Hybrid Deep Modeling of a GS115 (Mut+) Pichia pastoris Culture with State–Space Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain, Medium and Inoculum Preparation
2.2. Bioreactor Operation
2.3. Analytical Techniques
2.4. Hybrid Deep Model with State-Space Reduction
3. Results and Discussion
3.1. Cultivation Experiments
3.2. Inorganic Element Dynamics
3.3. PCA of Cumulative Reacted Amount
3.4. Hybrid Model Development
3.5. Design Space Exploratory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Udugama, I.A.; Öner, M.; Lopez, P.C.; Beenfeldt, C.; Bayer, C.; Huusom, J.K.; Gernaey, K.V.; Sin, G. Towards Digitalization in Bio-Manufacturing Operations: A Survey on Application of Big Data and Digital Twin Concepts in Denmark. Front. Chem. Eng. 2021, 3, 727152. [Google Scholar] [CrossRef]
- Yang, C.T.; Kristiani, E.; Leong, Y.K.; Chang, J.S. Big data and machine learning driven bioprocessing-Recent trends and critical analysis. Bioresour. Technol. 2023, 372, 128625. [Google Scholar] [CrossRef] [PubMed]
- Appl, C.; Moser, A.; Baganz, F.; Hass, V.C. Digital Twins for Bioprocess Control Strategy Development and Realisation. Digit. Twins Appl. Des. Optim. Bioprocesses 2021, 177, 63–94. [Google Scholar] [CrossRef]
- Lukowski, G.; Rauch, A.; Rosendahl, T. The Virtual Representation of the World Is Emerging. In Future Telco; Springer: Berlin/Heidelberg, Germany, 2019; pp. 165–173. [Google Scholar]
- Badr, S.; Sugiyama, H. A PSE perspective for the efficient production of monoclonal antibodies: Integration of process, cell, and product design aspects. Curr. Opin. Chem. Eng. 2020, 27, 121–128. [Google Scholar] [CrossRef]
- von Stosch, M.; Oliveira, R.; Peres, J.; de Azevedo, S.F. Hybrid semi-parametric modeling in process systems engineering: Past, present and future. Comput. Chem. Eng. 2014, 60, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Agharafeie, R.; Oliveira, R.; Ramos, J.; Mendes, J. Application of Hybrid Neural Models to Bioprocesses: A Systematic Literature Review. Authorea Prepr. 2023. [Google Scholar] [CrossRef]
- De Brabander, P.; Uitterhaegen, E.; Delmulle, T.; De Winter, K.; Soetaert, W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnol. Adv. 2023, 64, 108121. [Google Scholar] [CrossRef]
- Ferreira, A.R.; Dias, J.M.L.; von Stosch, M.; Clemente, J.; Cunha, A.E.; Oliveira, R. Fast development of Pichia pastoris GS115 Mut(+) cultures employing batch-to-batch control and hybrid semi-parametric modeling. Bioprocess Biosyst. Eng. 2014, 37, 629–639. [Google Scholar] [CrossRef]
- Brunner, V.; Siegl, M.; Geier, D.; Becker, T. Biomass soft sensor for a Pichia pastoris fed-batch process based on phase detection and hybrid modeling. Biotechnol. Bioeng. 2020, 117, 2749–2759. [Google Scholar] [CrossRef]
- Pinto, J.; Mestre, M.; Ramos, J.; Costa, R.S.; Striedner, G.; Oliveira, R. A general deep hybrid model for bioreactor systems: Combining first principles with deep neural networks. Comput. Chem. Eng. 2022, 165, 107952. [Google Scholar] [CrossRef]
- Zhang, J.; Greasham, R. Chemically defined media for commercial fermentations. Appl. Microbiol. Biotechnol. 1999, 51, 407–421. [Google Scholar] [CrossRef]
