Physicochemical and Organoleptic Differences in Chardonnay Chilean Wines after Ethanol Reduction Practises: Pre-Fermentative Water Addition or Metschnikowia pulcherrima
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Alcoholic Fermentation
2.2. Oenological Parameters
2.3. Analysis of Volatile Compounds
2.4. Determination of Soluble Polysaccharides
2.5. Analysis of Low-Molecular-Mass Phenolic Compounds
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results
3.1. Alcoholic Fermentation Kinetics
3.2. Chemical General Analysis
3.3. Volatile Compounds in Wines
3.4. Soluble Polysaccharides in Wines
3.5. Low-Molecular-Mass Phenolic Compounds in Wines
3.6. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current Viticultural Techniques to Mitigate the Effects of Global Warming on Grape and Wine Quality: A Comprehensive Review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- De Orduña, R.M. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Orrego, R.; Gutiérrez-Gamboa, G.; Reyes, M.; Zurita Silva, A.; Balbontín, C.; Gaete, N.; Salazar-Parra, C. Trends and Climatic Variability in the Chilean Viticultural Production Zones: Three Decades of Climatic Data (1985–2015). OENO One 2023, 57, 345–362. [Google Scholar] [CrossRef]
- Elder, R.W.; Lawrence, B.; Ferguson, A.; Naimi, T.S.; Brewer, R.D.; Chattopadhyay, S.K.; Toomey, T.L.; Fielding, J.E. The Effectiveness of Tax Policy Interventions for Reducing Excessive Alcohol Consumption and Related Harms. Am. J. Prev. Med. 2010, 38, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Saliba, A.J.; Ovington, L.A.; Moran, C.C. Consumer Demand for Low-Alcohol Wine in an Australian Sample. Int. J. Wine Res. 2013, 5, 1–8. [Google Scholar] [CrossRef]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not Your Ordinary Yeast: Non-Saccharomyces Yeasts in Wine Production Uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Hranilovic, A.; Gambetta, J.M.; Jeffery, D.W.; Grbin, P.R.; Jiranek, V. Lower-Alcohol Wines Produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae Co-Fermentations: The Effect of Sequential Inoculation Timing. Int. J. Food Microbiol. 2020, 329, 108651. [Google Scholar] [CrossRef]
- Quirós, M.; Rojas, V.; Gonzalez, R.; Morales, P. Selection of Non-Saccharomyces Yeast Strains for Reducing Alcohol Levels in Wine by Sugar Respiration. Int. J. Food Microbiol. 2014, 181, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Torija, M.J.; Mas, A.; Beltran, G.; Navarro, Y. Effect of a Multistarter Yeast Inoculum on Ethanol Reduction and Population Dynamics in Wine Fermentation. Foods 2021, 10, 623. [Google Scholar] [CrossRef] [PubMed]
- Rolle, L.; Englezos, V.; Torchio, F.; Cravero, F.; Río Segade, S.; Rantsiou, K.; Giacosa, S.; Gambuti, A.; Gerbi, V.; Cocolin, L. Alcohol Reduction in Red Wines by Technological and Microbiological Approaches: A Comparative Study. Aust. J. Grape Wine Res. 2018, 24, 62–74. [Google Scholar] [CrossRef]
- Schmidtke, L.M.; Blackman, J.W.; Agboola, S.O. Production Technologies for Reduced Alcoholic Wines. J. Food Sci. 2012, 77, R25–R41. [Google Scholar] [CrossRef]
- Piccardo, D.; Gombau, J.; Pascual, O.; Vignault, A.; Pons, P.; Canals, J.M.; González-Neves, G.; Zamora, F. Influence of Two Prefermentative Treatments to Reduce the Ethanol Content and pH of Red Wines Obtained from Overripe Grapes. Vitis 2019, 58, 59–67. [Google Scholar] [CrossRef]
- Schelezki, O.J.; Deloire, A.; Jeffery, D.W. Substitution or Dilution? Assessing Pre-Fermentative Water Implementation to Produce Lower Alcohol Shiraz Wines. Molecules 2020, 25, 2245. [Google Scholar] [CrossRef] [PubMed]
