The Use of Drought-Tolerant Vegetation on Green Roofs: A Method for the Digital Photographic Monitoring of Its Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Vegetation Analysis
2.3. Image Acquisition
2.4. Image Analysis
2.5. Quantification of Vegetation-Covered Areas
2.6. Surveys to Understand the Population’s Preferences
3. Results
3.1. Image Analysis
3.2. Vegetation Analysis
3.3. Responses Obtained from the Survey
4. Discussion
4.1. Image Analysis
4.2. Vegetation Analysis
4.3. Responses Obtained to the Survey
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Darma, I.D.P.; Sutomo, S.; Hanum, S.F.; Iryadi, R.; Rahayu, A. Flowers and Value of Conservation in The Culture of Hindu Community in Bali. Biosaintifika J. Biol. Biol. Educ. 2021, 13, 34–40. [Google Scholar] [CrossRef]
- Friberg, C.; Vasquez, R. (Eds.) Experiencing the Everyday; NSU Press: Copenhagen, Denmark, 2017. [Google Scholar]
- Matthews, P. Scientific Knowledge and the Aesthetic Appreciation of Nature. J. Aesthet. Art Crit. 2002, 60, 37–48. [Google Scholar] [CrossRef]
- Jim, C.Y. An archaeological and historical exploration of the origins of green roofs. Urban For. Urban Green. 2017, 27, 32–42. [Google Scholar] [CrossRef]
- Almeida, C.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Socioeconomic feasibility of green roofs and walls in public buildings: The case study of primary schools in Portugal. Eng. Econ. 2021, 66, 27–50. [Google Scholar] [CrossRef]
- Caldeira Cabral, F. Os Fundamentos da Arquitectura Paisagista (2a); Instituto da Conservação da Natureza: Lisboa, Portugal, 2003. [Google Scholar]
- William, R.; Goodwell, A.; Richardson, M.; Le, P.V.V.; Kumar, P.; Stillwell, A.S. An environmental cost-benefit analysis of alternative green roofing strategies. Ecol. Eng. 2016, 95, 1–9. [Google Scholar] [CrossRef]
- Du Pisani, J.A. Sustainable development–historical roots of the concept. Environ. Sci. 2006, 3, 83–96. [Google Scholar] [CrossRef]
- Ducarme, F. Qu’est-ce que la nature qu’on cherche à conserver? Une approche sémiologique de l’action écologique. Nouv. Perspect. En Sci. Soc. 2019, 14, 23–60. [Google Scholar] [CrossRef]
- Peck, S.W.; Kuhn, M. Design Guidelines for Green Roofs (Ontario Association of Architects); Ontario Association of Architects, Ontario, Canada: 2003. Available online: https://books.google.pt/books?id=YDGrYgEACAAJ (accessed on 5 December 2023).
- Matos Silva, C.; Oliveira Cruz, C.; Teotónio, I. Project GENESIS: An All-inclusive Model to Perform Cost-Benefit Analysis of Green Roofs and Walls. Eur. J. Sustain. Dev. 2019, 8, 85. [Google Scholar] [CrossRef]
- Anico, A. Plantas Autóctones em Coberturas Verdes: Avaliação do Desenvolvimento e Valor Estético vs. Rega e Tipo de Substrato. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2016. [Google Scholar]
- Papafotiou, M.; Pergialioti, N.; Tassoula, L.; Massas, I.; Kargas, G. Growth of Native Aromatic Xerophytes in an Extensive Mediterranean Green Roof as Affected by Substrate Type and Depth and Irrigation Frequency. HortScience 2013, 48, 1327–1333. [Google Scholar] [CrossRef]
- Benvenuti, S.; Bacci, D. Initial agronomic performances of Mediterranean xerophytes in simulated dry green roofs. Urban Ecosyst. 2010, 13, 349–363. [Google Scholar] [CrossRef]
- Carbone, M.; Nigro, G.; Garofalo, G.; Piro, P. Experimental Testing for Evaluating the Influence of Substrate Thickness on the Sub-Surface Runoff of a Green Roof. In Applied Mechanics and Materials; Trans Tech Publications, Ltd.: Bäch, Switzerland, 2015; Volume 737, pp. 705–709. [Google Scholar] [CrossRef]
- Ondoño, S.; Martínez-Sánchez, J.J.; Moreno, J.L. Evaluating the growth of several Mediterranean endemic species in artificial substrates: Are these species suitable for their future use in green roofs? Ecolog. Engin. 2015, 81, 405–417. [Google Scholar] [CrossRef]