- Spencer, J.F.T.; Spencer, D.M. Yeasts in Natural and Artificial Habitats; Springer: Berlin/Heidelberg, Germany, 1997; p. 381. [Google Scholar]
- Plantz, B.A.; Nickerson, K.; Kachman, S.D.; Schlegel, V.L. Evaluation of metals in a defined medium for Pichia pastoris expressing recombinant beta-galactosidase. Biotechnol. Prog. 2007, 23, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Willsky, G.R. Characterization of the plasma-membrane Mg2+-ATPase from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 1979, 254, 3326–3332. [Google Scholar] [CrossRef]
- Okorokov, L.A.; Lehle, L. Ca2+-ATPases of Saccharomyces cerevisiae: Diversity and possible role in protein sorting. Fems Microbiol. Lett. 1998, 162, 83–91. [Google Scholar] [CrossRef]
- Depue, R.H.; Moat, A.G. Factors affecting aspartase activity. J. Bacteriol. 1961, 82, 383–386. [Google Scholar] [CrossRef] [Green Version]
- Walker, G.M.; Maynard, A. Accumulation of magnesium ions during fermentative metabolism in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 1997, 18, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Arino, J.; Ramos, J.; Sychrova, H. Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiol. Mol. Biol. Rev. 2010, 74, 95–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Munoz, G.A.; Pena, A. In situ study of K+ transport into the vacuole of Saccharomyces cerevisiae. Yeast 2005, 22, 689–704. [Google Scholar] [CrossRef]
- Seo, K.H.; Rhee, J.I. High-level expression of recombinant phospholipase C from Bacillus cereus in Pichia pastoris and its characterization. Biotechnol. Lett. 2004, 26, 1475–1479. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.P.; Shimp, R.L.; Miles, A.R.; Whitmore, M.; Stowers, A.W. High-level production and purification of P30P2MSP1(19), an important vaccine antigen for malaria, expressed in the methylotropic yeast Pichia pastoris. Protein Expr. Purif. 2001, 23, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Cereghino, G.P.L.; Cereghino, J.L.; Ilgen, C.; Cregg, J.M. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Opin. Biotechnol. 2002, 13, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, L.M.; Pla, I.; Chang, H.J.; Cohen, L.; Ritter, G.; Old, L.J.; Batt, C.A. An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr. Purif. 2004, 37, 18–26. [Google Scholar] [CrossRef]
- Cos, O.; Ramon, R.; Montesinos, J.L.; Valero, F. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review. Microb. Cell Factories 2006, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosalkar, A.; Sahai, V.; Srivastava, A. Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production. Bioresour. Technol. 2008, 99, 7906–7910. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.R.; Ataide, F.; von Stosch, M.; Dias, J.M.L.; Clemente, J.J.; Cunha, A.E.; Oliveira, R. Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv). Bioprocess Biosyst. Eng. 2012, 35, 1603–1614. [Google Scholar] [CrossRef]
- Jahic, M.; Gustavsson, M.; Jansen, A.K.; Martinelle, M.; Enfors, S.O. Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. J. Biotechnol. 2003, 102, 45–53. [Google Scholar] [CrossRef]
