Intermediates Production in Methane Oxidation Coupled with Denitrification: Current Status, Challenges, and Future Opportunities
Abstract
:1. Introduction
2. Microbial Mechanism of the AME-D Process
2.1. Microorganisms Involved in the AME-D Process
2.2. Metabolic Mechanism of the AME-D Process
3. Microbial Mechanism of the ANME-D Process
3.1. Microorganisms Involved in the ANME-D Process
3.2. Metabolic Mechanism of the ANME-D Process
3.2.1. Methane Oxidation Coupled with Nitrate Reduction by ANME-2d Archaea
3.2.2. Methane Oxidation Coupled with Nitrite Reduction by NC10 Phylum Bacteria
4. Microbial Community Structure and Intermediates of the MOD Process
4.1. Aerobic Methane Oxidation Coupled to Denitrification (AME-D)
4.2. Microaerobic Methane Oxidation Coupled to Denitrification (MAME-D)
- (1)
- Inhibitors: the productivity of methanol can be improved by adding some inhibitors of MDH, such as CO2, phosphate, cyclopropyl alcohol, sodium chloride, ammonium chloride or EDTA, and other selective inhibitors [11]. However, when summarizing the productivity of methanol under different inhibitors, Wang et al. [116] suggested that the maximum accumulated concentration of methanol was lower than 12 mmol·L−1, which may be triggered by the fact that MMO requires the participation of NADH, which is mainly derived from the subsequent process of methanol oxidation. Therefore, exogenous electron donors such as sodium formate [117] or NADH must be added to promote the continuation of the reaction, which inevitably adds to the cost.
- (2)
- Low ratio of C/N: the aerobic methanotrophs will adjust the metabolic pathway to suit the environment by releasing methanol under certain conditions. Wolfe et al. [118] studied the ‘acetate switch’ of E. coli under different conditions, taking the shake bottle experiment of Bacto Tryptone broth as an example. E. coli first consumed L-aspartic acid in a strict order while catabolizing acetic acid during exponential growth; when it reached the fixed period, namely the decelerated growth period, it began to use L-tryptophan and assimilate acetic acid; the ammonia produced by the utilization of amino acids and the consumption of acetate in the early stage led to an alkaline environment, causing the arrival of the stage of acetate generation. Based on this, Zhu et al. [10] proposed that acetate-degrading denitrifiers were major players in the growth stage, while methanol-degrading denitrifying bacteria were more dominant in the stable stage. Moreover, via thermodynamic calculation, it was concluded that the lower the C/N ratio, the smaller the proportion of methanol utilized by aerobic methanotrophs is, which is theoretically no less than 40% of the methanol produced.
- (3)
- The circumstance of low oxygen: Krause et al. [95] found that non-methanotrophic partners induce an alteration in the MDH of aerobic methanotrophs under low O2/CH4 conditions, which prompts the lanthanide-dependent MDH (XoxF-MDH) with high methanol affinity to transform into calcium-dependent MDH (MxaF-MDH) with a low methanol affinity, thus allowing more methanol to be freed into the external environment.
- (4)
- Optimization of culture condition: It is possible to increase the methanol yield by optimizing the pH, temperature [119], culture time, culture method, methane concentration, bacterial solution concentration [120], the concentration of phosphoric acid buffer, and even the concentration of Cu2+ [121]. In addition, cell immobilization is an effective means of methanol accumulation.
- (5)
- Type of bacteria: The methanol production of Verrucomicrobia surviving at extremely low pH levels or high temperatures deserves further study due to the fact that type I and II methanotrophs cannot adapt to the extreme environment [122].
- (6)
- AOB-mediated oxidation of methane: AOB-mediated bio-methanol production can be performed via the continuous flow process due to the similar characteristics of AMO and pMMO. First, a high NH4+/CH4 inlet ratio should be maintained to prevent the growth of methanotrophs; next, it is better to select NH3 as the electron donor in water resource recovery facilities (WRRFs) because it is a nearly ideal electron donor for methanol production, is cheap and easy to obtain, and does not increase the exogenous load of nitrogen from the perspective of practical application, although NH2OH can avoid the competitive inhibition of CH4 and NH3 on AMO and any potential inhibition of a reducing equivalent [123].
4.3. Hypoxic Methane Oxidation Coupled to Denitrification (HYME-D)
4.4. Anaerobic Methane Oxidation Coupled to Denitrification (ANME-D)
5. Current and Potential Technologies for Understanding the MOD Process
6. Conclusions
7. Future Prospects
- (1)
- The slow growth rate of anaerobic methanotrophs and the lack of a PQQ synthesis mechanism of Ca. ‘M. oxyfera’ are the reasons why it is difficult to conduct pure culture. Therefore, ways in which to improve environmental conditions or develop new biotechnology to promote their enrichment or even pure culture are the focus of future research. Moreover, Mcr, as a key enzyme in the catalytic anaerobic activation of methane, has only been purified in thermophilic bacteria, meaning that its purification and structural characterization in ANME-2d should be paid attention to.
- (2)
- The ratio of C/N, O2/CH4, the concentration of phosphate, and the pH, T, and other factors will have an impact on the production of intermediates in the process, among which O2/CH4 has a considerable effect on the AME-D. Although there is quite a lot of research on the AME-D mechanism under different O2/CH4 conditions, there is no clear and unified conclusion regarding the metabolic mechanism of AME-D under the influence of O2/CH4 due to the ambiguous O2 range and the differences in experimental conditions. Furthermore, with the decrease in the O2 concentration, methane oxidation gradually transitioned into a fermentation process. However, there is little knowledge about when and how to switch methane oxidation from the respiratory mode to the fermentation mode presently.
- (3)
- The acetyl-coA pathway of Ca. ‘M. nitroreducens’ or the endogenous oxygen production pathway of Ca. ‘M. oxyfera’ makes it possible to produce acetate under low concentrations of NO2− or NO3−. However, under some anaerobic/micro-aerobic conditions, with the proceeding of the anaerobic coupling process, some N-DAMO archaea and bacteria gradually disappeared; in contrast, a large number of methanogens, acid-producing bacteria and heterotrophic denitrifiers took their place when numerous acetates, propionates and other SCFAs accumulated. In addition, CO2, as a potential electron acceptor, may also be involved in the synthesis of SCFAs. All of this indicates that, apart from the previous mode of direct electron transfer, the N-DAMO process may be mediated by intermediate products such as SCFAs and thatCO2 might especially partake in the process, which makes the discussion of a new mechanism of great significance with regard to the global carbon cycle, the global climate and environmental change. Therefore, the identification of related strains and their roles, and whether CO2 is a potential electron acceptor involved in the production of intermediates, both deserve further investigation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Amstel, A. Methane. A review. J. Integr. Environ. Sci. 2012, 9, 5–30. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, X.; Wu, M.; Liu, T.; Lai, C.-Y.; Frank, J.; He, B.; Marcellin, E.; Guo, J.; Hu, S.; et al. Roles and opportunities for microbial anaerobic oxidation of methane in natural and engineered systems. Energy Environ. Sci. 2021, 14, 4803–4830. [Google Scholar] [CrossRef]