- Tassoula, L.; Papafotiou, M.; Liakopoulos, G.; Kargas, G. Growth of the Native Xerophyte Convolvulus cneorum L. on an Extensive Mediterranean Green Roof under Different Substrate Types and Irrigation Regimens. Hortscience 2015, 50, 1118–1124. [Google Scholar] [CrossRef]
- Cascone, S.; Coma, J.; Gagliano, A.; Pérez, G. The evapotranspiration process in green roofs: A review. Build. Environ. 2019, 147, 337–355. [Google Scholar] [CrossRef]
- Klein, P.M.; Coffman, R. Establishment and performance of an experimental green roof under extreme climatic conditions. Sci. Total Environ. 2015, 512–513, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Paço, T.; Cruz De Carvalho, R.; Arsénio, P.; Martins, D. Green Roof Design Techniques to Improve Water Use under Mediterranean Conditions. Urban Sci. 2019, 3, 14. [Google Scholar] [CrossRef]
- Wooster, E.I.F.; Fleck, R.; Torpy, F.; Ramp, D.; Irga, P.J. Urban green roofs promote metropolitan biodiversity: A comparative case study. Build. Environ. 2022, 207, 108458. [Google Scholar] [CrossRef]
- Partridge, D.R.; Clark, J.A. Urban green roofs provide habitat for migrating and breeding birds and their arthropod prey. PLoS ONE 2018, 13, e0202298. [Google Scholar] [CrossRef]
- Azeñas, V.; Janner, I.; Medrano, H.; Gulías, J. Performance evaluation of five Mediterranean species to optimize ecosystem services of green roofs under water-limited conditions. J. Environ. Manag. 2018, 212, 236–247. [Google Scholar] [CrossRef]
- Martini, A.N.; Tassoula, L.; Papafotiou, M. Adaptation of Salvia fruticosa, S. officinalis, S. ringens and interspecific hybrids in an extensive green roof under two irrigation frequencies. Notulae 2022, 50, 12767. [Google Scholar] [CrossRef]
- Papafotiou, M.; Martini, A.N.; Tassoula, L.; Stylias, E.G.; Kalantzis, A.; Dariotis, E. Acclimatization of Mediterranean native sages (Salvia spp.) and interspecific hybrids in an urban green roof under regular and reduced irrigation. Sustainability 2022, 14, 4978. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M.; Massas, I.; Chorianopoulou, N. Using the Halophyte Crithmum maritimum in Green Roofs for Sustainable Urban Horticulture: Effect of Substrate and Nutrient Content Analysis including Potentially Toxic Elements. Sustainability 2022, 14, 4713. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M.; Massas, I.; Chorianopoulou, N. Growing of the Cretan Therapeutic Herb Origanum Dictamnus in The Urban Fabric: The Effect of Substrate and Cultivation Site on Plant Growth and Potential Toxic Element Accumulation. Plants 2023, 12, 336. [Google Scholar] [CrossRef] [PubMed]
- Leotta, L.; Toscano, S.; Romano, D. Which Plant Species for Green Roofs in the Mediterranean Environment? Plants 2023, 12, 3985. [Google Scholar] [CrossRef] [PubMed]
- Cruz De Carvalho, R.; Varela, Z.; Do Paço, T.A.; Branquinho, C. Selecting Potential Moss Species for Green Roofs in the Mediterranean Basin. Urban Sci. 2019, 3, 57. [Google Scholar] [CrossRef]
- Esfahani, R.E.; Paço, T.A.; Martins, D.; Arsénio, P. Increasing the resistance of Mediterranean extensive green roofs by using native plants from old ceilings and walls. Ecol. Eng. 2022, 178, 106576. [Google Scholar] [CrossRef]
- Figueiredo, C. Desenvolvimento de Tapetes de Vegetação com Espécies Autóctones com Potencial Para Instalação em Coberturas Verdes. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2020. [Google Scholar]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Schindelin, J.; Cardona, A.; Seung, H.S. Trainable_Segmentation: Release v3.1.Zenodo. 2016. Available online: https://zenodo.org/record/Acedido (accessed on 14 March 2022).