- Schelezki, O.J.; Antalick, G.; Šuklje, K.; Jeffery, D.W. Pre-Fermentation Approaches to Producing Lower Alcohol Wines from Cabernet Sauvignon and Shiraz: Implications for Wine Quality Based on Chemical and Sensory Analysis. Food Chem. 2020, 309, 125698. [Google Scholar] [CrossRef]
- Teng, B.; Petrie, P.R.; Smith, P.A.; Bindon, K.A. Comparison of Water Addition and Early-Harvest Strategies to Decrease Alcohol Concentration in Vitis Vinifera Cv. Shiraz Wine: Impact on Wine Phenolics, Tannin Composition and Colour Properties. Aust. J. Grape Wine Res. 2020, 26, 158–171. [Google Scholar] [CrossRef]
- Gardner, J.M.; Walker, M.E.; Boss, P.K.; Jiranek, V. The Effect of Grape Juice Dilution and Complex Nutrient Addition on Oenological Fermentation and Wine Chemical Composition. J. Food Compo. Anal. 2022, 105, 104241. [Google Scholar] [CrossRef]
- Xynas, B.; Barnes, C. Yeast or Water: Producing Wine with Lower Alcohol Levels in a Warming Climate: A Review. J. Sci. Food Agric. 2022, 103, 3249–3260. [Google Scholar] [CrossRef]
- Ministry of Agriculture of Chile. Amendment to Decree No. 78 of 1986 of the Ministry of Agriculture; Leyes, reglamentos, decretos y resoluciones de orden general; Ministry of Agriculture of Chile: Santiago, Chile, 2019. [Google Scholar]
- Sadras, V.O.; Petrie, P.R. Climate Shifts in South-Eastern Australia: Early Maturity of Chardonnay, Shiraz and Cabernet Sauvignon Is Associated with Early Onset Rather than Faster Ripening. Aust. J. Grape Wine Res. 2011, 17, 199–205. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis, 2023rd ed.; International Organization of Vine and Wine (OIV): Dijon, France, 2022. [Google Scholar]
- Úbeda, C.; del Barrio-Galán, R.; Peña-Neira, Á.; Medel-Marabolí, M.; Durán-Guerrero, E. Location Effects on the Aromatic Composition of Monovarietal Cv. Carignan Wines. Am. J. Enol. Vitic. 2017, 68, 390–399. [Google Scholar] [CrossRef]
- Fanzone, M.; Peña-Neira, A.; Gil, M.; Jofré, V.; Assof, M.; Zamora, F. Impact of Phenolic and Polysaccharidic Composition on Commercial Value of Argentinean Malbec and Cabernet Sauvignon Wines. Food Res. Int. 2012, 45, 402–414. [Google Scholar] [CrossRef]
- Peña-Neira, A.; Cceres, A.; Pastenes, C. Low Molecular Weight Phenolic and Anthocyanin Composition of Grape Skins from Cv. Syrah (Vitis Vinifera L.) in the Maipo Valley (Chile): Effect of Clusters Thinning and Vineyard Yield. Food Sci. Technol. 2007, 13, 153–158. [Google Scholar] [CrossRef]
- Golden, D.A.; Hartel, R.W.; Heymann, H.; Hotchkiss, J.H.; Johnson, M.G.; Montecalvo, J.; Nielsen, S.S.; Silva, J.L. Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Food Science Text Series; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Roca-Mesa, H.; Sendra, S.; Mas, A.; Beltran, G.; Torija, M.J. Nitrogen Preferences during Alcoholic Fermentation of Different Non-Saccharomyces Yeasts of Oenological Interest. Microorganisms 2020, 8, 157. [Google Scholar] [CrossRef]
- Morales, P.; Rojas, V.; Quirós, M.; Gonzalez, R. The Impact of Oxygen on the Final Alcohol Content of Wine Fermented by a Mixed Starter Culture. Appl. Microbiol. Biotechnol. 2015, 99, 3993–4003. [Google Scholar] [CrossRef]
- Contreras, A.; Hidalgo, C.; Henschke, P.A.; Chambers, P.J.; Curtin, C.; Varela, C. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine. Appl. Environ. Microbiol. 2014, 80, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Garciá, M.; Esteve-Zarzoso, B.; Cabellos, J.M.; Arroyo, T. Sequential Non-Saccharomyces and Saccharomyces cerevisiae Fermentations to Reduce the Alcohol Content in Wine. Fermentation 2020, 6, 60. [Google Scholar] [CrossRef]