- Haque, M.F.U.; Crombie, A.T.; Murrell, J.C. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. Microbiome 2019, 7, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, R. The global methane cycle: Recent advances in understanding the microbial processes involved: Global Methane Cycle. Environ. Microbiol. Rep. 2009, 1, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global Warming and Dairy Cattle: How to Control and Reduce Methane Emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef]
- Patel, S.K.; Shanmugam, R.; Kalia, V.C.; Lee, J.-K. Methanol production by polymer-encapsulated methanotrophs from simulated biogas in the presence of methane vector. Bioresour. Technol. 2020, 304, 123022. [Google Scholar] [CrossRef]
- Rhee, G.-Y.; Fuhs, G.W. Wastewater Denitrification with One-Carbon Compounds as Energy Source. J. WPCF 1978, 50, 2111–2119. [Google Scholar]
- Raghoebarsing, A.A.; Pol, A.; van de Pas-Schoonen, K.T.; Smolders, A.J.P.; Ettwig, K.F.; Rijpstra, W.I.C.; Schouten, S.; Damsté, J.S.S.; Camp, H.J.M.O.D.; Jetten, M.S.M.; et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 2006, 440, 918–921. [Google Scholar] [CrossRef] [Green Version]
- Dedysh, S.N.; Knief, C. Diversity and Phylogeny of Described Aerobic Methanotrophs. In Methane Biocatalysis: Paving the Way to Sustainability; Kalyuzhnaya, M.G., Xing, X.-H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 17–42. ISBN 978-3-319-74865-8. [Google Scholar]
- Zhu, J.; Wang, Q.; Yuan, M.; Tan, G.-Y.A.; Sun, F.; Wang, C.; Wu, W.; Lee, P.-H. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review. Water Res. 2016, 90, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Strong, P.J.; Xie, S.; Clarke, W.P. Methane as a Resource: Can the Methanotrophs Add Value? Environ. Sci. Technol. 2015, 49, 4001–4018. [Google Scholar] [CrossRef]
- Haynes, C.A.; Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 2014, 10, 331–339. [Google Scholar] [CrossRef]
- Strong, P.; Kalyuzhnaya, M.; Silverman, J.; Clarke, W. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. Bioresour. Technol. 2016, 215, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Lee, O.K.; Hur, D.H.; Nguyen, D.T.N.; Lee, E.Y. Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane. Biofuels, Bioprod. Biorefining 2016, 10, 848–863. [Google Scholar] [CrossRef]
- Hwang, I.Y.; Nguyen, A.D.; Nguyen, T.T.; Nguyen, L.T.; Lee, O.K.; Lee, E.Y. Biological conversion of methane to chemicals and fuels: Technical challenges and issues. Appl. Microbiol. Biotechnol. 2018, 102, 3071–3080. [Google Scholar] [CrossRef]
- Gęsicka, A.; Oleskowicz-Popiel, P.; Łężyk, M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol. Adv. 2021, 53, 107861. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, L.; Hu, S.; Yuan, Z.; Guo, J. High-Rate Production of Short-Chain Fatty Acids from Methane in a Mixed-Culture Membrane Biofilm Reactor. Environ. Sci. Technol. Lett. 2018, 5, 662–667. [Google Scholar] [CrossRef]
- Cai, C.; Shi, Y.; Guo, J.; Tyson, G.W.; Hu, S.; Yuan, Z. Acetate Production from Anaerobic Oxidation of Methane via Intracellular Storage Compounds. Environ. Sci. Technol. 2019, 53, 7371–7379. [Google Scholar] [CrossRef] [PubMed]
- Agler, M.T.; Spirito, C.M.; Usack, J.G.; Werner, J.J.; Angenent, L.T. Chain elongation with reactor microbiomes: Upgrading dilute ethanol to medium-chain carboxylates. Energy Environ. Sci. 2012, 5, 8189–8192. [Google Scholar] [CrossRef]
- Steinbusch, K.J.; Hamelers, H.V.; Buisman, C.J. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res. 2008, 42, 4059–4066. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Shen, Y.; An, D.; Voordouw, G. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir. Appl. Environ. Microbiol. 2017, 83, e02983-16. [Google Scholar] [CrossRef] [Green Version]
- Whittenbury, R.; Phillips, K.C.; Wilkinson, J.F. Enrichment, Isolation and Some Properties of Methane-utilizing Bacteria. J. Gen. Microbiol. 1970, 61, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, R.S.; Hanson, T. Methanotrophic bacteria. Microbiol. Rev. 1996, 60, 439–471. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Guarnieri, M.T.; Tao, L.; Laurens, L.M.; Dowe, N.; Pienkos, P.T. Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnol. Adv. 2014, 32, 596–614. [Google Scholar] [CrossRef] [Green Version]
- Stein, L.Y.; Roy, R.; Dunfield, P.F. Aerobic Methanotrophy and Nitrification: Processes and Connections. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; ISBN 978-0-470-01617-6. [Google Scholar]
- Stoecker, K.; Bendinger, B.; Schöning, B.; Nielsen, P.H.; Nielsen, J.L.; Baranyi, C.; Toenshoff, E.R.; Daims, H.; Wagner, M. Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc. Natl. Acad. Sci. USA 2006, 103, 2363–2367. [Google Scholar] [CrossRef]
- Hirayama, H.; Abe, M.; Miyazaki, M.; Nunoura, T.; Furushima, Y.; Yamamoto, H.; Takai, K. Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 989–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, J.P.; Skerratt, J.H.; Nichols, P.D.; Sly, L.I. Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiol. Lett. 1991, 85, 15–22. [Google Scholar] [CrossRef]
- Semrau, J.D.; DiSpirito, A.A.; Yoon, S. Methanotrophs and copper. FEMS Microbiol. Rev. 2010, 34, 496–531. [Google Scholar] [CrossRef] [Green Version]
- Pol, A.; Heijmans, K.; Harhangi, H.R.; Tedesco, D.; Jetten, M.S.M.; Op Den Camp, H.J.M. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 2007, 450, 874–878. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.H.; Prior, S.D.; Leak, D.J.; Dalton, H. Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: Studies in batch and continuous cultures. Biotechnol. Lett. 1983, 5, 487–492. [Google Scholar] [CrossRef]
- Phelps, P.A.; Agarwal, S.K.; Speitel, G.E.; Georgiou, G. Methylosinus trichosporium OB3b Mutants Having Constitutive Expression of Soluble Methane Monooxygenase in the Presence of High Levels of Copper. Appl. Environ. Microbiol. 1992, 58, 3701–3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, D.G.; McDonald, I.R.; Murrell, J.C. Comparison of pmoA PCR Primer Sets as Tools for Investigating Methanotroph Diversity in Three Danish Soils. Appl. Environ. Microbiol. 2001, 67, 3802–3809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunfield, P.F.; Yuryev, A.; Senin, P.; Smirnova, A.V.; Stott, M.B.; Hou, S.; Ly, B.; Saw, J.H.; Zhou, Z.; Ren, Y.; et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 2007, 450, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Blake, C.; Ghosh, M.; Harlos, K.; Avezoux, A.; Anthony, C. The Active-Site of Methanol Dehydrogenase Contains a Disulfide Bridge Between Adjacent Cysteine Residues. Nat. Struct. Biol. 1994, 1, 557. [Google Scholar]
- Pol, A.; Barends, T.R.M.; Dietl, A.; Khadem, A.F.; Eygensteyn, J.; Jetten, M.S.M.; Op den Camp, H.J.M. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ. Microbiol. 2014, 16, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Versantvoort, W.; Guerrero-Cruz, S.; Speth, D.R.; Frank, J.; Gambelli, L.; Cremers, G.; Van Alen, T.; Jetten, M.S.M.; Kartal, B.; Camp, H.O.D.; et al. Comparative Genomics of Candidatus Methylomirabilis Species and Description of Ca. Methylomirabilis Lanthanidiphila. Front. Microbiol. 2018, 9, 1672. [Google Scholar] [CrossRef] [Green Version]