- Jahic, M.; Knoblechner, J.; Charoenrat, T.; Enfors, S.O.; Veide, A. Interfacing Pichia pastoris cultivation with expanded bed adsorption. Biotechnol. Bioeng. 2006, 93, 1040–1049. [Google Scholar] [CrossRef]
- Vanz, A.L.; Lunsdorf, H.; Adnan, A.; Nimtz, M.; Gurramkonda, C.; Khanna, N.; Rinas, U. Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: Catabolic adaptation, stress responses, and autophagic processes. Microb. Cell Factories 2012, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Looser, V.; Bruhlmann, B.; Bumbak, F.; Stenger, C.; Costa, M.; Camattari, A.; Fotiadis, D.; Kovar, K. Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnol. Adv. 2015, 33, 1177–1193. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.A.; Akkermans, S.; Van Impe, J.F.M. Effects of Temperature and pH on Recombinant Thaumatin II Production by Pichia pastoris. Foods 2022, 11, 1438. [Google Scholar] [CrossRef]
- Surribas, A.; Stahn, R.; Montesinos, J.L.; Enfors, S.O.; Valero, F.; Jahic, M. Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. J. Biotechnol. 2007, 130, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.L.; Xue, C.; Wang, Y.; Yao, X.Q.; Liu, Z.M. Increasing the cell viability and heterologous protein expression of Pichia pastoris mutant deficient in PMR1 gene by culture condition optimization. Appl. Microbiol. Biotechnol. 2008, 81, 235–241. [Google Scholar] [CrossRef] [PubMed]
Exp. | Glycerol Batch/Fed-Batch (GBFB) | Methanol Fed-Batch (MFB) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Δt (h) | Glycerol Feed (kg) | Final X (gWCW/L) | Δt (h) | T (°C) | pH | Methanol Feed (kg) | Final X (gWCW/L) | Final scFv (mg/L) | Yield scFv/X (µg/gWCW) | |
A | 46.8 | 1.285 | 316.9 ± 3.2 | 53.7 | 30.0 | 5.0 | 7.516 | 457.3 ± 3.8 | 5.9 ± 0.4 | 42.0 |
B | 76.7 | 2.821 | 447.3 ± 2.7 | 50.5 | 23.6/30.0 * | 5.0 | 9.540 | 585.0 ± 0.5 | 15.6 ± 2.2 | 113.3 |
C | 47.3 | 1.264 | 295.4 ± 1.1 | 98.0 | 23.6 | 5.0/7.0 ** | 14.794 | 587.7 ± 2.2 | 16.1 ± 2.5 | 55.1 |
D | 50.3 | 1.218 | 268.1 ± 1.6 | 95.5 | 23.6 | 5.0/7.0 *** | 19.002 | 573.1 ± 1.1 | 14.3 ± 1.8 | 46.9 |
E | 53.4 | 1.285 | 301.5 ± 2.7 | 70.5 | 30.0 | 5.0 | 13.338 | 434.2 ± 3.8 | 11.9 ± 1.3 | 89.7 |
F | 48.3 | 0.586 | 164.2 ± 6.0 | 136.7 | 23.6 | 4.0 | 23.602 | 598.1 ± 7.1 | 54.4 ± 1.3 | 125.4 |
G | 48.0 | 1.031 | 274.2 ± 10.3 | 102.0 | 23.6 | 4.0 | 9.808 | 479.6 ± 1.6 | 30.7 ± 0.6 | 149.5 |
H | 47.3 | 1.037 | 259.6 ± 10.3 | 105.5 | 30.0 | 6.5 | 12.189 | 475.4 ± 3.3 | 52.5 ± 8.6 | 243.3 |
I | 46.0 | 1.034 | 244.2 ± 22.3 | 103.0 | 30.0 | 7.0 | 10.488 | 428.1 ± 3.8 | 8.4 ± 0.5 | 45.7 |
Number of Principal Components | WMSE Train | WMSE Test | AICc | CPU Time (hh:mm:ss) | Number of Weights | Cumulative Explained Variance (%) |
---|---|---|---|---|---|---|
1 | 11.31 | 12.4 | 4380 | 02:19:00 | 182 | 72.25 |
2 | 3.45 | 4.47 | 2490 | 02:25:00 | 203 | 89.94 |
3 | 2.61 | 3.99 | 2090 | 02:20:00 | 224 | 95.24 |
4 | 0.98 | 1.97 | 550 | 02:30:00 | 245 | 97.77 |
5 | 0.59 | 1.18 | −300 | 02:24:00 | 266 | 98.85 |
6 | 0.50 | 1.21 | −430 | 02:22:00 | 287 | 99.33 |
7 | 0.37 | 1.40 | −820 | 02:25:00 | 308 | 99.72 |
