Single-Cell Oil Production by Engineered Ashbya gossypii from Non-Detoxified Lignocellulosic Biomass Hydrolysate
Abstract
:1. Introduction
2. Materials and Methods
2.1. A. gossypii Strains and Culture Conditions
2.2. Media Composition and Preparation
2.3. Lipid Production
2.4. HPLC Analyses
2.5. Lipid Extraction and GC-MS Quantification
2.6. Nile Red Lipid Staining
3. Results and Discussion
3.1. Performance of Xylose-Utilizing Oleaginous A. gossypii Strains in Non-Detoxified EBH-Mimicking Media
3.2. A. gossypii A877 Performance Using Different Media Supplementations
3.3. Lipid Accumulation and Production by Strain A877 in Non-Detoxified EBH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meijaard, E.; Abrams, J.F.; Slavin, J.L.; Sheil, D. Dietary Fats, Human Nutrition and the Environment: Balance and Sustainability. Front. Nutr. 2022, 9, 878644. [Google Scholar] [CrossRef]
- Mhlongo, S.I.; Ezeokoli, O.T.; Roopnarain, A.; Ndaba, B.; Sekoai, P.T.; Habimana, O.; Pohl, C.H. The Potential of Single-Cell Oils Derived From Filamentous Fungi as Alternative Feedstock Sources for Biodiesel Production. Front. Microbiol. 2021, 12, 637381. [Google Scholar] [CrossRef]
- Ochsenreither, K.; Glück, C.; Stressler, T.; Fischer, L.; Syldatk, C. Production Strategies and Applications of Microbial Single Cell Oils. Front. Microbiol. 2016, 7, 1539. [Google Scholar] [CrossRef]
- Ledesma-Amaro, R.; Santos, M.A.; Jiménez, A.; Revuelta, J.L. Tuning single-cell oil production in Ashbya gossypii by engineering the elongation and desaturation systems. Biotechnol. Bioeng. 2014, 9, 1782–1791. [Google Scholar] [CrossRef]
- Cunha, J.T.; Soares, P.O.; Baptista, S.L.; Costa, C.E.; Domingues, L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: A review and perspectives on bioethanol production. Bioengineered 2020, 11, 883–903. [Google Scholar] [CrossRef]
- Baptista, S.L.; Costa, C.E.; Cunha, J.T.; Soares, P.O.; Domingues, L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol. Adv. 2021, 47, 107697. [Google Scholar] [CrossRef] [PubMed]
- Romaní, A.; Larramendi, A.; Yáñez, R.; Cancela, Á.; Sánchez, Á.; Teixeira, J.A.; Domingues, L. Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Ind. Crop. Prod. 2019, 132, 327–335. [Google Scholar] [CrossRef]
- Zanuso, E.; Ruiz, H.A.; Domingues, L.; Teixeira, J.A. Magnetic Nanoparticles as Support for Cellulase Immobilization Strategy for Enzymatic Hydrolysis Using Hydrothermally Pretreated Corn Cob Biomass. Bioenerg. Res. 2022, 15, 1946–1957. [Google Scholar] [CrossRef]
- Zanuso, E.; Gomes, D.G.; Ruiz, H.A.; Teixeira, J.A.; Domingues, L. Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: Current status and perspectives. Sustain. Energy Fuels 2021, 5, 4233–4247. [Google Scholar] [CrossRef]
- Cunha, J.T.; Romaní, A.; Costa, C.E.; Sá-Correia, I.; Domingues, L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl. Microbiol. Biotechnol. 2019, 103, 159–175. [Google Scholar] [CrossRef]
- Chandel, A.K.; da Silva, S.S.; Singh, O.V. Detoxification of Lignocellulose Hydrolysates: Biochemical and Metabolic Engineering Toward White Biotechnology. Bioenergy Res. 2013, 6, 388–401. [Google Scholar] [CrossRef]
- Chintagunta, A.D.; Zuccaro, G.; Kumar, M.; Kumar, S.P.J.; Garlapati, V.K.; Postemsky, P.D.; Kumar, N.S.S.; Chandel, A.K.; Simal-Gandara, J. Biodiesel Production from Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. Front. Microbiol. 2021, 12, 658284. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Salgueiro, A.A.; Sarubbo, L.A. Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J. Pet. Sci. Eng. 2013, 105, 43–50. [Google Scholar] [CrossRef]