- Khadem, A.F.; Wieczorek, A.S.; Pol, A.; Vuilleumier, S.; Harhangi, H.R.; Dunfield, P.F.; Kalyuzhnaya, M.G.; Murrell, J.C.; Francoijs, K.-J.; Stunnenberg, H.G.; et al. Draft Genome Sequence of the Volcano-Inhabiting Thermoacidophilic Methanotroph Methylacidiphilum fumariolicum Strain SolV. J. Bacteriol. 2012, 194, 3729–3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman, R.L.; Rosenzweig, A.C. Biological Methane Oxidation: Regulation, Biochemistry, and Active Site Structure of Particulate Methane Monooxygenase. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Kalyuzhnaya, M.G.; Puri, A.W.; Lidstrom, M.E. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 2015, 29, 142–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naizabekov, S.; Lee, E.Y. Genome-Scale Metabolic Model Reconstruction and in Silico Investigations of Methane Metabolism in Methylosinus trichosporium OB3b. Microorganisms 2020, 8, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, A.D.; Lee, E.Y. Engineered Methanotrophy: A Sustainable Solution for Methane-Based Industrial Biomanufacturing. Trends Biotechnol. 2021, 39, 381–396. [Google Scholar] [CrossRef]
- Fox, B.G.; Froland, W.A.; Dege, J.E.; Lipscomb, J. Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J. Biol. Chem. 1989, 264, 10023–10033. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.A.; van Niel, E.W.J.; Torremans, R.A.M.; Kuenen, J.G. Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera pantotropha. Appl. Environ. Microbiol. 1988, 54, 2812–2818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Chandran, K.; Stensel, D. Microbial ecology of denitrification in biological wastewater treatment. Water Res. 2014, 64, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Sparacino-Watkins, C.; Stolz, J.F.; Basu, P. Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 2014, 43, 676–706. [Google Scholar] [CrossRef] [Green Version]
- Warnecke-Eberz, U.; Friedrich, B. Three nitrate reductase activities in Alcaligenes eutrophus. Arch. Microbiol. 1993, 159, 405–409. [Google Scholar] [CrossRef]
- Zumft, W.G. Cell Biology and Molecular Basis of Denitrification. Microbiol. Mol. Biol. Rev. 1997, 61, 533–616. [Google Scholar]
- Yamanaka, T.; Ota, A.; Okunuki, K. A nitrite reducing system reconstructed with purified cytochrome components of Pseudomonas aeruginosa. Biochim. et Biophys. Acta 1961, 53, 294–308. [Google Scholar] [CrossRef]
- Holmes, A.J.; Costello, A.; Lidstrom, M.E.; Murrell, J.C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 1995, 132, 203–208. [Google Scholar] [CrossRef]
- Elmore, B.O.; Bergmann, D.J.; Klotz, M.G.; Hooper, A.B. Cytochromes P460 and c′-beta; A new family of high-spin cytochromes c. FEBS Lett. 2007, 581, 911–916. [Google Scholar] [CrossRef] [Green Version]
- Tamas, I.; Smirnova, A.V.; He, Z.; Dunfield, P.F. The (d)evolution of methanotrophy in the Beijerinckiaceae—A comparative genomics analysis. ISME J. 2013, 8, 369–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orata, F.D.; Kits, K.D.; Stein, L.Y. Complete Genome Sequence of Methylomonas denitrificans Strain FJG1, an Obligate Aerobic Methanotroph That Can Couple Methane Oxidation with Denitrification. Genome Announc. 2018, 6, e00276-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, L.Y.; Klotz, M.G. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem. Soc. Trans. 2011, 39, 1826–1831. [Google Scholar] [CrossRef] [Green Version]
- Dam, B.; Dam, S.; Blom, J.; Liesack, W. Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp. Strain SC2. PLoS ONE 2013, 8, e74767. [Google Scholar] [CrossRef] [Green Version]
- Kits, K.D.; Klotz, M.G.; Stein, L.Y. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ. Microbiol. 2015, 17, 3219–3232. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, J.; He, Q.; Wu, H.; Chen, Y.; Xie, H.; Pavlostathis, S.G. Exploring simultaneous nitrous oxide and methane sink in wetland sediments under anoxic conditions. Water Res. 2021, 194, 116958. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Roy, R.; Knowles, R. Production and Consumption of Nitric Oxide by Three Methanotrophic Bacteria. Appl. Environ. Microbiol. 2000, 66, 3891–3897. [Google Scholar] [CrossRef] [Green Version]
- Iversen, N.; Jorgensen, B.B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)1: Anaerobic Methane Oxidation. Limnol. Oceanogr. 1985, 30, 944–955. [Google Scholar] [CrossRef]
- Ettwig, K.F.; van Alen, T.; van de Pas-Schoonen, K.T.; Jetten, M.S.M.; Strous, M. Enrichment and Molecular Detection of Denitrifying Methanotrophic Bacteria of the NC10 Phylum. Appl. Environ. Microbiol. 2009, 75, 3656–3662. [Google Scholar] [CrossRef] [Green Version]
- Ettwig, K.F.; Butler, M.K.; Le Paslier, D.; Pelletier, E.; Mangenot, S.; Kuypers, M.M.; Schreiber, F.; Dutilh, B.E.; Zedelius, J.; de Beer, D.; et al. Nitrite-driven anaerobic me-thane oxidation by oxygenic bacteria. Nature 2010, 464, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.L.; van Teeseling, M.C.F.; Willems, M.J.R.; van Donselaar, E.G.; Klingl, A.; Rachel, R.; Geerts, W.J.C.; Jetten, M.S.M.; Strous, M.; van Niftrik, L. Ultrastructure of the Denitrifying Methanotroph “Candidatus Methylomirabilis oxyfera,” a Novel Polygon-Shaped Bacterium. J. Bacteriol. 2012, 194, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Haroon, M.F.; Hu, S.; Shi, Y.; Imelfort, M.; Keller, J.; Hugenholtz, P.; Yuan, Z.; Tyson, G.W. Erratum: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 2013, 501, 578. [Google Scholar] [CrossRef] [Green Version]
- Gambelli, L.; Guerrero-Cruz, S.; Mesman, R.J.; Cremers, G.; Jetten, M.S.M.; Camp, H.J.M.O.D.; Kartal, B.; Lueke, C.; van Niftrik, L. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture. Appl. Environ. Microbiol. 2018, 84, e02186-17. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Hu, S.; Yuan, Z.; Guo, J. Microbial Stratification Affects Conversions of Nitrogen and Methane in Biofilms Coupling Anammox and n-DAMO Processes. Environ. Sci. Technol. 2023, 57, 4608–4618. [Google Scholar] [CrossRef]
- Ettwig, K.F.; Shima, S.; van de Pas-Schoonen, K.T.; Kahnt, J.; Medema, M.H.; Camp, H.J.M.O.D.; Jetten, M.S.M.; Strous, M. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ. Microbiol. 2008, 10, 3164–3173. [Google Scholar] [CrossRef] [PubMed]
- Scheller, S.; Goenrich, M.; Boecher, R.; Thauer, R.K.; Jaun, B. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 2010, 465, 606–608. [Google Scholar] [CrossRef] [PubMed]
- Nauhaus, K.; Boetius, A.; Kruger, M.; Widdel, F. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 2002, 4, 296–305. [Google Scholar] [CrossRef]
- Timmers, P.H.A.; Welte, C.U.; Koehorst, J.J.; Plugge, C.M.; Jetten, M.S.M.; Stams, A.J.M. Reverse Methanogenesis and Respiration in Methanotrophic Archaea. Archaea 2017, 2017, 1654237. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Cai, C.; McCubbin, T.; Muriel, J.C.; Sonnenschein, N.; Hu, S.; Yuan, Z.; Marcellin, E. A Genome-Scale Metabolic Model of Methanoperedens nitroreducens: Assessing Bioenergetics and Thermodynamic Feasibility. Metabolites 2022, 12, 314. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, T.; McIlroy, S.J.; Tyson, G.W.; Guo, J. Phylogenetic and metabolic diversity of microbial communities performing anaerobic ammonium and methane oxidations under different nitrogen loadings. ISME Commun. 2023, 3, 39. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.L.; de Vries, S.; van Alen, T.A.; Butler, M.K.; Camp, H.J.M.O.D.; Keltjens, J.T.; Jetten, M.S.M.; Strous, M. Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph ‘Candidatus Methylomirabilis oxyfera’. Microbiology 2011, 157, 890–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.L.; Ettwig, K.F.; Jetten, M.S.; Strous, M.; Keltjens, J.T.; van Niftrik, L. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochem. Soc. Trans. 2011, 39, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Fineberg, S.J.; Nandyala, S.V.; Marquez-Lara, A.; Oglesby, M.W.; Pelton, M.A.; Patel, A.A.; Singh, K. The Biochemistry of Methylotrophs. Comp. Biochem. Phys. A 1983, 75, 497. [Google Scholar]
