Solid-State Fermentation as a Sustainable Tool for Extracting Phenolic Compounds from Cascalote Pods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Physicochemical Characterization of Cascalote Pods
2.3. Microorganisms
2.4. Solid-State Fermentation (SSF)
2.5. Evaluation of the SSF Factors for the Total Polyphenol Extraction
2.6. Analytical Analysis
2.6.1. Determination of Polyphenol Content
2.6.2. Antioxidant Activity
2.6.3. Identification of Phenolic Compounds
2.7. Experimental Design
3. Results
3.1. Physicochemical Characterization of Cascalote Pods
3.2. Kinetics of TPC Extraction and AA Using Aspergillus Strains
3.3. Significant Factors for TPC Release by SSF
3.4. Effect of SSF on Chemical Composition, Tannin Content, and Antioxidant Activity
3.5. Identification of Phenolic Compounds by RP-HPLC-ESI-MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palma García, J.M. Caesalpinia coriaria (Jacq.) Wild. In Recursos Arboreos y Arbustivos Tropicales; Palma García, J.M., González-Reveles, C., Eds.; Universidad de Colima: Colima, México, 2018; pp. 30–34. Available online: http://ww.ucol.mx/content/publicacionesenlinea/adjuntos/Recursos-arboreos-y-arbustivos-tropicales_462.pdf (accessed on 17 July 2023).
- Sánchez-Carranza, J.N.; Alvarez, L.; Marquina-Bahena, S.; Salas-Vidal, E.; Cuevas, V.; Jiménez, E.W.; Veloz G, R.A.; Carraz, M.; González-Maya, L. Phenolic Compounds Isolated from Caesalpinia coriaria Induce S and G2/M Phase Cell Cycle Arrest Differentially and Trigger Cell Death by Interfering with Microtubule Dynamics in Cancer Cell Lines. Molecules 2017, 22, 666. [Google Scholar] [CrossRef]
- Jeeva, K.; Thiyagarajan, M.; Elangovan, V.; Geetha, N.; Venkatachalam, P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind. Crops Prod. 2014, 52, 714–720. [Google Scholar] [CrossRef]
- Olmedo-Juárez, A.; Briones-Robles, T.I.; Zaragoza-Bastida, A.; Zamilpa, A.; Ojeda-Ramírez, D.; Mendoza de Gives, P.; Olivares-Pérez, J.; Rivero-Perez, N. Antibacterial activity of compounds isolated from Caesalpinia coriaria (Jacq) Willd against important bacteria in public health. Microb. Pathog. 2019, 136, 103660. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, Y.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin, a promising medicinal herbal agent. Biomed. Pharmacother. 2018, 99, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresour. Technol. 2007, 98, 2963–2967. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Cano y Postigo, L.O.; Jacobo-Velázquez, D.A.; Guajardo-Flores, D.; Garcia Amezquita, L.E.; García-Cayuela, T. Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Biosci. 2021, 41, 100926. [Google Scholar] [CrossRef]
- Huynh, N.T.; Van Camp, J.; Smagghe, G.; Raes, K. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review. Int. J. Mol. Sci. 2014, 15, 19369–19388. [Google Scholar] [CrossRef]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzmán, N.; Ascacio-Valdés, J.; Serna-Cock, L.; dos Santos Correia, M.T.; Contreras-Esquivel, J.C.; Aguilar, C.N. Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed: A promising source of natural antioxidants. LWT 2019, 112, 108236. [Google Scholar] [CrossRef]
