Caused by Emissions from HFC and CFC Banks Due to Structural Damage. Energy Build. 2022, 273, 112385. [Google Scholar] [CrossRef]
- Van den Oever, A.; Costa, D.; Messagie, M. Revisiting the Challenges of Ozone Depletion from a Prospective LCA Perspective. Qeios 2023. [Google Scholar] [CrossRef]
- Hayashi, K.; Nakagawa, A.; Itsubo, N.; Inaba, A. Expanded Damage Function of Stratospheric Ozone Depletion to Cover Major Endpoints Regarding Life Cycle Impact Assessment (12 pp). Int. J. Life Cycle Assess. 2006, 11, 150–161. [Google Scholar] [CrossRef]
- Van Oers, L.; Guinée, J. The Abiotic Depletion Potential: Background, Updates, and Future. Resources 2016, 5, 16. [Google Scholar] [CrossRef]
- André, H.; Ljunggren, M. Towards Comprehensive Assessment of Mineral Resource Availability? Complementary Roles of Life Cycle, Life Cycle Sustainability and Criticality Assessments. Resour. Conserv. Recycl. 2021, 167, 105396. [Google Scholar] [CrossRef]
- De León Cifuentes, W.E. Evaluacion Ambiental de La Produccion Del Cultivo de Tomate (Lycopersicon Esculentum Mill.), Bajo Condiciones Protegidas En Las Palmas Gran Canaria, España, Mediante La Utilizacion de La Metodologia Del Analisis Del Ciclo de Vida (Acv), 2007–2009; Universitat Autònoma de Barcelona: Bellaterra, Spain, 2009; ISBN 8469272489. [Google Scholar]
- Sieverding, H.; Kebreab, E.; Johnson, J.M.F.; Xu, H.; Wang, M.; Del Grosso, S.J.; Bruggeman, S.; Stewart, C.E.; Westhoff, S.; Ristau, J. A Life Cycle Analysis (LCA) Primer for the Agricultural Community. Agron. J. 2020, 112, 3788–3807. [Google Scholar] [CrossRef]
- Tragnone, B.M.; D’Eusanio, M.; Petti, L. The Count of What Counts in the Agri-Food Social Life Cycle Assessment. J. Clean. Prod. 2022, 354, 131624. [Google Scholar] [CrossRef]
- Zhong, L. Influence of Scenario Uncertainty in Agricultural Inputs on LCA Results for Agricultural Production Systems. In Proceedings of the 8th International Conference on LCA in the Agri-Food Sector, Saint Malo, France, 1–4 October 2012. [Google Scholar]
- Van der Werf, H.M.G.; Knudsen, M.T.; Cederberg, C. Towards Better Representation of Organic Agriculture in Life Cycle Assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- Talwar, N.; Holden, N.M. The Limitations of Bioeconomy LCA Studies for Understanding the Transition to Sustainable Bioeconomy. Int. J. Life Cycle Assess. 2022, 27, 680–703. [Google Scholar] [CrossRef] [PubMed]
- Weidema, B.P.; Stylianou, K.S. Nutrition in the Life Cycle Assessment of Foods—Function or Impact? Int. J. Life Cycle Assess. 2020, 25, 1210–1216. [Google Scholar] [CrossRef]
- Pavan, A.L.R.; Ometto, A.R. Ecosystem Services in Life Cycle Assessment: A Novel Conceptual Framework for Soil. Sci. Total Environ. 2018, 643, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Chaplin-Kramer, R.; Sim, S.; Hamel, P.; Bryant, B.; Noe, R.; Mueller, C.; Rigarlsford, G.; Kulak, M.; Kowal, V.; Sharp, R. Life Cycle Assessment Needs Predictive Spatial Modelling for Biodiversity and Ecosystem Services. Nat. Commun. 2017, 8, 15065. [Google Scholar] [CrossRef]
- VanderWilde, C.P.; Newell, J.P. Ecosystem Services and Life Cycle Assessment: A Bibliometric Review. Resour. Conserv. Recycl. 2021, 169, 105461. [Google Scholar] [CrossRef]
- Garnett, T. Three Perspectives on Sustainable Food Security: Efficiency, Demand Restraint, Food System Transformation. What Role for Life Cycle Assessment? J. Clean. Prod. 2014, 73, 10–18. [Google Scholar] [CrossRef]
- Reinhard, J.; Zah, R.; Hilty, L.M. Regionalized LCI Modeling: A Framework for the Integration of Spatial Data in Life Cycle Assessment. In Advances and New Trends in Environmental Informatics: Stability, Continuity, Innovation; Springer: Cham, Switzerland, 2017; pp. 223–235. [Google Scholar]
- Donke, A.C.G.; Novaes, R.M.L.; Pazianotto, R.A.A.; Moreno-Ruiz, E.; Reinhard, J.; Picoli, J.F.; da Silveira Folegatti-Matsuura, M.I. Integrating Regionalized Brazilian Land Use Change Datasets into the Ecoinvent Database: New Data, Premises and Uncertainties Have Large Effects in the Results. Int. J. Life Cycle Assess. 2020, 25, 1027–1042. [Google Scholar] [CrossRef]
