From Shallow to Deep Bioprocess Hybrid Modeling: Advances and Future Perspectives
Abstract
:1. Introduction
2. What Is Hybrid Neural Network Modeling?
2.1. Design Approaches
2.2. Training Approaches
2.3. General Bioreactor Hybrid Model
3. Systematic Literature Review
- -
- Scopus: The algorithm initially retrieved 481 publications from the Scopus database, and after screening, 94 relevant cases were obtained.
- -
- Web of Science (WoS): The algorithm initially retrieved 251 publications from the WoS database, and after screening, 84 relevant cases were obtained.
- -
- From the well-known authors’ search, 825 publications were extracted, and after screening, 66 relevant cases were obtained.
- -
- From backward citation, 74 relevant cases were obtained.
4. Applications of HNNs for Bioprocess Modeling
4.1. Microbial Culture
4.2. Animal Cell Culture
4.3. Mixed Microbial Cultures
4.4. Enzymatic Biocatalysis
4.5. Downstream Applications
5. Future Perspectives
5.1. From Shallow to Deep HNNs for Bioprocess Operation
5.2. Narrowing the Gap between Hybrid Modeling and Systems Biology
5.3. Physics-Informed Neural Networks (PINNs)
5.4. HNNs for Biopharma 4.0
5.5. Downstream Processing
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Hybrid neural network | (HNN) |
Genome-scale model | (GEM) |
Monoclonal antibody | (mAb) |
Design of experiments | (DOE) |
Preferred Reporting Items for Systematic Reviews and Meta-Analyses | (PRISMA) |
Radial basis function network | (RBFN) |
Nonlinear programming | (NLP) |
Chinese hamster ovary | (CHO) |
Proportional–integral–derivative controller | (PID controller) |
Process analytical technology | (PAT) |
Chemical oxygen demand | (COD) |
Artificial neural network | (ANN) |
Genetic algorithm | (GA) |
Feedforward neural network | (FFNN) |
Activated sludge model | (ASM) |
Convolutional neural network | (CNN) |
Long short-term memory neural network | (LSTM) |
Particle swarm optimization | (PSO) |
Nonlinear autoregressive exogenous | (NARX) |
Backpropagation neural network | (BP-NN) |
Quality by design | (QbD) |
Poly(3-hydroxy alkanoates) | (PHA) |
Poly-β-hydroxybutyrate | (PHB) |
Adaptive moment estimation method | (ADAM) |
Rectified linear unit | (ReLU) |
Hyperbolic tangent | (tanh) |
Physics-informed neural network | (PINN) |
Universal differential equation | (UDE) |
Biologically informed neural network | (BINN) |
Time series transformers | (TST) |
References
- Noll, P.; Henkel, M. History and Evolution of Modeling in Biotechnology: Modeling & Simulation, Application and Hardware Performance. Comput. Struct. Biotechnol. J. 2020, 18, 3309–3323. [Google Scholar] [CrossRef] [PubMed]
- Cooney, C.L.; Wang, H.Y.; Wang, D.I.C. Computer-aided Material Balancing for Prediction of Fermentation Parameters. Biotechnol. Bioeng. 1977, 19, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Udugama, I.; Öner, M.; Lopez, P.C.; Beenfeldt, C.; Bayer, C.; Huusom, J.K.; Gernaey, K.V.; Sin, G. Towards Digitalization in Bio-Manufacturing Operations: A Survey on Application of Big Data and Digital Twin Concepts in Denmark. Front. Chem. Eng. 2021, 3, 727152. [Google Scholar] [CrossRef]
- Yang, C.-T.; Kristiani, E.; Leong, Y.K.; Chang, J.-S. Big Data and Machine Learning Driven Bioprocessing—Recent Trends and Critical Analysis. Bioresour. Technol. 2023, 372, 128625. [Google Scholar] [CrossRef] [PubMed]
- Helleckes, L.M.; Hemmerich, J.; Wiechert, W.; von Lieres, E.; Grünberger, A. Machine Learning in Bioprocess Development: From Promise to Practice. Trends Biotechnol. 2023, 41, 817–835. [Google Scholar] [CrossRef] [PubMed]
- Mowbray, M.; Vallerio, M.; Perez-Galvan, C.; Zhang, D.; Del Rio Chanona, A.; Navarro-Brull, F.J. Industrial Data Science—A Review of Machine Learning Applications for Chemical and Process Industries. React. Chem. Eng. 2022, 7, 1471–1509. [Google Scholar] [CrossRef]