- Cerda-Cejudo, N.D.; Buenrostro-Figueroa, J.J.; Sepúlveda, L.; Torres-Leon, C.; Chávez-González, M.L.; Ascacio-Valdés, J.A.; Aguilar, C.N. Recovery of ellagic acid from mexican rambutan peel by solid-state fermentation-assisted extraction. Food Bioprod. Process. 2022, 134, 86–94. [Google Scholar] [CrossRef]
- Xue, P.; Liao, W.; Chen, Y.; Xie, J.; Chang, X.; Peng, G.; Huang, Q.; Wang, Y.; Sun, N.; Yu, Q. Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger. LWT 2022, 161, 113387. [Google Scholar] [CrossRef]
- Buenrostro-Figueroa, J.J.; Nevárez-Moorillón, G.V.; Chávez-González, M.L.; Sepúlveda, L.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Pedroza-Islas, R.; Huerta-Ochoa, S.; Arely Prado-Barragán, L. Improved Extraction of High Value-Added Polyphenols from Pomegranate Peel by Solid-State Fermentation. Fermentation 2023, 9, 530. [Google Scholar] [CrossRef]
- Paz-Arteaga, S.L.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Cadena-Chamorro, E.; Serna-Cock, L.; Aguilar-González, M.A.; Ramírez-Guzmán, N.; Torres-León, C. Bioprocessing of pineapple waste for sustainable production of bioactive compounds using solid-state fermentation. Innov. Food Sci. Emerg. Technol. 2023, 85, 103313. [Google Scholar] [CrossRef]
- AOAC, I.; Latimer, G.W. Official Methods of Analysis of AOAC, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Orzua, M.C.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodriguez, R.; de la Garza, H.; Teixeira, J.A.; Aguilar, C.N. Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind. Crops Prod. 2009, 30, 24–27. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Aguilar-Zárate, P.; Rodríguez-Herrera, R.; Aguilar, C.N. Microplate Quantification of Total Phenolic Content from Plant Extracts Obtained by Conventional and Ultrasound Methods. Phytochem. Anal. 2014, 25, 439–444. [Google Scholar] [CrossRef]
- Meléndez, N.P.; Nevárez-Moorillón, V.; Rodriguez-Herrera, R.; Espinoza, J.C.; Aguilar, C.N. A microassay for quantification of 2,2-diphenyl-1-picrylhydracyl (DPPH) free radical scavening. Afr. J. Biochem. Res. 2014, 8, 14–18. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Gutiérrez, E.; Carrasco-Molinar, O.; Tirado-Gallegos, J.M.; Levario-Gómez, A.; Chávez-González, M.L.; Baeza-Jiménez, R.; Buenrostro-Figueroa, J.J. Evaluation of green extraction processes, lipid composition and antioxidant activity of pomegranate seed oil. J. Food Meas. Charact. 2021, 15, 2098–2107. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Mora-Santacruz, A.; Roman-Miranda, M.L.; González-Cueva, G.; Barrientos-Ramírez, L. Chemical composition of cascalote Caesalpinia coriaria (Jacq.) Willd. and diversity of uses in the rural areas of dry tropics. Rev. Investig. Desarro. 2018, 4, 24–28. Available online: https://www.ecorfan.org/spain/researchjournals/Investigacion_y_Desarrollo/vol4num12/Revista_de_Investigacion_y_Desarrollo_V4_N12_4.pdf (accessed on 20 July 2023).