- Domingos, M.; de Souza-Cruz, P.B.; Ferraz, A.; Prata, A.M.R. A new bioreactor design for culturing basidiomycetes: Mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chem. Eng. Sci. 2017, 170, 670–676. [Google Scholar] [CrossRef]
- Pereira, F.B.; Guimarães, P.M.R.; Teixeira, J.A.; Domingues, L. Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresour. Technol. 2010, 101, 7856–7863. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, T.Q.; Silva, R.; Domingues, L. Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications. Biotechnol. Adv. 2015, 33, 1774–1786. [Google Scholar] [CrossRef]
- Ledesma-Amaro, R.; Buey, R.M.; Revuelta, J.L. The filamentous fungus Ashbya gossypii as a competitive industrial inosine producer. Biotechnol. Bioeng. 2016, 113, 2060–2063. [Google Scholar] [CrossRef]
- Serrano-Amatriain, C.; Ledesma-Amaro, R.; López-Nicolás, R.; Ros, G.; Jiménez, A.; Revuelta, J.L. Folic Acid Production by Engineered Ashbya gossypii. Metab. Eng. 2016, 38, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Ledesma-Amaro, R.; Jiménez, A.; Revuelta, J.L. Pathway Grafting for Polyunsaturated Fatty Acids Production in Ashbya gossypii through Golden Gate Rapid Assembly. ACS Synth. Biol. 2018, 7, 2340–2347. [Google Scholar] [CrossRef]
- Díaz-Fernández, D.; Aguiar, T.Q.; Martín, V.I.; Romaní, A.; Silva, R.; Domingues, L.; Revuelta, J.L.; Jiménez, A. Microbial lipids from industrial wastes using xylose-utilizing Ashbya gossypii strains. Bioresour. Technol. 2019, 293, 122054. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Aguiar, T.Q.; Coelho, E.; Jiménez, A.; Revuelta, J.L.; Domingues, L. Metabolic engineering of Ashbya gossypii for deciphering the de novo biosynthesis of γ-lactones. Microb. Cell Factories 2019, 18, 62. [Google Scholar] [CrossRef]
- Silva, R.; Aguiar, T.Q.; Domingues, L. Orotic acid production from crude glycerol by engineered Ashbya gossypii. Bioresour. Technol. Rep. 2022, 17, 100992. [Google Scholar] [CrossRef]
- Muñoz-Fernández, G.; Martínez-Buey, R.; Revuelta, J.L.; Jiménez, A. Metabolic engineering of Ashbya gossypii for limonene production from xylose. Biotechnol. Biofuels Bioprod. 2022, 15, 79. [Google Scholar] [CrossRef] [PubMed]
- Ledesma-Amaro, R.; Santos, M.A.; Jiménez, A.; Revuelta, J.L. Strain design of Ashbya gossypii for single-cell oil production. Appl. Environ. Microbiol. 2014, 80, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.G.; Michelin, M.; Romaní, A.; Domingues, L.; Teixeira, J.A. Co-production of biofuels and value-added compounds from industrial Eucalyptus globulus bark residues using hydrothermal treatment. Fuel 2021, 285, 119265. [Google Scholar] [CrossRef]
- Díaz-Fernández, D.; Lozano-Martínez, P.; Buey, R.M.; Revuelta, J.L.; Jiménez, A. Utilization of xylose by engineered strains of Ashbya gossypii for the production of microbial oils. Biotechnol. Biofuels 2017, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Baptista, S.L.; Romaní, A.; Cunha, J.T.; Domingues, L. Multi-feedstock biorefinery concept: Valorization of winery wastes by engineered yeast. J. Environ. Manag. 2023, 326, 116623. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Xiong, L.; Lin, X.; Huang, C.; Li, H.; Chen, X.; Chen, X. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum. Biotechnol. Lett. 2017, 39, 97–104. [Google Scholar] [CrossRef]
- Aguiar, T.Q.; Silva, R.; Domingues, L. New biotechnological applications for Ashbya gossypii: Challenges and perspectives. Bioengineered 2017, 8, 309–315. [Google Scholar] [CrossRef]
- Caspeta, L.; Nielsen, J. Economic and environmental impacts of microbial biodiesel. Nat. Biotechnol. 2013, 31, 789–793. [Google Scholar] [CrossRef]