- Mowbray, M.; Savage, T.; Wu, C.; Song, Z.; Cho, B.A.; Del Rio-Chanona, E.A.; Zhang, D. Machine Learning for Biochemical Engineering: A Review. Biochem. Eng. J. 2021, 172, 108054. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Kor, M.; Yitmen, I.; Alizadehsalehi, S. An Investigation for Integration of Deep Learning and Digital Twins towards Construction 4.0. Smart Sustain. Built Environ. 2023, 12, 461–487. [Google Scholar] [CrossRef]
- Bejani, M.M.; Ghatee, M. A Systematic Review on Overfitting Control in Shallow and Deep Neural Networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Psichogios, D.C.; Ungar, L.H. A Hybrid Neural Network-first Principles Approach to Process Modeling. AIChE J. 1992, 38, 1499–1511. [Google Scholar] [CrossRef]
- Thompson, M.L.; Kramer, M.A. Modeling Chemical Processes Using Prior Knowledge and Neural Networks. AIChE J. 1994, 40, 1328–1340. [Google Scholar] [CrossRef]
- Schubert, J.; Simutis, R.; Dors, M.; Havlík, I.; Lübbert, A. Hybrid Modelling of Yeast Production Processes—Combination of a Priori Knowledge on Different Levels of Sophistication. Chem. Eng. Technol. 1994, 17, 10–20. [Google Scholar] [CrossRef]
- Schubert, J.; SIMUTIS, R.; Dors, M.; Havlik, I.; Lübbert, A.; LUBBERT, A.; Lübbert, A.; LUBBERT, A. Bioprocess Optimization and Control: Application of Hybrid Modelling. J. Biotechnol. 1994, 35, 51–68. [Google Scholar] [CrossRef]
- Mavrovouniotis, M.L.; Chang, S. Hierarchical Neural Networks. Comput. Chem. Eng. 1992, 16, 347–369. [Google Scholar] [CrossRef]
- Nagarajan, H.P.N.; Mokhtarian, H.; Jafarian, H.; Dimassi, S.; Bakrani-Balani, S.; Hamedi, A.; Coatanéa, E.; Gary Wang, G.; Haapala, K.R. Knowledge-Based Design of Artificial Neural Network Topology for Additive Manufacturing Process Modeling: A New Approach and Case Study for Fused Deposition Modeling. J. Mech. Des. 2019, 141, 021705. [Google Scholar] [CrossRef]
- Oliveira, R. Combining First Principles Modelling and Artificial Neural Networks: A General Framework. Comput. Chem. Eng. 2004, 28, 755–766. [Google Scholar] [CrossRef]
- Chen, R.T.Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. Neural Ordinary Differential Equations. arXiv 2018, arXiv:1806.07366. [Google Scholar]
- Rackauckas, C.; Ma, Y.; Martensen, J.; Warner, C.; Zubov, K.; Supekar, R.; Skinner, D.; Ramadhan, A.; Edelman, A. Universal Differential Equations for Scientific Machine Learning. arXiv 2020, arXiv:2001.04385. [Google Scholar]
- Côté, M.; Grandjean, B.P.A.; Lessard, P.; Thibault, J. Dynamic Modelling of the Activated Sludge Process: Improving Prediction Using Neural Networks. Water Res. 1995, 29, 995–1004. [Google Scholar] [CrossRef]
- Piron, E.; Latrille, E.; René, F. Application of Artificial Neural Networks for Crossflow Microfiltration Modelling: “Black-Box” and Semi-Physical Approaches. Comput. Chem. Eng. 1997, 21, 1021–1030. [Google Scholar] [CrossRef]
- Peres, J.; Oliveira, R.; Feyo De Azevedo, S. Knowledge Based Modular Networks for Process Modelling and Control. Comput. Chem. Eng. 2001, 25, 783–791. [Google Scholar] [CrossRef]
- Richman, R.; Wuthrich, M.V. Smoothness and Monotonicity Constraints for Neural Networks Using ICEnet. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Rosca, M.; Weber, T.; Gretton, A.; Mohamed, S. A Case for New Neural Network Smoothness Constraints. Proc. Mach. Learn. Res. 2020, 137, 21–32. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Jin, X.; Cai, S.; Li, H.; Karniadakis, G.E. NSFnets (Navier-Stokes Flow Nets): Physics-Informed Neural Networks for the Incompressible Navier-Stokes Equations. J. Comput. Phys. 2021, 426, 109951. [Google Scholar] [CrossRef]