- Xu, X.; Qin, Y.; Li, X.; Ma, Z.; Wu, W. Heterogeneity of CH4-derived carbon induced by O2:CH4 mediates the bacterial community assembly processes. Sci. Total. Environ. 2022, 829, 154442. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, X.; Yuan, M.; Wu, H.; Ma, Z.; Wu, W. Optimum O2:CH4 Ratio Promotes the Synergy between Aerobic Methanotrophs and Denitrifiers to Enhance Nitrogen Removal. Front. Microbiol. 2017, 8, 1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Q.; Liu, X.; Li, N.; Xie, Z.; Li, Z.; Li, D. Stable-isotopic analysis and high-throughput pyrosequencing reveal the coupling process and bacteria in microaerobic and hypoxic methane oxidation coupled to denitrification. Environ. Pollut. 2019, 250, 863–872. [Google Scholar] [CrossRef]
- Osaka, T.; Ebie, Y.; Tsuneda, S.; Inamori, Y. Identification of the bacterial community involved in methane-dependent denitrification in activated sludge using DNA stable-isotope probing: Characterization of a MDD Ecosystem by SIP. FEMS Microbiol. Ecol. 2008, 64, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-H.; Chen, H.; Yuan, Z.; Guo, J. Methane-supported nitrate removal from groundwater in a membrane biofilm reactor. Water Res. 2018, 132, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henard, C.A.; Smith, H.; Dowe, N.; Kalyuzhnaya, M.G.; Pienkos, P.T.; Guarnieri, M.T. Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci. Rep. 2016, 6, 21585. [Google Scholar] [CrossRef] [Green Version]
- Vecherskaya, M.; Dijkema, C.; Stams, A.J.M. Intracellular PHB conversion in a Type II methanotroph studied by 13 C NMR. J. Ind. Microbiol. Biotechnol. 2001, 26, 15–21. [Google Scholar] [CrossRef]
- Nesterov, A.I.; Ivanova, T.I.; Il’Chenko, V.Y.; Gayazov, R.R.; Mshenskii, Y.N. Protein and Polysaccharide Composition during Growth of Methylomonas Methanica under Chemostat Conditions. Sov. Biotechnol. 1988, 5, 18–22. [Google Scholar]
- Eisentraeger, A.; Klag, P.; Vansbotter, B.; Heymann, E.; Dott, W. Denitrification of groundwater with methane as sole hydrogen donor. Water Res. 2001, 35, 2261–2267. [Google Scholar] [CrossRef] [PubMed]
- Linton, J.D.; Buckee, J.C. Interactions in a Methane-utilizing Mixed Bacterial Culture in a Chemostat. J. Gen. Microbiol. 1977, 101, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, F.; Vasheghani-Farahani, E.; Yazdian, F.; Shojaosadati, S.A. PHB production by Methylocystis hirsuta from natural gas in a bubble column and a vertical loop bioreactor. Biochem. Eng. J. 2012, 65, 51–56. [Google Scholar] [CrossRef]
- Liu, T.; Lu, Y.; Zheng, M.; Hu, S.; Yuan, Z.; Guo, J. Efficient nitrogen removal from mainstream wastewater through coupling Partial Nitritation, Anammox and Methane-dependent nitrite/nitrate reduction (PNAM). Water Res. 2021, 206, 117723. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-J.; Zhang, H.; Li, W.; Yi, J.-B.; Sun, F.-Y.; Zhao, Y.-W.; Feng, L.; Li, Z.; Dong, W.-Y. Biofilm stratification in counter-diffused membrane biofilm bioreactors (MBfRs) for aerobic methane oxidation coupled to aerobic/anoxic denitrification: Effect of oxygen pressure. Water Res. 2022, 226, 119243. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-J.; Shen, Q.; Li, X.-Y.; Sun, F.-Y.; Yi, J.-B.; Dong, W.-Y.; Yan, W.-J.; Du, H.; Mu, J.-L. Surface-manipulated membranes to accelerate biofilm formation and to resist bacterial detachment in MBfR for aerobic methane oxidation coupled to denitrification. Chem. Eng. J. 2022, 430, 132629. [Google Scholar] [CrossRef]
- Singh, A.K.; Nakhate, S.P.; Gupta, R.K.; Chavan, A.R.; Poddar, B.J.; Prakash, O.; Shouche, Y.S.; Purohit, H.J.; Khardenavis, A.A. Mining the landfill soil metagenome for denitrifying methanotrophic taxa and validation of methane oxidation in microcosm. Environ. Res. 2022, 215, 114199. [Google Scholar] [CrossRef]
- Beck, D.A.; Kalyuzhnaya, M.G.; Malfatti, S.; Tringe, S.G.; del Rio, T.G.; Ivanova, N.; Lidstrom, M.E.; Chistoserdova, L. A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ 2013, 1, e23. [Google Scholar] [CrossRef] [Green Version]
- Mechsner, K.L.; Hamer, G.; Paulis, A.D. Denitrification with Methanotrophic/Methylotrophic Bacterial Associations in the Presence of Oxygen. Site 1985, 1, 135–213. [Google Scholar]
- Costa, C.; Dijkema, C.; Friedrich, M.W.; Garcia-Encina, P.A.; Fernández-Polanco, F.; Stams, A.J.M. Denitrification with methane as electron donor in oxygen-limited bioreactors. Appl. Microbiol. Biotechnol. 2000, 53, 754–762. [Google Scholar] [CrossRef]
- Liu, J.; Sun, F.; Wang, L.; Ju, X.; Wu, W.; Chen, Y. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions. Microb. Biotechnol. 2014, 7, 64–76. [Google Scholar] [CrossRef]
- Krause, S.M.B.; Johnson, T.; Karunaratne, Y.S.; Fu, Y.; Beck, D.A.C.; Chistoserdova, L.; Lidstrom, M.E. Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proc. Natl. Acad. Sci. USA 2017, 114, 358–363. [Google Scholar] [CrossRef]
- Nyerges, G.; Han, S.-K.; Stein, L.Y. Effects of Ammonium and Nitrite on Growth and Competitive Fitness of Cultivated Methanotrophic Bacteria. Appl. Environ. Microbiol. 2010, 76, 5648–5651. [Google Scholar] [CrossRef] [Green Version]
- Kalyuzhnaya, M.G.; Yang, S.; Rozova, O.N.; Smalley, N.E.; Clubb, J.; Lamb, A.; Gowda, G.A.N.; Raftery, D.; Fu, Y.; Bringel, F.; et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 2013, 4, 2785. [Google Scholar] [CrossRef] [Green Version]
- Rahalkar, M.; Bussmann, I.; Schink, B. Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int. J. Syst. Evol. Microbiol. 2007, 57, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Amaral, J.A.; Knowles, R. The response of methane consumption by pure cultures of methanotrophic bacteria to oxygen. Can. J. Microbiol. 1997, 43, 925–928. [Google Scholar] [CrossRef]
- Dumont, M.G.; Pommerenke, B.; Casper, P. Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment: SIP-Metatranscriptomics of Methanotrophs. Environ. Microbiol. Rep. 2013, 5, 757–764. [Google Scholar] [CrossRef]
- Chen, H.; Luo, J.; Liu, S.; Yuan, Z.; Guo, J. Microbial Methane Conversion to Short-Chain Fatty Acids Using Various Electron Acceptors in Membrane Biofilm Reactors. Environ. Sci. Technol. 2019, 53, 12846–12855. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zheng, Y.; Hou, L.; Zhou, J.; Yin, G.; Liu, M. Denitrifying anaerobic methane oxidation in marsh sediments of Chongming eastern intertidal flat. Mar. Pollut. Bull. 2020, 150, 110681. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, H.; Yuan, Z.; Guo, J. Interactions of functional microorganisms and their contributions to methane bioconversion to short-chain fatty acids. Water Res. 2021, 199, 117184. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.-N.; Zhang, F.; Yu, L.-P.; Zhang, Y.-L.; Wu, Y.; Lau, T.-C.; Zhao, H.-P.; Zeng, R.J. Acetate and electricity generation from methane in conductive fiber membrane- microbial fuel cells. Sci. Total. Environ. 2022, 804, 150147. [Google Scholar] [CrossRef]