8 | 0.32 | 1.42 | −1110 | 02:20:00 | 329 | 99.91 |
unreduced | 0.30 | 1.42 | −1100 | 02:24:00 | 350 | 100.00 |
Number of Hidden Nodes | WMSE Training | WMSE Test | AICc | CPU Time (hh:mm:ss) | Number of Weights |
---|---|---|---|---|---|
5 | 1.57 | 3.19 | 910 | 02:10:00 | 81 |
6 | 0.95 | 2.11 | 170 | 02:14:00 | 96 |
7 | 0.89 | 1.88 | 56 | 02:12:00 | 111 |
8 | 0.67 | 1.54 | −380 | 02:15:00 | 126 |
9 | 0.65 | 1.47 | −390 | 02:16:00 | 141 |
10 | 0.57 | 1.26 | −590 | 02:08:00 | 156 |
11 | 0.58 | 1.26 | −520 | 02:26:00 | 171 |
12 | 0.57 | 1.27 | −490 | 02:18:00 | 186 |
13 | 0.50 | 1.10 | −680 | 02:25:00 | 201 |
14 | 0.52 | 1.31 | −560 | 02:12:00 | 216 |
15 | 0.51 | 1.12 | −540 | 02:13:00 | 231 |
[5 5] | 1.05 | 2.08 | 320 | 02:05:00 | 111 |
[6 6] | 0.80 | 1.76 | −70 | 02:21:00 | 138 |
[7 7] | 0.79 | 1.64 | −10 | 02:28:00 | 167 |
[8 8] | 0.63 | 1.31 | −300 | 02:27:00 | 198 |
[9 9] | 0.62 | 1.22 | −230 | 02:33:00 | 231 |
[10 10] | 0.59 | 1.18 | −300 | 02:24:00 | 266 |
[11 11] | 0.52 | 1.16 | −310 | 02:32:00 | 303 |
[12 12] | 0.58 | 1.21 | −10 | 02:30:00 | 342 |
[13 13] | 0.50 | 1.01 | −470 | 02:33:00 | 383 |
[14 14] | 0.58 | 1.22 | 250 | 02:40:00 | 426 |
[15 15] | 0.59 | 1.23 | 450 | 02:32:00 | 471 |
[5 5 5] | 0.94 | 2.10 | 220 | 02:24:00 | 141 |
[6 6 6] | 0.76 | 1.76 | −40 | 02:32:00 | 180 |
[7 7 7] | 0.63 | 1.35 | −230 | 02:28:00 | 223 |
[8 8 8] | 0.69 | 1.41 | 50 | 02:39:00 | 270 |
[9 9 9] | 0.59 | 1.22 | −50 | 02:34:00 | 321 |
[10 10 10] | 0.61 | 1.13 | 240 | 02:36:00 | 376 |
[11 11 11] | 0.64 | 1.17 | 710 | 02:36:00 | 435 |
[12 12 12] | 0.65 | 1.21 | 1170 | 02:39:00 | 498 |
Number of Hidden Nodes | WMSE Training | WMSE Test | AICc | CPU Time (hh:mm:ss) | Number of Weights |
---|---|---|---|---|---|
10 | 1.41 | 2.58 | 1080 | 02:15:00 | 240 |
15 | 0.48 | 1.87 | −300 | 02:29:00 | 355 |
20 | 0.52 | 1.74 | −120 | 02:30:00 | 470 |
[10 10] | 0.30 | 1.42 | −1100 | 02:28:00 | 350 |
[15 15] | 0.33 | 1.35 | −1150 | 02:38:00 | 595 |
[20 20] | 0.42 | 1.38 | 210 | 02:44:00 | 890 |
[10 10 10] | 0.41 | 1.48 | −360 | 02:26:00 | 460 |
[15 15 15] | 0.42 | 1.54 | 140 | 02:41:00 | 835 |
[20 20 20] | 0.35 | 1.64 | 360 | 02:48:00 | 1310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, J.; Ramos, J.R.C.; Costa, R.S.; Oliveira, R. Hybrid Deep Modeling of a GS115 (Mut+) Pichia pastoris Culture with State–Space Reduction. Fermentation 2023, 9, 643. https://doi.org/10.3390/fermentation9070643
Pinto J, Ramos JRC, Costa RS, Oliveira R. Hybrid Deep Modeling of a GS115 (Mut+) Pichia pastoris Culture with State–Space Reduction. Fermentation. 2023; 9(7):643. https://doi.org/10.3390/fermentation9070643
Chicago/Turabian StylePinto, José, João R. C. Ramos, Rafael S. Costa, and Rui Oliveira. 2023. "Hybrid Deep Modeling of a GS115 (Mut+) Pichia pastoris Culture with State–Space Reduction" Fermentation 9, no. 7: 643. https://doi.org/10.3390/fermentation9070643
APA StylePinto, J., Ramos, J. R. C., Costa, R. S., & Oliveira, R. (2023). Hybrid Deep Modeling of a GS115 (Mut+) Pichia pastoris Culture with State–Space Reduction. Fermentation, 9(7), 643. https://doi.org/10.3390/fermentation9070643