- Dirmeier, R.; O’Brien, K.M.; Engle, M.; Dodd, A.; Spears, E.; Poyton, R.O. Exposure of yeast cells to anoxia induces transient oxidative stress: Implications for the induction of hypoxic genes. J. Biol. Chem. 2002, 277, 34773–34784. [Google Scholar] [CrossRef] [PubMed]
- Beopoulos, A.; Nicaud, J.M.; Gaillardin, C. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl. Microbiol. Biotechnol. 2011, 90, 1193–1206. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Zhou, W.; Shen, H.; Zhao, Z.K.; Yang, Z.; Yan, J.; Zhao, M. Co-utilization of corn stover hydrolysates and biodiesel-derived glycerol by Cryptococcus curvatus for lipid production. Bioresour. Technol. 2016, 219, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Yook, S.; Do Kim, J.; Gong, G.; Ko, J.K.; Um, Y.; Han, S.O.; Lee, S.M. High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica. Glob. Chang. Biol. Bioenergy 2020, 12, 670–679. [Google Scholar] [CrossRef]
Strain | Parental Strain | Genotype | Relevant Phenotype | Reference |
---|---|---|---|---|
A729 | ATCC 10895 | ACL107Cp::loxP-AgGPDp, AGR324Cp::loxP-AgGPDp, ABR229Cp::loxP-AgGPDp, ADR304W::loxP-AgGPDp-Bspta-AgPGK1t, AGR034W::loxP-AgGPDp-AnxpkA-AgENO2t | Ino−, Xyl+ | [26] |
A842 | A729 | A729, ACR165W850−1139::loxP, AAR071W::loxP-AgGPDp-aar071wT1975G, T3463G | Ino−, Xyl+, oleaginous | [20] |
A877 | A842 | A842, AFR171W::loxP-KanMX-loxP-AgGPDp-AgACR140C-AgPGK1t | Ino−, Xyl+, oleaginous, G418R | [20] |
Media | Concentration (g/L) | C/N Ratio | |||
---|---|---|---|---|---|
YE | 1x YNB + AS | 1x YNB + Asp | CSL | ||
SM-2 to 10 YE | 2 to 10 | - | - | - | ~150 to ~30 |
SM1/2(5YE) | 5 | - | - | - | ~30 |
SM1/5(2YE) | 2 | - | - | - | ~30 |
SM-YNBAS | - | 5 | - | - | 29 |
SM-YNBAsp | - | - | 2 | - | 74 |
SM-5 to 15 CSL | - | - | - | 5 to 15 | ~65 to ~22 |
EBH-2 to 10 YE | 2 to 10 | - | - | - | ~150 to ~30 |
EBH-15/17CSL | - | - | - | 15 or 17 | ~22 or ~19 |
Microorganism | Medium Composition (g/L) | Lipid Titer (g/L) | Lipid Content (%) | Reference |
---|---|---|---|---|
A. gossypii A877 | Non-detoxified EBH | 1.42 | 11.0 | This study |
G: 84.0 | ||||
X: 8.65 | ||||
A. gossypii A877 | 50% detoxified corn cob hydrolysate + 4% molasses supplemented with YE and tryptone | 3.90 | 38.1 | [20] |
G: 2.60 | ||||
X: 15.1 | ||||
S: 20.3 | ||||
Y. lipolytica YSXID | Miscanthus hydrolysates (Fed-batch) supplemented with YNB containing amino acids and ammonium sulfate | 12.01 | 42.4 | [34] |
G: 35.2 + 32.7 | ||||
X: 32.8 + 22.8 | ||||
C. curvatus | Corn stover enzymatic hydrolysates supplemented with YE, ammonium sulfate, and trace elements | 4.6 | 39.4 | [33] |
G: 18.8 | ||||
X: 14.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francisco, M.; Aguiar, T.Q.; Abreu, G.; Marques, S.; Gírio, F.; Domingues, L. Single-Cell Oil Production by Engineered Ashbya gossypii from Non-Detoxified Lignocellulosic Biomass Hydrolysate. Fermentation 2023, 9, 791. https://doi.org/10.3390/fermentation9090791
Francisco M, Aguiar TQ, Abreu G, Marques S, Gírio F, Domingues L. Single-Cell Oil Production by Engineered Ashbya gossypii from Non-Detoxified Lignocellulosic Biomass Hydrolysate. Fermentation. 2023; 9(9):791. https://doi.org/10.3390/fermentation9090791
Chicago/Turabian StyleFrancisco, Miguel, Tatiana Q. Aguiar, Gabriel Abreu, Susana Marques, Francisco Gírio, and Lucília Domingues. 2023. "Single-Cell Oil Production by Engineered Ashbya gossypii from Non-Detoxified Lignocellulosic Biomass Hydrolysate" Fermentation 9, no. 9: 791. https://doi.org/10.3390/fermentation9090791
APA StyleFrancisco, M., Aguiar, T. Q., Abreu, G., Marques, S., Gírio, F., & Domingues, L. (2023). Single-Cell Oil Production by Engineered Ashbya gossypii from Non-Detoxified Lignocellulosic Biomass Hydrolysate. Fermentation, 9(9), 791. https://doi.org/10.3390/fermentation9090791