- Guo, X.; Lai, C.-Y.; Hartmann, E.M.; Zhao, H.-P. Heterotrophic denitrification: An overlooked factor that contributes to nitrogen removal in n-DAMO mixed culture. Environ. Res. 2023, 216, 114802. [Google Scholar] [CrossRef]
- Modin, O.; Fukushi, K.; Yamamoto, K. Denitrification with methane as external carbon source. Water Res. 2007, 41, 2726–2738. [Google Scholar] [CrossRef]
- Costa, C.; Vecherskaya, M.; Dijkema, C.; Stams, A.J.M. The effect of oxygen on methanol oxidation by an obligate methanotrophic bacterium studied by in vivo 13 C nuclear magnetic resonance spectroscopy. J. Ind. Microbiol. Biotechnol. 2001, 26, 9–14. [Google Scholar] [CrossRef]
- Thalasso, F.; Vallecillo, A.; García-Encina, P.; Fdz-Polanco, F. The use of methane as a sole carbon source for wastewater denitrification. Water Res. 1997, 31, 55–60. [Google Scholar] [CrossRef]
- Takaya, N.; Catalan-Sakairi, M.A.B.; Sakaguchi, Y.; Kato, I.; Zhou, Z.; Shoun, H. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide. Appl. Environ. Microbiol. 2003, 69, 3152–3157. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Liu, X.; Ran, Y.; Li, Z.; Li, D. Methane oxidation coupled to denitrification under microaerobic and hypoxic conditions in leach bed bioreactors. Sci. Total. Environ. 2019, 649, 1–11. [Google Scholar] [CrossRef]
- Chu, K.-H.; Alvarez-Cohen, L. Treatment of Chlorinated Solvents by Nitrogen-Fixing and Nitrate-Supplied Methane Oxidizers in Columns Packed with Unsaturated Porous Media. Environ. Sci. Technol. 2000, 34, 1784–1793. [Google Scholar] [CrossRef]
- Myronova, N.; Kitmitto, A.; Collins, R.F.; Miyaji, A.; Dalton, H. Three-Dimensional Structure Determination of a Protein Supercomplex That Oxidizes Methane to Formaldehyde in Methylococcus capsulatus (Bath). Biochemistry 2006, 45, 11905–11914. [Google Scholar] [CrossRef] [PubMed]
- Tonge, G.; Harrison, D.; Knowles, C.; Higgins, I. Properties and partial purification of the methane-oxidising enzyme system from Methylosinus trichosporium. FEBS Lett. 1975, 58, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Leak, D.J.; Dalton, H. Growth Yields of Methanotrophs. Appl. Microbiol. Biotechnol. 1986, 23, 470–476. [Google Scholar] [CrossRef]
- Trotsenko, Y.A.; Murrell, J.C. Metabolic Aspects of Aerobic Obligate Methanotrophy⋆. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2008; Volume 63, pp. 183–229. ISBN 978-0-444-53191-9. [Google Scholar]
- Wang, S.; An, Z.; Wang, Z.-W. Bioconversion of methane to chemicals and fuels by methane-oxidizing bacteria. In Advances in Bioenergy; Elsevier: Amsterdam, The Netherlands, 2020; Volume 5, pp. 169–247. ISBN 978-0-12-820744-4. [Google Scholar]
- Sheets, J.P.; Ge, X.; Li, Y.-F.; Yu, Z.; Li, Y. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour. Technol. 2016, 201, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, A.J. The Acetate Switch. Microbiol. Mol. Biol. Rev. 2005, 69, 12–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuto, T.; Takeguchi, M.; Okura, I. Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J. Mol. Catal. A Chem. 1999, 144, 257–261. [Google Scholar] [CrossRef]
- Lee, S.G.; Goo, J.H.; Kim, H.G.; Oh, J.-I.; Kim, Y.M.; Kim, S.W. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 2004, 26, 947–950. [Google Scholar] [CrossRef]
- Markowska, A.; Michalkiewicz, B. Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 2009, 63, 105–110. [Google Scholar] [CrossRef]
- Guerrero-Cruz, S.; Vaksmaa, A.; Horn, M.A.; Niemann, H.; Pijuan, M.; Ho, A. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front. Microbiol. 2021, 12, 678057. [Google Scholar] [CrossRef]
- Su, Y.-C.; Sathyamoorthy, S.; Chandran, K. Bioaugmented methanol production using ammonia oxidizing bacteria in a continuous flow process. Bioresour. Technol. 2019, 279, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Rahalkar, M.C.; Bahulikar, R.A. Hemerythrins are widespread and conserved for methanotrophic guilds. Gene Rep. 2018, 11, 250–254. [Google Scholar] [CrossRef]
- Chen, K.H.-C.; Wu, H.-H.; Ke, S.-F.; Rao, Y.-T.; Tu, C.-M.; Chen, Y.-P.; Kuei, K.-H.; Chen, Y.-S.; Wang, V.C.-C.; Kao, W.-C.; et al. Bacteriohemerythrin bolsters the activity of the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath). J. Inorg. Biochem. 2012, 111, 10–17. [Google Scholar] [CrossRef]
- Yu, Z.; Pesesky, M.; Zhang, L.; Huang, J.; Winkler, M.; Chistoserdova, L. A Complex Interplay between Nitric Oxide, Quorum Sensing, and the Unique Secondary Metabolite Tundrenone Constitutes the Hypoxia Response in Methylobacter. Msystems 2020, 5, e00770-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero-Cruz, S.; Cremers, G.; van Alen, T.A.; Op den Camp, H.J.M.; Jetten, M.S.M.; Rasigraf, O.; Vaksmaa, A. Response of the Anaerobic Methanotroph “Candidatus Methanoperedens nitroreducens” to Oxygen Stress. Appl. Environ. Microbiol. 2018, 84, e01832-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strom, T.; Ferenci, T.; Quayle, J.R. The Carbon Assimilation Pathways of Methylococcus Capsulatus, Pseudomonas Methanica and Methylosinus Trichosporium (OB3B) during Growth on Methane. Biochem. J. 1974, 144, 76–465. [Google Scholar] [CrossRef] [Green Version]
- Vecherskaya, M.; Dijkema, C.; Saad, H.R.; Stams, A.J.M. Microaerobic and anaerobic metabolism of a Methylocystis parvus strain isolated from a denitrifying bioreactor: Microaerobic and Anaerobic Metabolism of a Methanotroph. Environ. Microbiol. Rep. 2009, 1, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.G.; Topiwala, H.H.; Hamer, G. Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol. Bioeng. 1974, 16, 41–59. [Google Scholar] [CrossRef]
- Cuba, R.M.F.; Duarte, I.C.; Saavedra, N.K.; Varesche, M.B.A.; Foresti, E. Denitrification coupled with methane anoxic oxidation and microbial community involved identification. Braz. Arch. Biol. Technol. 2011, 54, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Pieja, A.J.; Sundstrom, E.R.; Criddle, C.S. Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresour. Technol. 2012, 107, 385–392. [Google Scholar] [CrossRef]
- Yan, C.; Mei, J.; Zhao, Y.-C. Aerobic Methanotrophs and Its Application in Engineering. Chin. J. Biotechnol. 2022, 38, 1322–1338. [Google Scholar]
- Zhang, Y.; Xin, J.; Chen, L.; Xia, C. The Methane Monooxygenase Intrinsic Activity of Kinds of Methanotrophs. Appl. Biochem. Biotechnol. 2009, 157, 431–441. [Google Scholar] [CrossRef]
- Zhu, G.-C.; Lu, Y.-Z.; Xu, L.-R. Effects of the carbon/nitrogen (C/N) ratio on a system coupling simultaneous nitrification and denitrification (SND) and denitrifying phosphorus removal (DPR). Environ. Technol. 2021, 42, 3048–3054. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Xia, Y.; Nielsen, P.H. Activity and identity of fermenting microorganisms in full-scale biological nutrient removing wastewater treatment plants. Environ. Microbiol. 2008, 10, 2008–2019. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, A.J.; Brock, T.D. Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 1979, 137, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Valentine, D.; Reeburgh, W.S. New perspectives on anaerobic methane oxidation. Environ. Microbiol. 2000, 2, 477–484. [Google Scholar] [CrossRef]
- Luo, J.-H.; Wu, M.; Yuan, Z.; Guo, J. Biological Bromate Reduction Driven by Methane in a Membrane Biofilm Reactor. Environ. Sci. Technol. Lett. 2017, 4, 562–566. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Dong, Q.-Y.; Rittmann, B.E.; Zhao, H.-P. Bioreduction of Antimonate by Anaerobic Methane Oxidation in a Membrane Biofilm Batch Reactor. Environ. Sci. Technol. 2018, 52, 8693–8700. [Google Scholar] [CrossRef]