- Frischknecht, R.; Pfister, S.; Bunsen, J.; Haas, A.; Känzig, J.; Kilga, M.; Lansche, J.; Margni, M.; Mutel, C.; Reinhard, J. Regionalization in LCA: Current Status in Concepts, Software and Databases—69th LCA Forum, Swiss Federal Institute of Technology, Zurich, 13 September, 2018. Int. J. Life Cycle Assess. 2019, 24, 364–369. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Kahhat, R.; Sánchez, I. Perú LCA: Launching the Peruvian National Life Cycle Database. Int. J. Life Cycle Assess. 2019, 24, 2089–2090. [Google Scholar] [CrossRef]
- Saidani, M.; Yannou, B.; Leroy, Y.; Cluzel, F.; Kendall, A. A Taxonomy of Circular Economy Indicators. J. Clean. Prod. 2019, 207, 542–559. [Google Scholar] [CrossRef]
- Luthin, A.; Traverso, M.; Crawford, R.H. Circular Life Cycle Sustainability Assessment: An Integrated Framework. J. Ind. Ecol. 2023; early view. [Google Scholar] [CrossRef]
- Riaño-Herrera, D.A.; Romero-Perdomo, F.A.; Rodriguez-Urrego, L. Advances and Challenges Between Urban Agriculture and the Circular Economy to Promote Sustainable Cities. In Proceedings of the 2023 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota, Colombia, 26–28 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
Search Query | References |
---|---|
((agri * OR agron * OR “food system *”) AND (“life cycle assessment *” OR “life-cycle assessment *” OR “life cycle analys *” OR “life-cycle analys *” OR “life cycle sustainability assessment *” OR “life-cycle sustainability assessment *” OR “life cycle sustainability analys *” OR “life-cycle sustainability analys *” OR “lca” OR “life cycle thinking” OR “life-cycle thinking” OR “life cycle costing” OR “life-cycle costing” OR “life cycle impact assessment *” OR “life-cycle impact assessment *” OR “life cycle inventory” OR “life-cycle inventory” OR “life cycle impact analys *” OR “life-cycle impact analys *”) AND (“greenhouse” OR glasshouse OR nethouse OR mesh-house OR screenhouse OR “protected agriculture”) AND NOT (“greenhouse effect” OR “gas emissions” OR “greenhouse gas *” OR “greenhouse gas emissions”)) | [21,22,23] |
LCA Stage | Analyzed Aspects |
---|---|
Objective and scope | (i) Objective of the study, (ii) scope definition, (iii) productive system, (iv) system boundaries, and (v) functional unit. |
Inventory analysis | (i) Water consumption, (ii) use of fertilizers and pesticides, (iii) greenhouse structure, (iv) energy consumption in air-conditioning work, and (v) harvesting, post-harvesting, and commercialization. |
Life cycle impact assessment | (i) Eutrophication potential, (ii) global warming potential, (iii) acidification potential, (iv) human toxicity potential, (v) ozone depletion potential, and (vi) abiotic depletion potential. |
Interpretation | Decision frameworks and uncertainty analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villagrán, E.; Romero-Perdomo, F.; Numa-Vergel, S.; Galindo-Pacheco, J.R.; Salinas-Velandia, D.A. Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next? Horticulturae 2024, 10, 15. https://doi.org/10.3390/horticulturae10010015
Villagrán E, Romero-Perdomo F, Numa-Vergel S, Galindo-Pacheco JR, Salinas-Velandia DA. Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next? Horticulturae. 2024; 10(1):15. https://doi.org/10.3390/horticulturae10010015
Chicago/Turabian StyleVillagrán, Edwin, Felipe Romero-Perdomo, Stephanie Numa-Vergel, Julio Ricardo Galindo-Pacheco, and Diego Alejandro Salinas-Velandia. 2024. "Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next?" Horticulturae 10, no. 1: 15. https://doi.org/10.3390/horticulturae10010015
APA StyleVillagrán, E., Romero-Perdomo, F., Numa-Vergel, S., Galindo-Pacheco, J. R., & Salinas-Velandia, D. A. (2024). Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next? Horticulturae, 10(1), 15. https://doi.org/10.3390/horticulturae10010015