- Martins, Z.E.; Pinho, O.; Ferreira, I.; Jekle, M.; Becker, T. Development of fibre-enriched wheat breads: Impact of recovered agroindustrial by-products on physicochemical properties of dough and bread characteristics. Eur. Food Res. Technol. 2017, 243, 1973–1988. [Google Scholar] [CrossRef]
- Martínez-Ávila, G.C.; Aguilera-Carbó, A.F.; Rodríguez-Herrera, R.; Aguilar, C.N. Fungal enhancement of the antioxidant properties of grape waste. Ann. Microbiol. 2012, 62, 923–930. [Google Scholar] [CrossRef]
- Buenrostro-Figueroa, J.; Ascacio-Valdés, A.; Sepúlveda, L.; De La Cruz, R.; Prado-Barragán, A.; Aguilar-González, M.A.; Rodríguez, R.; Aguilar, C.N. Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprod. Process. 2014, 92, 376–382. [Google Scholar] [CrossRef]
- Buenrostro-Figueroa, J.J.; Velázquez, M.; Flores-Ortega, O.; Ascacio-Valdés, J.A.; Huerta-Ochoa, S.; Aguilar, C.N.; Prado-Barragán, L.A. Solid state fermentation of fig (Ficus carica L.) by-products using fungi to obtain phenolic compounds with antioxidant activity and qualitative evaluation of phenolics obtained. Process Biochem. 2017, 62, 16–23. [Google Scholar] [CrossRef]
- Gowthaman, M.K.; Krishna, C.; Moo-Young, M. Fungal solid state fermentation—An overview. In Applied Mycology and Biotechnology; Khachatourians, G.G., Arora, D.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 1, pp. 305–352. [Google Scholar] [CrossRef]
- Stoilova, I.; Krastanov, A.; Yanakieva, I.; Kratchanova, M.; Yemendjiev, H. Biodegradation of mixed phenolic compounds by Aspergillus awamori NRRL 3112. Int. Biodeterior. Biodegrad. 2007, 60, 342–346. [Google Scholar] [CrossRef]
- Vargas-Sánchez, R.D.; Torres-Martínez, B.M.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A.; Esqueda, M. Extraction of phenolic compounds from agro-industrial by-products by fungal fermentation with potential use as additives for meat and meat products. A review. Biotecnia 2021, 23, 66–77. [Google Scholar] [CrossRef]
- Jericó Santos, T.R.; Santos Vasconcelos, A.G.; Lins de Aquino Santana, L.C.; Gualberto, N.C.; Buarque Feitosa, P.R.; Pires de Siqueira, A.C. Solid-state fermentation as a tool to enhance the polyphenolic compound contents of acidic Tamarindus indica by-products. Biocatal. Agric. Biotechnol. 2020, 30, 101851. [Google Scholar] [CrossRef]
- da Costa Maia, I.; Thomaz dos Santos D’Almeida, C.; Guimarães Freire, D.M.; d’Avila Costa Cavalcanti, E.; Cameron, L.C.; Furtado Dias, J.; Simões Larraz Ferreira, M. Effect of solid-state fermentation over the release of phenolic compounds from brewer’s spent grain revealed by UPLC-MSE. LWT 2020, 133, 110136. [Google Scholar] [CrossRef]
- Krishna, C. Solid-State Fermentation Systems—An Overview. Crit. Rev. Biotechnol. 2005, 25, 1–30. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Aguilera-Carbó, A.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Martínez-Hernández, J.L.; Aguilar, C.N. Optimization of ellagic acid accumulation by Aspergillus niger GH1 in solid state culture using pomegranate shell powder as a support. Process Biochem. 2012, 47, 2199–2203. [Google Scholar] [CrossRef]