- Lv, P.-L.; Shi, L.-D.; Wang, Z.; Rittmann, B.; Zhao, H.-P. Methane oxidation coupled to perchlorate reduction in a membrane biofilm batch reactor. Sci. Total. Environ. 2019, 667, 9–15. [Google Scholar] [CrossRef]
- Xie, T.; Yang, Q.; Winkler, M.K.; Wang, D.; Zhong, Y.; An, H.; Chen, F.; Yao, F.; Wang, X.; Wu, J.; et al. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: Performance and microbial community structure. J. Hazard. Mater. 2018, 357, 244–252. [Google Scholar] [CrossRef]
- Averesch, N.J.H.; Kracke, F. Metabolic Network Analysis of Microbial Methane Utilization for Biomass Formation and Upgrading to Bio-Fuels. Front. Energy Res. 2018, 6, 106. [Google Scholar] [CrossRef]
- Caldwell, S.L.; Laidler, J.R.; Brewer, E.A.; Eberly, J.O.; Sandborgh, S.C.; Colwell, F.S. Correction to “Anaerobic Oxidation of Methane: Mechanisms, Bioenergetics, And the Ecology of Associated Microorganisms”. Environ. Sci. Technol. 2010, 44, 3200. [Google Scholar] [CrossRef]
- Hoehler, T.M.; Alperin, M.J.; Albert, D.B.; Martens, C.S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Glob. Biogeochem. Cycles 1994, 8, 451–463. [Google Scholar] [CrossRef]
- Moran, J.J.; Beal, E.J.; Vrentas, J.M.; Orphan, V.J.; Freeman, K.H.; House, C.H. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ. Microbiol. 2008, 10, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Liu, T.; Yuan, Z.; Guo, J. Efficient nitrate removal from synthetic groundwater via in situ utilization of short-chain fatty acids from methane bioconversion. Chem. Eng. J. 2020, 393, 124594. [Google Scholar] [CrossRef]
- Ward, L.M.; Shih, P.M.; Hemp, J.; Kakegawa, T.; Fischer, W.W.; McGlynn, S.E. Phototrophic Methane Oxidation in a Member of the Chloroflexi Phylum. Microbiology 2019, 26, 531582. [Google Scholar] [CrossRef] [Green Version]
- Nazem-Bokaee, H.; Maranas, C.D. A Prospective Study on the Fermentation Landscape of Gaseous Substrates to Biorenewables Using Methanosarcina acetivorans Metabolic Model. Front. Microbiol. 2018, 9, 1855. [Google Scholar] [CrossRef]
- De Souza, Y.P.A.; Rosado, A.S. Opening the Black Box of Thermophilic Autotrophic Bacterial Diversity. In Microbial Diversity in the Genomic Era; Elsevier: Amsterdam, The Netherlands, 2019; pp. 333–343. ISBN 978-0-12-814849-5. [Google Scholar]
- Nazem-Bokaee, H.; Gopalakrishnan, S.; Ferry, J.G.; Wood, T.K.; Maranas, C.D. Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microb. Cell Factories 2016, 15, 10. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ren, L.; Yan, B.; Luo, L.; Zhang, J.; Awasthi, M.K. Electron transfer and mechanism of energy production among syntrophic bacteria during acidogenic fermentation: A review. Bioresour. Technol. 2021, 323, 124637. [Google Scholar] [CrossRef]
- Hattori, S. Syntrophic Acetate-Oxidizing Microbes in Methanogenic Environments. Microbes Environ. 2008, 23, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Gilman, A.; Fu, Y.; Hendershott, M.; Chu, F.; Puri, A.W.; Smith, A.L.; Pesesky, M.; Lieberman, R.; Beck, D.A.; Lidstrom, M.E. Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C. PeerJ 2017, 5, e3945. [Google Scholar] [CrossRef] [Green Version]
- Maintinguer, S.I.; Lazaro, C.Z.; Pachiega, R.; Varesche, M.B.A.; Sequinel, R.; de Oliveira, J.E. Hydrogen bioproduction with Enterobacter sp. isolated from brewery wastewater. Int. J. Hydrogen Energy 2017, 42, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Kim, H.-H.; Lee, K.-M.; Lee, H.-J.; Lee, C. Oxidation of microcystin-LR by ferrous-tetrapolyphosphate in the presence of oxygen and hydrogen peroxide. Water Res. 2017, 114, 277–285. [Google Scholar] [CrossRef]
- Jo, S.Y.; Na Rhie, M.; Jung, S.M.; Sohn, Y.J.; Yeon, Y.J.; Kim, M.-S.; Park, C.; Lee, J.; Park, S.J.; Na, J.-G. Hydrogen Production from Methane by Methylomonas sp. DH-1 under Micro-aerobic Conditions. Biotechnol. Bioprocess Eng. 2020, 25, 71–77. [Google Scholar] [CrossRef]
- Nisar, A.; Khan, S.; Hameed, M.; Nisar, A.; Ahmad, H.; Mehmood, S.A. Bio-conversion of CO2 into biofuels and other value-added chemicals via metabolic engineering. Microbiol. Res. 2021, 251, 126813. [Google Scholar] [CrossRef]
- Kremp, F.; Müller, V. Methanol and methyl group conversion in acetogenic bacteria: Biochemistry, physiology and application. FEMS Microbiol. Rev. 2021, 45, fuaa040. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.N.; Sarkar, O.; Chandrasekhar, K.; Raj, T.; Narisetty, V.; Mohan, S.V.; Pandey, A.; Varjani, S.; Kumar, S.; Sharma, P.; et al. Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy. Sci. Total. Environ. 2022, 806, 150312. [Google Scholar] [CrossRef] [PubMed]
- Myszka, K.; Czaczyk, K. Characterization of Adhesive Exopolysaccharide (EPS) Produced by Pseudomonas aeruginosa under Starvation Conditions. Curr. Microbiol. 2009, 58, 541–546. [Google Scholar] [CrossRef]
- Ye, F.; Ye, Y.; Li, Y. Effect of C/N ratio on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge flocs. J. Hazard. Mater. 2011, 188, 37–43. [Google Scholar] [CrossRef]
- Su, J.F.; Yang, S.; Huang, T.L.; Li, M.; Liu, J.R.; Yao, Y.X. Enhancement of the denitrification in low C/N condition and its mechanism by a novel isolated Comamonas sp. YSF15. Environ. Pollut. 2020, 256, 113294. [Google Scholar] [CrossRef] [PubMed]
- Girguis, P.R.; Orphan, V.J.; Hallam, S.J.; DeLong, E.F. Growth and Methane Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow Bioreactor. Appl. Environ. Microbiol. 2003, 69, 5472–5482. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Lu, Y.-Z.; Fu, L.; Ding, Z.-W.; Mu, Y.; Cheng, S.H.; Zeng, R.J. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell. Water Res. 2017, 110, 112–119. [Google Scholar] [CrossRef]
- Scheller, S.; Yu, H.; Chadwick, G.L.; McGlynn, S.E.; Orphan, V.J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 2016, 351, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.S.; Palatinszky, M.; Pereira, F.C.; Nguyen, J.; Fernandez, V.I.; Mueller, A.J.; Menolascina, F.; Daims, H.; Berry, D.; Wagner, M.; et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 2019, 4, 902–903. [Google Scholar] [CrossRef] [Green Version]
- Trembath-Reichert, E.; Green-Saxena, A.; Orphan, V.J. Whole Cell Immunomagnetic Enrichment of Environmental Microbial Consortia Using RRNA-Targeted Magneto-FISH. In Microbial Metagenomics, Metatranscriptomics, and Metaproteomics; DeLong, E.F., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2013; Volume 531, pp. 21–44. ISBN 978-0-12-407863-5. [Google Scholar]
- McGlynn, S.E.; Chadwick, G.L.; Kempes, C.P.; Orphan, V.J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 2015, 526, 531–535. [Google Scholar] [CrossRef]
- Welte, C.U.; Rasigraf, O.; Vaksmaa, A.; Versantvoort, W.; Arshad, A.; Camp, H.J.O.D.; Jetten, M.S.; Lüke, C.; Reimann, J. Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ. Microbiol. Rep. 2016, 8, 941–955. [Google Scholar] [CrossRef]
- Kalyuzhnaya, M.G.; Lidstrom, M.E.; Chistoserdova, L. Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington. ISME J. 2008, 2, 696–706. [Google Scholar] [CrossRef] [Green Version]