- Rocha, B.; Paço, T.; Luz, A.; Palha, P.; Milliken, S.; Kotzen, B.; Branquinho, C.; Pinho, P.; De Carvalho, R. Are Biocrusts and Xerophytic Vegetation a Viable Green Roof Typology in a Mediterranean Climate? A Comparison between Differently Vegetated Green Roofs in Water Runoff and Water Quality. Water 2021, 13, 94. [Google Scholar] [CrossRef]
- Martins, D. Estabelecimento de Coberturas Verdes com Plantas Autóctones na Região de Lisboa Desenvolvimento de Técnica Inovadora de Instalação de Vegetação. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2018. [Google Scholar]
- Zhang, R.; Gong, J.; Ma, S.; Firdaus, A.; Xu, J. Automatic Coding Mechanisms for Open-Ended Questions in Journalism Surveys: An Application Guide. Digit. Journal. 2023, 11, 321–342. [Google Scholar] [CrossRef]
- Driouech, N.; Abou Fayad, F.; Ghanem, A.; Al-Bitar, L. Agronomic performance of annual self-reseeding legumes and their self-establishment potential in the Apulia region of Italy. In Cultivating the Future Based on Science: Proceeding of the Second Conference of the International Society of Organic Agriculture Research (ISOFAR); ISOFAR: Bonn, Germany, 2008; pp. 396–399. [Google Scholar]
- Douglas, G.B.; Foote, A.G. Performance of several annual legumes which have potential for soil conservation. New Zealand J. Exp. Agric. 1985, 13, 13–17. [Google Scholar] [CrossRef]
- Petrova, S.; Chipilski, R. Agrobiological and physiological evaluation of the accessions of the Lathyrus sp. Collection from the Genebank in Sadovo. Phytol. Balc. 2021, 26, 457–460. [Google Scholar] [CrossRef]
- Boigné, A.; Bureau, F.; Husté, A.; Levesque, S.; Delorme, A.; Quillet, L.; Langlois, E. Effects of waterlogging levels on Holcus lanatus response traits in different created topsoils. Flora 2017, 234, 106–118. [Google Scholar] [CrossRef]
- Becker, T.; Isselstein, J.; Jürschik, R.; Benke, M.; Kayser, M. Performance of Modern Varieties of Festuca arundinacea and Phleum pratense as an Alternative to Lolium perenne in Intensively Managed Sown Grasslands. Agronomy 2020, 10, 540. [Google Scholar] [CrossRef]
- Boswell, C.C.; Lucas, R.J.; Lonati, M.; Fletcher, A.; Moot, D.J. The ecology of four annual clovers adventive in New Zealand grasslands. NZGA Res. Pract. Ser. 2003, 11, 175–184. [Google Scholar] [CrossRef]
- Bates, A.J.; Sadler, J.P.; Mackay, R. Vegetation development over four years on two green roofs in the UK. Urban For. Urban Green. 2013, 12, 98–108. [Google Scholar] [CrossRef]
- Vestrella, A.; Savé, R.; Biel, C. An Experimental Study in Simulated Greenroof in Mediterranean Climate. J. Agric. Sci. 2015, 7, 95. [Google Scholar] [CrossRef]
- Vanstockem, J.; Somers, B.; Hermy, M. Weeds and gaps on extensive green roofs: Ecological insights and recommendations for design and maintenance. Urban For. Urban Green. 2019, 46, 126484. [Google Scholar] [CrossRef]
- Liberalesso, T.; Silva, C.M.; Cruz, C.O. Assessing financial subsidies for green roofs: A micro-scale analysis of Lisbon (Portugal). Cities 2023, 137, 104295. [Google Scholar] [CrossRef]
NativeScapeGR (2014) | ApiWall (2018) | ApiMat (2020) |
---|---|---|
Brachypodium phoenicoides | Antirrhinum linkianum | Briza maxima |
Brachythecium plumosum | Asphodelus fistulosus | Sedum sediforme |
Homalothecium | Briza maxima | Silene scabriflora |