- Sirisansaneeyakul, S.; Jitbanjongkit, S.; Prasomsart, N.; Luangpituksa, P. Production of β-Fructofuranosidase from Aspergillus niger ATCC 20611. Agric. Nat. Resour. 2000, 34, 378–386. [Google Scholar]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef] [PubMed]
- Espitia-Hernández, P.; Ruelas-Chacón, X.; Chávez-González, M.L.; Ascacio-Valdés, J.A.; Flores-Naveda, A.; Sepúlveda-Torre, L. Solid-State Fermentation of Sorghum by Aspergillus oryzae and Aspergillus niger: Effects on Tannin Content, Phenolic Profile, and Antioxidant Activity. Foods 2022, 11, 3121. [Google Scholar] [CrossRef]
- Sánchez, N.; Mendoza, G.D.; Martínez, J.A.; Hernández, P.A.; Camacho Diaz, L.M.; Lee-Rangel, H.A.; Vazquez, A.; Flores Ramirez, R. Effect of Caesalpinia coriaria Fruits and Soybean Oil on Finishing Lamb Performance and Meat Characteristics. BioMed Res. Int. 2018, 2018, 9486258. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Morales, D.; Cubides-Cárdenas, J.; Montenegro, A.C.; Martínez, C.A.; Ortíz-Cuadros, R.; Rios-de Álvarez, L. Anthelmintic effect of four extracts obtained from Caesalpinia coriaria foliage against the eggs and larvae of Haemonchus contortus. Rev. Bras. Parasitol. Vet. 2021, 30, e002521. [Google Scholar] [CrossRef]
- Pineda-Peña, E.A.; Capistran-Amezcua, D.; Reyes-Ramírez, A.; Xolalpa-Molina, S.; Chávez-Piña, A.E.; Figueroa, M.; Navarrete, A. Gastroprotective effect methanol extract of Caesalpinia coriaria pods against indomethacin- and ethanol-induced gastric lesions in Wistar rats. J. Ethnopharmacol. 2023, 305, 116057. [Google Scholar] [CrossRef]
- Pájaro González, Y.; Méndez Cuadro, D.; Fernández Daza, E.; Franco Ospina, L.A.; Redondo Bermúdez, C.; Díaz Castillo, F. Inhibitory activity of the protein carbonylation and hepatoprotective effect of the ethanol-soluble extract of Caesalpinia coriaria Jacq. Orient. Pharm. Exp. Med. 2016, 16, 225–232. [Google Scholar] [CrossRef]
- García-Hernández, C.; Rojo-Rubio, R.; Olmedo-Juárez, A.; Zamilpa, A.; Mendoza de Gives, P.; Antonio-Romo, I.A.; Aguilar-Marcelino, L.; Arece-García, J.; Tapia-Maruri, D.; González-Cortazar, M. Galloyl derivatives from Caesalpinia coriaria exhibit in vitro ovicidal activity against cattle gastrointestinal parasitic nematodes. Exp. Parasitol. 2019, 200, 16–23. [Google Scholar] [CrossRef]
- Rangel-López, L.; Rivero-Perez, N.; Valladares-Carranza, B.; Olmedo-Juárez, A.; Delgadillo-Ruiz, L.; Vega-Sánchez, V.; Hori-Oshima, S.; Nassan, M.A.; Batiha, G.E.; Zaragoza-Bastida, A. Antibacterial Potential of Caesalpinia coriaria (Jacq) Willd Fruit against Aeromonas spp. of Aquaculture Importance. Animals 2022, 12, 511. [Google Scholar] [CrossRef]
- García-Hernández, C.; Rojo-Rubio, R.; Gives, P.M.-d.; González-Cortazar, M.; Zamilpa, A.; Mondragón-Ancelmo, J.; Villa-Mancera, A.; Olivares-Pérez, J.; Tapia-Maruri, D.; Olmedo-Juárez, A. In vitro and in vivo anthelmintic properties of Caesalpinia coriaria fruits against Haemonchus contortus. Exp. Parasitol. 2022, 242, 108401. [Google Scholar] [CrossRef] [PubMed]