- Kitmitto, A.; Myronova, N.; Basu, P.; Dalton, H. Characterization and Structural Analysis of an Active Particulate Methane Monooxygenase Trimer from Methylococcus capsulatus (Bath). Biochemistry 2005, 44, 10954–10965. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.E.; Rezes, R.T.; Hedman, P.C.; Jones, J.C.; Sturchio, N.C.; Hatzinger, P.B. Biotransformation of the insensitive munition constituents 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN) by aerobic methane-oxidizing consortia and pure cultures. J. Hazard. Mater. 2021, 407, 124341. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.-N.; Yu, C.-L.; Ma, Q.-Q.; Li, S.-B. Direct Evidence for a Soluble Methane Monooxygenase from Type I Methanotrophic Bacteria: Purification and Properties of a Soluble Methane Monooxygenase fromMethylomonassp. GYJ3. Arch. Biochem. Biophys. 1997, 345, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Ukaegbu, U.E.; Henery, S.; Rosenzweig, A.C. Biochemical Characterization of MmoS, a Sensor Protein Involved in Copper-Dependent Regulation of Soluble Methane Monooxygenase. Biochemistry 2006, 45, 10191–10198. [Google Scholar] [CrossRef] [PubMed]
- Mahlert, F.; Bauer, C.; Jaun, B.; Thauer, R.K.; Duin, E.C. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2. JBIC J. Biol. Inorg. Chem. 2002, 7, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Chou, C.-W.; Shi, H.; Wang, L.; Ghebreab, R.; Phillips, D.; Yan, Y.; Duin, E.C.; Whitman, W.B. Assembly of Methyl Coenzyme M Reductase in the Methanogenic Archaeon Methanococcus maripaludis. J. Bacteriol. 2018, 200, 10–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Ding, Z.-W.; Fu, L.; Lu, Y.-Z.; Cheng, S.H.; Zeng, R.J. New primers for detecting and quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches. Appl. Microbiol. Biotechnol. 2015, 99, 9805–9812. [Google Scholar] [CrossRef] [PubMed]
- Goevert, D.; Conrad, R. Effect of Substrate Concentration on Carbon Isotope Fractionation during Acetoclastic Methanogenesis by Methanosarcina barkeri and M. acetivorans and in Rice Field Soil. Appl. Environ. Microbiol. 2009, 75, 2605–2612. [Google Scholar] [CrossRef] [Green Version]
- Abou-Zeid, D.M.; Biebl, H.; Spröer, C.; Müller, R.-J. Propionispora hippei sp. nov., a novel Gram-negative, spore-forming anaerobe that produces propionic acid. Int. J. Syst. Evol. Microbiol. 2004, 54, 951–954. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Liu, G.; Huang, Y.; Zhou, Y. A New Primer to Amplify pmoA Gene From NC10 Bacteria in the Sediments of Dongchang Lake and Dongping Lake. Curr. Microbiol. 2017, 74, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Vaksmaa, A.; Jetten, M.S.M.; Ettwig, K.F.; Lüke, C. McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens’. Appl. Microbiol. Biotechnol. 2017, 101, 1631–1641. [Google Scholar] [CrossRef] [Green Version]
- Priemé, A.; Braker, G.; Tiedje, J.M. Diversity of Nitrite Reductase (nirK and nirS) Gene Fragments in Forested Upland and Wetland Soils. Appl. Environ. Microbiol. 2002, 68, 1893–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bing, H.; Yin, C.; Guy, A.; Hao, J.; Levente, B.; Zhao, J.; Colin, M.J.; Xing, X.H. Diversity and Activity of Methanotrophs in Alkaline Soil from a Chinese Coal Mine. FEMS Microbiol. Ecol. 2010, 70, 196–207. [Google Scholar]
- He, R.; Wooller, M.J.; Pohlman, J.W.; Tiedje, J.M.; Leigh, M.B. Methane-derived carbon flow through microbial communities in arctic lake sediments. Environ. Microbiol. 2015, 17, 3233–3250. [Google Scholar] [CrossRef]
- Dumont, M.G.; Pommerenke, B.; Casper, P.; Conrad, R. DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ. Microbiol. 2011, 13, 1153–1167. [Google Scholar] [CrossRef]
- Neufeld, J.D.; Dumont, M.G.; Vohra, J.; Murrell, J.C. Methodological Considerations for the Use of Stable Isotope Probing in Microbial Ecology. Microb. Ecol. 2007, 53, 435–442. [Google Scholar] [CrossRef]
- McDonald, I.R.; Bodrossy, L.; Chen, Y.; Murrell, J.C. Molecular Ecology Techniques for the Study of Aerobic Methanotrophs. Appl. Environ. Microbiol. 2008, 74, 1305–1315. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, Z.; Xia, S.; Ding, N.; Long, X.; Wang, J.; Chen, M.; Ye, C.; Chen, S. Combined genome-centric metagenomics and stable isotope probing unveils the microbial pathways of aerobic methane oxidation coupled to denitrification process under hypoxic conditions. Bioresour. Technol. 2020, 318, 124043. [Google Scholar] [CrossRef]
- Lee, J.; Alrashed, W.; Engel, K.; Yoo, K.; Neufeld, J.D.; Lee, H.-S. Methane-based denitrification kinetics and syntrophy in a membrane biofilm reactor at low methane pressure. Sci. Total. Environ. 2019, 695, 133818. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Murrell, J.C. When metagenomics meets stable-isotope probing: Progress and perspectives. Trends Microbiol. 2010, 18, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.A. Metatranscriptomics: Eavesdropping on Complex Microbial Communities. Microbe 2009, 4, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Carvalhais, L.C.; Dennis, P.G.; Tyson, G.W.; Schenk, P.M. Application of metatranscriptomics to soil environments. J. Microbiol. Methods 2012, 91, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.T.; Madsen, E.L. In situ expression of nitrite-dependent anaerobic methane oxidation proteins by Candidatus Methylomirabilis oxyfera co-occurring with expressed anammox proteins in a contaminated aquifer. Environ. Microbiol. Rep. 2015, 7, 252–264. [Google Scholar] [CrossRef]
- Lue, F.; Bize, A.; Guillot, A.; Monnet, V.; Madigou, C.; Chapleur, O.; Mazéas, L.; He, P.; Bouchez, T. Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity. ISME J. 2014, 8, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Skennerton, C.T.; Chourey, K.; Iyer, R.; Hettich, R.L.; Tyson, G.W.; Orphan, V.J. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea. mBio 2017, 8, e01561-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Z.; Okubo, T.; Kubota, K.; Kasahara, Y.; Tsurumaru, H.; Anda, M.; Ikeda, S.; Minamisawa, K. Metaproteomic Identification of Diazotrophic Methanotrophs and Their Localization in Root Tissues of Field-Grown Rice Plants. Appl. Environ. Microbiol. 2014, 80, 5043–5052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taubert, M.; Grob, C.; Crombie, A.; Howat, A.M.; Burns, O.J.; Weber, M.; Lott, C.; Kaster, A.-K.; Vollmers, J.; Jehmlich, N.; et al. Communal metabolism byMethylococcaceaeandMethylophilaceaeis driving rapid aerobic methane oxidation in sediments of a shallow seep near Elba, Italy. Environ. Microbiol. 2019, 21, 3780–3795. [Google Scholar] [CrossRef] [PubMed]
- Hindmarsh, J.P.; Awati, A.; Edwards, P.J.; Moughan, P. NMR-based metabonomics detection of differences in the metabolism of hydrolysed versus intact protein of similar amino acid profile. J. Sci. Food Agric. 2012, 92, 2013–2016. [Google Scholar] [CrossRef]
- Cui, M.; Trimigno, A.; Aru, V.; Khakimov, B.; Engelsen, S.B. Human Faecal 1H NMR Metabolomics: Evaluation of Solvent and Sample Processing on Coverage and Reproducibility of Signature Metabolites. Anal. Chem. 2020, 92, 9546–9555. [Google Scholar] [CrossRef] [PubMed]
- Putri, S.P.; Ikram, M.M.M.; Sato, A.; Dahlan, H.A.; Rahmawati, D.; Ohto, Y.; Fukusaki, E. Application of gas chromatography-mass spectrometry-based metabolomics in food science and technology. J. Biosci. Bioeng. 2022, 133, 425–435. [Google Scholar] [CrossRef]
- Gu, H.; Jasbi, P.; Patterson, J.; Jin, Y. Enhanced Detection of Short-Chain Fatty Acids Using Gas Chromatography Mass Spectrometry. Curr. Protoc. 2021, 1, e177. [Google Scholar] [CrossRef]
- Miyano, H.; Nakayama, A. Development of Precolumn Derivatization–LC/MS for Amino-Acid-Focused Metabolomics. Chromatography 2021, 42, 17–27. [Google Scholar] [CrossRef]