- Zhu, X.; Navarro, Y.; Mas, A.; Torija, M.J.; Beltran, G. A Rapid Method for Selecting Non-Saccharomyces Strains with a Low Ethanol Yield. Microorganisms 2020, 8, 658. [Google Scholar] [CrossRef]
- Wang, C.; Mas, A.; Esteve-Zarzoso, B. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific. Front. Microbiol. 2016, 7, 502. [Google Scholar] [CrossRef]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2021, 10, 51. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef] [PubMed]
- Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected Non-Saccharomyces Wine Yeasts in Controlled Multistarter Fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Tronchoni, J.; Curiel, J.A.; Sáenz-Navajas, M.P.; Morales, P.; de-la-Fuente-Blanco, A.; Fernández-Zurbano, P.; Ferreira, V.; Gonzalez, R. Aroma Profiling of an Aerated Fermentation of Natural Grape Must with Selected Yeast Strains at Pilot Scale. Food Microbiol. 2018, 70, 214–223. [Google Scholar] [CrossRef]
- Balmaseda, A.; Rozès, N.; Leal, M.Á.; Bordons, A.; Reguant, C. Impact of Changes in Wine Composition Produced by Non-Saccharomyces on Malolactic Fermentation. Int. J. Food Microbiol. 2021, 337, 108954. [Google Scholar] [CrossRef]
- Edwards, C.G.; Beelman, R.B. Inhibition of the Malolactic Bacterium, Leuconostoc oenos (PSU-1), by Decanoic Acid and Subsequent Removal of the Inhibition by Yeast Ghosts. Am. J. Enol. Vitic. 1987, 38, 239–242. [Google Scholar] [CrossRef]
- Capucho, I.; San Romão, M.V. Effect of Ethanol and Fatty Acids on Malolactic Activity of Leuconostoc oenos. Appl. Microbiol. Biotechnol. 1994, 42, 391–395. [Google Scholar] [CrossRef]
- Giovani, G.; Rosi, I.; Bertuccioli, M. Quantification and Characterization of Cell Wall Polysaccharides Released by Non-Saccharomyces Yeast Strains during Alcoholic Fermentation. Int. J. Food Microbiol. 2012, 160, 113–118. [Google Scholar] [CrossRef]
- Domizio, P.; Liu, Y.; Bisson, L.F.; Barile, D. Use of Non-Saccharomyces Wine Yeasts as Novel Sources of Mannoproteins in Wine. Food Microbiol. 2014, 43, 5–15. [Google Scholar] [CrossRef]
- García, M.; Apolinar-Valiente, R.; Williams, P.; Esteve-Zarzoso, B.; Arroyo, T.; Crespo, J.; Doco, T. Polysaccharides and Oligosaccharides Produced on Malvar Wines Elaborated with Torulaspora delbrueckii CLI 918 and Saccharomyces Cerevisiae CLI 889 Native Yeasts from D.O. “Vinos de Madrid”. J. Agric. Food Chem. 2017, 65, 6656–6664. [Google Scholar] [CrossRef]
- González-Royo, E.; Pascual, O.; Kontoudakis, N.; Esteruelas, M.; Esteve-Zarzoso, B.; Mas, A.; Canals, J.M.; Zamora, F. Oenological Consequences of Sequential Inoculation with Non-Saccharomyces Yeasts (Torulaspora delbrueckii or Metschnikowia Pulcherrima) and Saccharomyces cerevisiae in Base Wine for Sparkling Wine Production. Eur. Food Res. Technol. 2015, 240, 999–1012. [Google Scholar] [CrossRef]
- Schelezki, O.J.; Smith, P.A.; Hranilovic, A.; Bindon, K.A.; Jeffery, D.W. Comparison of Consecutive Harvests versus Blending Treatments to Produce Lower Alcohol Wines from Cabernet Sauvignon Grapes: Impact on Polysaccharide and Tannin Content and Composition. Food Chem. 2018, 244, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Viana, R.; Portu, J.; Garijo, P.; López, R.; Santamaría, P.; López-Alfaro, I.; Gutiérrez, A.R.; González-Arenzana, L. Effect of the Sequential Inoculation of Non-Saccharomyces/Saccharomyces on the Anthocyans and Stilbenes Composition of Tempranillo Wines. Front. Microbiol. 2019, 10, 773. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, A.; Boscaino, F.; Cozzolino, R.; Volpe, M.G.; Ionata, E.; La Cara, F. Autochthonous Fermentation Starters for the Production of Aglianico Wines. Chem. Eng. Trans. 2012, 27, 211–216. [Google Scholar] [CrossRef]