- Wulansari, A.; Elya, B.; Noviani, A. Arginase Inhibitory and Antioxidant Activities of Caesalpinia coriaria (Jacq.) Willd. Bark Extract. Pharmacogn. J. 2018, 10, 1174–1179. [Google Scholar] [CrossRef]
- Pitre-Ruiz, L.; Galván-Ayala, D.; Castro-Uriana, O.; Ávila Mendez, K.J.; Lopez-Pazos, S.A. In vitro antimicrobial activity of Caesalpinia coriaria (Jacq.) Willd extracts on Streptococcus pyogenes and Candida albicans. Vitae 2021, 28, 1–15. [Google Scholar] [CrossRef]
Treatment | A | B | C | D | E | F | G |
1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 |
2 | 1 | −1 | −1 | −1 | −1 | 1 | 1 |
3 | −1 | 1 | −1 | −1 | 1 | −1 | 1 |
4 | 1 | 1 | −1 | 1 | −1 | −1 | −1 |
5 | −1 | −1 | 1 | 1 | −1 | −1 | 1 |
6 | 1 | −1 | 1 | −1 | 1 | −1 | −1 |
7 | −1 | 1 | 1 | −1 | −1 | 1 | −1 |
8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Code | Factor | Low level (−1) | High level (1) | ||||
A | Inoculum (spores/gdw) | 1 × 106 | 1 × 107 | ||||
B | Temperature (°C) | 30 | 40 | ||||
C | Moisture (%) | 50 | 60 | ||||
D | KH2PO4 (g/L) | 1.52 | 3.04 | ||||
E | NaNO3 (g/L) | 3.04 | 7.65 | ||||
F | MgSO4•7H2O (g/L) | 1.52 | 3.04 | ||||
G | KCl (g/L) | 1.52 | 3.04 |
Component | Content |
---|---|
Moisture (% w/w) | 3.36 ± 0.15 |
Fat (g/100 gdw) | 0.65 ± 0.09 |
Fiber (g/100 gdw) | 6.54 ± 0.25 |
Protein (g/100 gdw) | 3.44 ± 0.13 |
Ash (g/100 gdw) | 2.13 ± 0.21 |
Carbohydrates (g/100 gdw) | 87.24 ± 0.96 |
Water absorption capacity (g of gel/gdw) | 2.97 ± 0.07 |
Critical humidity point (%) | 3.75 ± 0.29 |
Maximum moisture of cascalote pods (%) | 79.33 ± 2.08 |
Variables | HP | CP | TPC | ABTS | DPPH | FRAP |
---|---|---|---|---|---|---|
HP | 1 | 0.94 * | 0.98 * | 0.94 * | 0.94 * | 0.82 * |
CP | 1 | 0.98 * | 0.93 * | 0.94 * | 0.84 * | |
TPC | 1 | 0.95 * | 0.95 * | 0.85 * | ||
ABTS | 1 | 0.95 * | 0.87 * | |||
DPPH | 1 | 0.95 * | ||||
FRAP | 1 |
Treatment | A | B | C | D | E | F | G | TPC (mg/gdw) | ABTS (mgTE/gdw) | DPPH (mgTE/gdw) | FRAP (mgFE+2/gdw) |
1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 71.62 ± 2.23 f | 271.46 ± 3.15 de | 237.32 ± 5.51 f | 735.78 ± 12.85 d |
2 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | 62.95 ± 3.51 g | 247.90 ± 15.01 e | 226.25 ± 7.39 f | 737.49 ± 15.09 d |
3 | −1 | 1 | −1 | −1 | 1 | −1 | 1 | 99.88 ± 1.96 c | 380.68 ± 19.01 b | 365.92 ± 4.54 c | 945.92 ± 55.67 c |
4 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 79.48 ± 0.52 e | 294.85 ± 8.28 cd | 297.58 ± 6.97 e | 800.07 ± 53.24 d |
5 | −1 | −1 | 1 | 1 | −1 | −1 | 1 | 92.55 ± 1.45 d | 384.55 ± 15.28 b | 345.96 ± 9.63 cd | 925.42 ± 39.09 c |
6 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 124.17 ± 1.94 a | 447.64 ± 5.81 a | 498.46 ± 13.15 a | 1251.13 ± 29.45 a |
7 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | 114.23 ± 2.67 b | 438.81 ± 14.00 a | 452.64 ± 3.94 b | 1121.07 ± 44.45 b |
8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 71.84 ± 2.78 f | 320.19 ± 14.71 c | 329.10 ± 15.32 d | 1019 ± 52.78 bc |
Code | Factor | Low level (−1) | High level (1) | ||||||||
A | Inoculum (spores/gdw) | 1 × 106 | 1 × 107 | ||||||||