Lavandula stoechas | Capsella bursa-pastoris | Stachys germanica |
Neckera | Centranthus ruber | Teucrium scorodonia |
Pleurochaete squarrosa | Centranthus calcitrapae | Trifolium angustifolium |
Rosmarinus officinalis | Papaver rhoeas | Trifolium incarnatum |
Phagnalon saxatile | ||
Pleurochaete squarrosa | ||
Reichardia picroides | ||
Sanguisorba verrucosa | ||
Sedum sediforme | ||
Silene scabriflora | ||
Stachys germanica | ||
Teucrium scorodonia | ||
Trifolium angustifolium |
Species/Test Beds | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Antirrhinum linkianum | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ||||
Asphodelus fistulosus | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | |||||
Brachypodium phoenicoides | ∙ | ∙ | ||||||||||
Brachythecium plumosum | ∙ | ∙ | ||||||||||
Briza maxima | ∙ | ∙ | ∙ | ∙ | ∙ | |||||||
Capsella bursa-pastoris | ∙ | ∙ | ∙ | ∙ | ||||||||
Centranthus calcitrapae | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | |||||
Centranthus ruber | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ||||
Homalothecium | ∙ | |||||||||||
Lavandula stoechas | ∙ | ∙ | ||||||||||
Papaver rhoeas | ∙ | ∙ | ∙ | ∙ | ||||||||
Neckera | ∙ | |||||||||||
Phagnalon saxatile | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | |||||
Pleurochaete squarrosa | ∙ | ∙ | ∙ | ∙ | ||||||||
Reichardia picroides | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | |||||
Rosmarinus officinalis | ∙ | ∙ | ||||||||||
Sanguisorba verrucosa | ∙ | ∙ | ∙ | ∙ | ||||||||
Sedum sediforme | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | ∙ | |||
Silene scabriflora | ∙ | ∙ | ∙ | ∙ | ||||||||
Stachys germanica | ∙ | ∙ | ∙ | ∙ | ∙ | |||||||
Teucrium scorodonia | ∙ | ∙ | ∙ | ∙ | ∙ | |||||||
Trifolium angustifolium | ∙ | ∙ | ∙ | ∙ | ||||||||
Trifolium incarnatum | ∙ |
Test Bed | Date | North Area % (m2) | South Area % (m2) | Total Area (m2) |
---|---|---|---|---|
1 | 22 December | 45.25 (0.57) | 37.10 (0.46) | 1.03 |
20 June | 53.84 (0.67) | 44.13 (0.55) | 1.22 | |
2 | 22 December | 21.50 (0.27) | 30.20 (0.38) | 0.65 |
20 June | 42.03 (0.53) | 57.75 (0.72) | 1.25 | |
3 | 22 December | 31.80 (0.40) | 31.80 (0.40) | 0.80 |
20 June | 38.91 (0.49) | 60.70 (0.79) | 1.28 | |
4 | 22 December | 24.00 (0.30) | 19.40 (0.24) | 0.54 |
20 June | 42.43 (0.53) | 55.43 (0.69) | 1.22 | |
5 | 22 December | 40.70 (0.51) | 22.80 (0.29) | 0.80 |
20 June | 31.97 (0.40) | 29.61 (0.37) | 0.77 | |
6 | 22 December | 65.0 (0.81) | 32.30 (0.40) | 1.21 |
20 June | 51.49 (0.64) | 50.71 (0.63) | 1.27 | |
7 | 22 December | 25.10 (0.31) | 24.30 (0.30) | 0.61 |
20 June | 30.99 (0.39) | 55.79 (0.70) | 1.09 | |
8 | 22 December | 23.20 (0.29) | 34.70 (0.43) | 0.72 |
20 June | 45.79 (0.57) | 61.48 (0.77) | 1.34 | |
9 | 22 December | 28.80 (0.36) | 17.70 (0.22) | 0.58 |
20 June | 63.57 (0.79) | 56.65 (0.71) | 1.50 | |
10 | 22 December | 17.40 (0.22) | 12.20 (0.15) | 0.37 |
20 June | 47.17 (0.59) | 61.08 (0.76) | 1.35 | |
11 | 22 December | 21.20 (0.27) | 29.20 (0.37) | 0.64 |
20 June | 44.00 (0.55) | 41.24 (0.52) | 1.07 | |
12 | 22 December | 9.40 (0.12) | 19.50 (0.24) | 0.36 |
20 June | 27.19 (0.34) | 38.31 (0.48) | 0.82 | |
Average | 36.36 | 38.50 | 0.94 | |
Standard deviation | 14.34 | 15.66 | 0.34 |