- Belda, I.; Conchillo, L.B.; Ruiz, J.; Navascués, E.; Marquina, D.; Santos, A. Selection and Use of Pectinolytic Yeasts for Improving Clarification and Phenolic Extraction in Winemaking. Int. J. Food Microbiol. 2016, 223, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Niimi, J.; Danner, L.; Li, L.; Bossan, H.; Bastian, S.E.P. Wine Consumers’ Subjective Responses to Wine Mouthfeel and Understanding of Wine Body. Food Res. Int. 2017, 99, 115–122. [Google Scholar] [CrossRef] [PubMed]
Sc-Control | Sc-5% W | Sc-10% W | Mp + Sc | |
---|---|---|---|---|
Ethanol % (v/v) | 13.93 ± 0.21 c | 13.53 ± 0.15 b | 12.20 ± 0.10 a | 13.67 ± 0.06 bc |
Titratable acidity (g/L de T2H) | 5.12 ± 0.34 | 4,91± 0.32 | 5.19 ± 0.34 | 5.16 ± 0.37 |
pH | 3.21 ± 0.01 | 3.19 ± 0.01 | 3.21 ± 0.02 a | 3.19 ± 0.01 |
Volatile acidity (g/L) | 0.69 ± 0.03 | 0.68 ± 0.03 | 0.62 ± 0.09 | 0.64 ± 0.03 |
Reducing sugars (g/L) | 1.87 ± 0.06 ab | 1.82 ± 0.26 ab | 1.97 ± 0.12 b | 1.30 ± 0.37 a |
I280 | 9.05 ± 0.36 c | 7.25 ± 0.93 ab | 7.71± 0.31 a | 8.95 ± 0.54 bc |
Sc-Control | Sc-5% W | Sc-10% W | Mp + Sc | |
---|---|---|---|---|
∑ Acetate esters | 22.36 ± 0.71 b | 17.88 ± 0.32 a | 17.39 ± 1.04 a | 21.32 ± 1.49 b |
∑ Ethyl esters | 60.02 ± 2.65 c | 44.06 ± 4.39 ab | 40.06 ± 2.83 a | 49.05 ± 2.61 b |
∑ Other esters | 1.02 ± 0.17 a | 1.25 ± 0.10 a | 1.04 ± 0.12 a | 1.51 ± 0.05 b |
∑ Total esters | 83.32 ± 3.41 c | 63.08 ± 4.55 a | 58.41 ± 3.96 a | 71.65 ± 2.93 b |
∑ SCFA | 0.21 ± 0.02 | 0.21 ± 0.04 | 0.16 ± 0.01 | 0.29 ± 0.06 |
∑ MCFA | 13.62 ± 0.99 b | 13.89 ± 1.92 b | 12.96 ± 1.53 ab | 9.65 ± 0.45 a |
∑ Total acids | 14.49 ± 1.09 a | 14.56 ± 1.94 a | 13.49 ± 1.52 a | 10.56 ± 0.52 b |
∑ Fusel alcohols | 23.81 ± 0.89 a | 23.44 ± 1.57 a | 23.08 ± 1.04 a | 33.37 ± 3.04 b |
∑ Aldehydes | 0.19 ± 0.01 a | 0.19 ± 0.02 a | 0.28 ± 0.02 a | 0.35 ± 0.08 b |
∑ Ketones | 0.14 ± 0.03 | 0.09 ± 0.03 | 0.10 ± 0.01 | 0.10 ± 0.01 |
∑ Terpenes | 0.67 ± 0.07 b | 0.59 ± 0.05 ab | 0.64 ± 0.05 a | 0.77 ± 0.07 ab |
Fraction (mg/L) | Sc-Control | Sc-5% W | Sc-10% W | Mp + Sc |
---|---|---|---|---|
HMWf | 43.33 ± 3.02 a | 44.05 ± 2.35 a | 40.81 ± 4.06 a | 52.19 ± 0.67 b |
MMWf | 37.09 ± 1.74 bc | 35.31± 0.78 ab | 33.08 ± 3.07 a | 40.29 ± 0.18 c |
LMWf | 31.62 ± 1.06 b | 20.42 ± 4.36 a | 18.43 ± 1.90 a | 31.58 ± 5.16 b |
OLIGf | 41.25 ± 1.03 c | 34.10 ± 0.16 b | 27.76 ± 2.55 a | 43.23 ± 3.01 c |
∑ Polysaccharides | 153.29 ± 5.74 b | 133.89 ± 5.62 a | 127.61 ± 7.78 a | 167.28 ± 6.07 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-de-Villa, C.; Urrutia-Becerra, L.; Jara, C.; Gil i Cortiella, M.; Canals, J.M.; Mas, A.; Reguant, C.; Rozès, N. Physicochemical and Organoleptic Differences in Chardonnay Chilean Wines after Ethanol Reduction Practises: Pre-Fermentative Water Addition or Metschnikowia pulcherrima. Fermentation 2023, 9, 808. https://doi.org/10.3390/fermentation9090808
Ruiz-de-Villa C, Urrutia-Becerra L, Jara C, Gil i Cortiella M, Canals JM, Mas A, Reguant C, Rozès N. Physicochemical and Organoleptic Differences in Chardonnay Chilean Wines after Ethanol Reduction Practises: Pre-Fermentative Water Addition or Metschnikowia pulcherrima. Fermentation. 2023; 9(9):808. https://doi.org/10.3390/fermentation9090808
Chicago/Turabian StyleRuiz-de-Villa, Candela, Luis Urrutia-Becerra, Carla Jara, Mariona Gil i Cortiella, Joan Miquel Canals, Albert Mas, Cristina Reguant, and Nicolas Rozès. 2023. "Physicochemical and Organoleptic Differences in Chardonnay Chilean Wines after Ethanol Reduction Practises: Pre-Fermentative Water Addition or Metschnikowia pulcherrima" Fermentation 9, no. 9: 808. https://doi.org/10.3390/fermentation9090808