- McKay, M.J.; Castaneda, M.; Catania, S.; Charles, K.A.; Shanahan, E.; Clarke, S.J.; Engel, A.; Varelis, P.; Molloy, M.P. Quantification of short-chain fatty acids in human stool samples by LC-MS/MS following derivatization with aniline analogues. J. Chromatogr. B 2023, 1217, 123618. [Google Scholar] [CrossRef]
- Cao, Z.; Zuo, W.; Wang, L.; Chen, J.; Qu, Z.; Jin, F.; Dai, L. Spatial profiling of microbial communities by sequential FISH with error-robust encoding. Nat. Commun. 2023, 14, 1477. [Google Scholar] [CrossRef]
- Sgobba, E.; Daguerre, Y.; Giampà, M. Unravel the Local Complexity of Biological Environments by MALDI Mass Spectrometry Imaging. Int. J. Mol. Sci. 2021, 22, 12393. [Google Scholar] [CrossRef]
- Wang, M.; Chen, X.; Liu, X.; Fang, Y.; Zheng, X.; Huang, T.; Tang, Y.-Q.; Ackermann, M.; Nie, Y.; Wu, X.-L. Even allocation of benefits stabilizes microbial community engaged in metabolic division of labor. Cell Rep. 2022, 40, 111410. [Google Scholar] [CrossRef] [PubMed]
Oxygen Circumstance | Nitrogen Source | Major Functional Microorganisms | Intermediate Products | References | |||
---|---|---|---|---|---|---|---|
Methanotrophs | Denitrifiers | Methanogens | Acid-Producing Bacteria | ||||
AME-D: The synergistic effect of aerobic methanotrophs and denitrifiers | |||||||
Aerobic | NO3− | Methylomona | Pseudomonas stutzeri | - | Citrate, iso-citrate | [7] | |
Aerobic | NO3− | Methylococcaceae | Hyphomicrobiaceae, Methylophilaceae | Methanol, formaldehyde, formate | [79] | ||
Aerobic | NO3− | Methylocystis | - | PHB | [86] | ||
Aerobic | NO3− | Methylomicrobium buryatense | - | Lactate, formate, acetate | [81] | ||
Aerobic | NO2−/NO3− | Methylococcaceae (Methylobacter, Methylomonas, Methylocaldum, Methylosarcin, Methylomicrobium, Methylovulum, Methyloglobulus) | Methylophilaceae (Methylotenera, Methylophilus, Methylovorus); Pseudomonas, Paenibacillus, Hyphomicrobium, Flavobacterium, Rhizobium | Methanol | [87] | ||
Aerobic | NO3− | Methylococcaceae, Methylocystaceae, Methylophilaceae, Verrucomicrobiacea, Comamonadaceae | Hyphomicrobiaceae, Rhodocyclaceae, Xanthomonadaceae | Biodegradable organics | [88] | ||
Aerobic | NO3− | Methylobacillus, Methylophilus, Methylomonadaceae, Methylococcaceae, Beijerinckiaceae | Methylomonas, Methylococcus, Methylophilaceae, Xanthomonadaceae, Rhodocyclaceae, Hyphomicrobiaceae, Mycobacteriaceae | - | [89] | ||
Aerobic | NO3− | Methylosarcina, Methyloparacoccus, Methylocystis, | Ignavibacterium, Obscuribacteraceae, Edaphobaculum, Methyloversatilis, Methylobacterium | Formate, citrate, propionate, succinate | [76] | ||
Aerobic | NO3−/NO2− | Methylococcus, Methylobacter | Intrasporangium, Streptomyces, Xanthomonas, Pseudomonas | Biodegradable organics | [90] | ||
Aerobic/ microaerobic | NO3− | Methylobacter | Methylotenera | Methanol | [91] | ||
Microaerobic | NO3− | Methylococcus capsulatus | Hyphomicrobium | Methanol | [92] | ||
Microaerobic | NO3− | Methylocystis parvus | Mesorhizobium plurifarium, Stenotrophomonas | Acetate, methanol | [93] | ||
Microaerobic | NO3−/NO2− | Methylococcaceae (Methylobacter, Methylocaldum) | Methylophilaceae | Acetate, formaldehyde | [94] | ||
Aerobic-Hypoxic | NO3− | Aerobic methanotrophs | Non-methanotrophic bacteria | Methanol, acetate, protein | [84] | ||
Microaerobic | NO3− | Methylomonas | Methylotenera, Thermomonas | Acetate, lactate, propionate, citrate | [78] | ||
Hypoxic | Methylomonas, Methylocystis | Methylomonas, Thermomonas | Formate, acetate, lactate, citrate | ||||
Hypoxic | NO3− | Methylobacter | Methylotenera | Methanol | [95] | ||
1. AME-D: The dependent role of aerobic methanotrophs; 2. Only methane oxidation or lysis of methanotrophs | |||||||
Aerobic | NO2−/NO3− | Methylomicrobium album ATCC 33003 | - | - | [96] | ||
Aerobic | - | Methylomicrobium alcaliphilum strain 20Z | - | Formate, acetate | [97] | ||
Hypoxic | Formate, acetate, succinate, lactate, H2 | ||||||
Hypoxic | NO3−/Amino acid | Methylosoma difficile gen. Nov., sp. Nov. | - | - | [98] | ||
Hypoxic | NO3− | Methylomonas denitrificans sp. Nov. type strain FJG1 | [57] | ||||
Hypoxic | NH4+ | Methylococcus | - | Protein, nucleic acid | [85] | ||
Hypoxic | NO3− | Methylocystis sp.strain SC2 | - | PHB | [56] | ||
AME-D: The synergistic effect of aerobic methanotrophs | |||||||
Aerobic/ microaerobic | NO3− | Methylobacter luteus, Methylosinus trichosporium OB3b (NO2−→N2O), Methylobacter sp. Strain T20 (NO3−→NO) | - | - | [99] | ||
Aerobic-Hypoxic | NO3− | Methylobacter trichosporium OB3b (NO3−→NO), Methylomonas methanica strain Rubra, Methylomicrobium alcaliphilum (NO→N2O) | [100] | ||||
ANME-D | |||||||
Aerobic | - | - | Azospira, Dechloromonas | Methanosarcina, Methanobacterium | Propionspora, Dysgonomonas | Acetate, propionate, C3–C6 acid | [101] |
Microaerobic | Methylobacter, Methylotenera | - | Methanosarcina, Methanobacterium | Propionispora, Dysgonomona, Syntrophomonas | |||
Anaerobic | NO3− | Ca. ‘M. nitroreducens’, Ca. ‘M. oxyfera’ | Denitratisoma | - | |||
NO2− | Ignavibacteriaceae | ||||||
Microaerobic | NO3− | Ca. ‘M. oxyfera’ | Methylomicrobium alcaliphilum strain 20Z | Acetate, propionate | [80] | ||
Microaerobic | - | Methylocystis | - | PHB, ß-hydroxybutyrate, butyrate, acetone, isopropanol, 2,3-butanediol, succinate | [82] | ||
Anaerobic | ß -hydroxybutyrate, butyrate, acetate, acetone, isopropanol, 2,3-butanediol, succinate | ||||||
Anaerobic | NO3−/NO2− | - | Methanosarcina, Methanobacterium | Firmicutes (Sporolactobacillus, Propionispora, Actinobacteria, Bacteroidetes | Acetate, propionate, butyrate, iso-butyrate, valerate, iso-valerate, caproate | [17] | |
Anaerobic | NO3− | Chloroflexi | Pseudomonas, Simplicispira, Comamonas, Thauera, Azospira | - | Proteiniphilum, Dysgonomonas, Propionispora | Acetate, propionate | [102] |
Anaerobic | NO3−/NO2− | Ca. ‘M. nitroreducens’ | - | Acetate | [18] | ||
Anaerobic | NO3−/NO2− | - | Dechloromonas, Azospira, Pseudomonas | Methanosarcina, Methanobacterium | Propionispora, Dysgonomonas, Propionicimonas, Clostridium | Acetate, propionate, C4–C6 acid | [103] |
Anaerobic | - | - | Methanobrevibacter, Methanobacterium | Proteobacteria, Firmicutes, Bacteroidetes | Acetate | [104] | |
Anaerobic | NO3− | Ca. ‘M. nitroreducens’, Ca. ‘M. oxyfera’ | Arenimonas, Fimbriimonadales ATM1 | - | Formate, acetate | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.-C.; Li, H.-S.; Wang, Z.-H.; Sun, Z.-F.; Zhao, L. Intermediates Production in Methane Oxidation Coupled with Denitrification: Current Status, Challenges, and Future Opportunities. Fermentation 2023, 9, 645. https://doi.org/10.3390/fermentation9070645
Zheng X-C, Li H-S, Wang Z-H, Sun Z-F, Zhao L. Intermediates Production in Methane Oxidation Coupled with Denitrification: Current Status, Challenges, and Future Opportunities. Fermentation. 2023; 9(7):645. https://doi.org/10.3390/fermentation9070645
Chicago/Turabian StyleZheng, Xiao-Chuan, Hong-Shan Li, Zi-Han Wang, Zhong-Fang Sun, and Lei Zhao. 2023. "Intermediates Production in Methane Oxidation Coupled with Denitrification: Current Status, Challenges, and Future Opportunities" Fermentation 9, no. 7: 645. https://doi.org/10.3390/fermentation9070645
APA StyleZheng, X. -C., Li, H. -S., Wang, Z. -H., Sun, Z. -F., & Zhao, L. (2023). Intermediates Production in Methane Oxidation Coupled with Denitrification: Current Status, Challenges, and Future Opportunities. Fermentation, 9(7), 645. https://doi.org/10.3390/fermentation9070645