NativeScapeGR (2014) | ApiWall (2018) | ApiMat (2020) |
---|---|---|
Lavandula stoechas | Asphodelus fistulosus | Briza maxima |
Rosmarinus officinalis | Antirrhinum linkianum | Stachys germanica |
Brachypodium phoenicoides | Briza maxima | Teucrium scorodonia |
Centranthus ruber | Trifolium angustifolium | |
Papaver rhoeas | ||
Reichardia picroides | ||
Stachys germanica | ||
Teucrium scorodonia | ||
Trifolium angustifolium |
Test Bed | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Installed vegetation | L. stoechas | T. angustifolium | A. linkianum | A. fistulosus | L. stoechas | B. maxima |
R. officinalis | T. scorodonia | A. fistulosus | T. angustifolium | |||
T. angustifolium | R. picroides | T. scorodonia | ||||
T. scorodonia | B. maxima | |||||
Spontaneous vegetation | V. myuros | L. luteoalbum | G. purpureum | L. luteoalbum | L. luteoalbum | A. arvensis |
C. grandiflorum | V. myuros | L. luteoalbum | L. tingitanus | V. myuros | B. phoenicoides | |
T. angustifolium | V. myuros | T. angustifolium | L. tingitanus | |||
T. angustifolium | V. myuros | |||||
Test bed | 7 | 8 | 9 | 10 | 11 | 12 |
Installed vegetation | B. phoenicoides | B. maxima | R. picroides | A. fistulosus | ||
P. rhoeas | R. picroides | R. picroides | ||||
S. germanica | T. angustifolium | |||||
T. angustifolium | T. scorodonia | |||||
T. scorodonia | ||||||
Spontaneous vegetation | A. linkianum | D. viscosa | B. maxima | B. madritensis | A. linkianum | B. phoenicoides |
G. purpureum | L. luteoalbum | G. purpureum | C. ruber | B. phoenicoides | B. madritensis | |
R. picroides | L. tingitanus | L. luteoalbum | D. viscosa | B. madritensis | G. purpureum | |
V. myuros | S. vulgaris | R. officinalis | G. purpureum | G. purpureum | R. picroides | |
V. myuros | S. vulgaris | L. luteoalbum | H. lanatus | T. angustifolium | ||
T. scorodonia | H. lanatus | R. picroides | T. arvense | |||
T. angustifolium | T. angustifolium | T. arvense | V. myuros | |||
T. arvense | V. myuros | V. myuros | ||||
V. myuros |
Question Number | Calculated χ2 | df | p-Value |
---|---|---|---|
3 | 78.63 | 1 | 2.2 × 10−16 |
4 | 78.63 | 1 | 2.2 × 10−16 |
6 | 105.12 | 2 | 2.2 × 10−16 |
7 | 3.65 | 1 | 0.0562 |
8 | 88.44 | 2 | 2.2 × 10−16 |
9 | 34.81 | 2 | 2.8 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, M.; Arsénio, P.; Paço, T.A.d. The Use of Drought-Tolerant Vegetation on Green Roofs: A Method for the Digital Photographic Monitoring of Its Development. Horticulturae 2024, 10, 106. https://doi.org/10.3390/horticulturae10010106
Rodrigues M, Arsénio P, Paço TAd. The Use of Drought-Tolerant Vegetation on Green Roofs: A Method for the Digital Photographic Monitoring of Its Development. Horticulturae. 2024; 10(1):106. https://doi.org/10.3390/horticulturae10010106
Chicago/Turabian StyleRodrigues, Madalena, Pedro Arsénio, and Teresa Afonso do Paço. 2024. "The Use of Drought-Tolerant Vegetation on Green Roofs: A Method for the Digital Photographic Monitoring of Its Development" Horticulturae 10, no. 1: 106. https://doi.org/10.3390/horticulturae10010106
APA StyleRodrigues, M., Arsénio, P., & Paço, T. A. d. (2024). The Use of Drought-Tolerant Vegetation on Green Roofs: A Method for the Digital Photographic Monitoring of Its Development. Horticulturae, 10(1), 106. https://doi.org/10.3390/horticulturae10010106