B | Temperature (°C) | 30 | 40 | ||||||||
C | Moisture (%) | 50 | 60 | ||||||||
D | KH2PO4 (g/L) | 1.52 | 3.04 | ||||||||
E | NaNO3 (g/L) | 3.04 | 7.65 | ||||||||
F | MgSO4•7H2O (g/L) | 1.52 | 3.04 | ||||||||
G | KCl (g/L) | 1.52 | 3.04 |
Parameter/Treatment | Control (0 h) | Treatment 6 (12 h) |
---|---|---|
Moisture (g/100 gdw) | 4.90 ± 0.04 b | 5.40 ± 0.20 a |
Fat (g/100 gdw) | 0.23 ± 0.05 b | 0.34 ± 0.10 a |
Fiber (g/100 gdw) | 5.54 ± 0.23 a | 1.77 ± 0.12 b |
Protein (g/100 gdw) | 3.24 ± 0.15 b | 3.59 ± 0.10 a |
Ash (g/100 gdw) | 52.88 ± 0.95 b | 59.28 ± 0.93 a |
Carbohydrates (g/100 gdw) | 38.11 ± 1.95 a | 35.02 ± 1.76 b |
Hydrolyzed polyphenols (mgGAE/gdw) | 45.76 b | 76.22 a |
Condensed polyphenols (mgCE/gdw) | 10.97 b | 47.95 a |
Total polyphenol content (mg/gdw) | 56.73 b | 124.17 a |
Antioxidant activity: | ||
DPPH (mgTE/gdw) | 266.63 b | 444.64 a |
ABTS (mgTE/gdw) | 258.18 b | 498.46 a |
FRAP (mgFe+2/gdw) | 354.03 b | 551.13 a |
# | RT | [M-H]− | Bioactive Compound | Molecular Formula | Family | 0 h | 12 h SSF |
---|---|---|---|---|---|---|---|
UA | UA | ||||||
1 | 10.41 | 342.5 | 5-O-Galloylquinic acid | C14H16O10 | Hydroxybenzoic acids | 0.026 | 0.343 |
2 | 15.02 | 798.4 | Ellagic acid derivate | Hydroxybenzoic acids | 0.136 | 1.539 | |
3 | 17.64 | 494.7 | Unidentified | 0.373 | 2.479 | ||
4 | 18.51 | 1118.1 | Unidentified | 0.384 | 2.451 | ||
5 | 20.51 | 632.6 | Corilagin | C27H22O18 | Ellagitannins | 0.747 | 2.501 |
6 | 24.18 | 782.4 | Gallagyl-hexoside | C34H22O22 | Ellagitannins | 0.338 | ND |
7 | 24.62 | 968.1 | Lagerstannin B derivate | Ellagitannins | ND | 2.458 | |
8 | 25.79 | 952.2 | Geraniin | C41H28O27 | Ellagitannins | 0.377 | 2.307 |
9 | 28.84 | 300.6 | Ellagic acid | C14H6O8 | Hydroxybenzoic acid dimers | 0.247 | 2.155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Cárdenas, F.; Ochoa-Reyes, E.; Baeza-Jiménez, R.; Tafolla-Arellano, J.C.; Ascacio-Valdés, J.A.; Buenrostro-Figueroa, J.J. Solid-State Fermentation as a Sustainable Tool for Extracting Phenolic Compounds from Cascalote Pods. Fermentation 2023, 9, 823. https://doi.org/10.3390/fermentation9090823
López-Cárdenas F, Ochoa-Reyes E, Baeza-Jiménez R, Tafolla-Arellano JC, Ascacio-Valdés JA, Buenrostro-Figueroa JJ. Solid-State Fermentation as a Sustainable Tool for Extracting Phenolic Compounds from Cascalote Pods. Fermentation. 2023; 9(9):823. https://doi.org/10.3390/fermentation9090823
Chicago/Turabian StyleLópez-Cárdenas, Francisco, Emilio Ochoa-Reyes, Ramiro Baeza-Jiménez, Julio C. Tafolla-Arellano, Juan A. Ascacio-Valdés, and José J. Buenrostro-Figueroa. 2023. "Solid-State Fermentation as a Sustainable Tool for Extracting Phenolic Compounds from Cascalote Pods" Fermentation 9, no. 9: 823. https://doi.org/10.3390/fermentation9090823
APA StyleLópez-Cárdenas, F., Ochoa-Reyes, E., Baeza-Jiménez, R., Tafolla-Arellano, J. C., Ascacio-Valdés, J. A., & Buenrostro-Figueroa, J. J. (2023). Solid-State Fermentation as a Sustainable Tool for Extracting Phenolic Compounds from Cascalote Pods. Fermentation, 9(9), 823. https://doi.org/10.3390/fermentation9090823