- Von Stosch, M.; Oliveira, R.; Peres, J.; Feyo De Azevedo, S. A Novel Identification Method for Hybrid (N)PLS Dynamical Systems with Application to Bioprocesses. Expert Syst. Appl. 2011, 38, 10862–10874. [Google Scholar] [CrossRef]
- Pinto, J.; de Azevedo, C.R.; Oliveira, R.; von Stosch, M. A Bootstrap-Aggregated Hybrid Semi-Parametric Modeling Framework for Bioprocess Development. Bioprocess Biosyst. Eng. 2019, 42, 1853–1865. [Google Scholar] [CrossRef]
- Pinto, J.; Mestre, M.; Ramos, J.; Costa, R.S.; Striedner, G.; Oliveira, R. A General Deep Hybrid Model for Bioreactor Systems: Combining First Principles with Deep Neural Networks. Comput. Chem. Eng. 2022, 165, 107952. [Google Scholar] [CrossRef]
- Teixeira, A.P.; Carinhas, N.; Dias, J.M.L.; Cruz, P.; Alves, P.M.; Carrondo, M.J.T.; Oliveira, R. Hybrid Semi-Parametric Mathematical Systems: Bridging the Gap between Systems Biology and Process Engineering. J. Biotechnol. 2007, 132, 418–425. [Google Scholar] [CrossRef]
- Pinto, J.; Costa, R.S.; Alexandre, L.; Ramos, J.; Oliveira, R. SBML2HYB: A Python Interface for SBML Compatible Hybrid Modeling. Bioinformatics 2023, 39, btad044. [Google Scholar] [CrossRef]
- Pinto, J.; Ramos, J.R.C.; Costa, R.S.; Oliveira, R. A General Hybrid Modeling Framework for Systems Biology Applications: Combining Mechanistic Knowledge with Deep Neural Networks under the SBML Standard. AI 2023, 4, 303–318. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 105906. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Guidelines and Guidance Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Bangi, M.S.F.; Kao, K.; Kwon, J.S. Il Physics-Informed Neural Networks for Hybrid Modeling of Lab-Scale Batch Fermentation for β-Carotene Production Using Saccharomyces Cerevisiae. Chem. Eng. Res. Des. 2022, 179, 415–423. [Google Scholar] [CrossRef]
- Merkelbach, K.; Schweidtmann, A.M.; Müller, Y.; Schwoebel, P.; Mhamdi, A.; Mitsos, A.; Schuppert, A.; Mrziglod, T.; Schneckener, S. HybridML: Open Source Platform for Hybrid Modeling. Comput. Chem. Eng. 2022, 160, 107736. [Google Scholar] [CrossRef]
- Shah, P.; Sheriff, M.Z.; Bangi, M.S.F.; Kravaris, C.; Kwon, J.S.-I.; Botre, C.; Hirota, J. Deep Neural Network-Based Hybrid Modeling and Experimental Validation for an Industry-Scale Fermentation Process: Identification of Time-Varying Dependencies among Parameters. Chem. Eng. J. 2022, 441, 135643. [Google Scholar] [CrossRef]
- Cheng, X.; Guo, Z.; Shen, Y.; Yu, K.; Gao, X. Knowledge and Data-Driven Hybrid System for Modeling Fuzzy Wastewater Treatment Process. Neural Comput. Appl. 2023, 35, 7185–7206. [Google Scholar] [CrossRef]
- Von Stosch, M.; Oliveira, R.; Peres, J.; Feyo de Azevedo, S. Hybrid Semi-Parametric Modeling in Process Systems Engineering: Past, Present and Future. Comput. Chem. Eng. 2014, 60, 86–101. [Google Scholar] [CrossRef]
- Lee, D.S.; Jeon, C.O.; Park, J.M.; Chang, K.S. Hybrid Neural Network Modeling of a Full-Scale Industrial Wastewater Treatment Process. Biotechnol. Bioeng. 2002, 78, 670–682. [Google Scholar] [CrossRef]
- Guo, B.; Li, D.; Cheng, C.; Lü, Z.-A.; Shen, Y. Simulation of Biomass Gasification with a Hybrid Neural Network Model. Bioresour. Technol. 2001, 76, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Shi, X. Optimization for High-Density Cultivation of Heterotrophic Chlorella Based on a Hybrid Neural Network Model. Lett. Appl. Microbiol. 2007, 44, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.P.; Alves, C.; Alves, P.M.; Carrondo, M.J.T.; Oliveira, R. Hybrid Elementary Flux Analysis/Nonparametric Modeling: Application for Bioprocess Control. BMC Bioinform. 2007, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Preusting, H.; Noordover, J.; Simutis, R.; Lübbert, A. The Use of Hybrid Modelling for the Optimization of the Penicillin Fermentation Process. Chimia 1996, 50, 416. [Google Scholar] [CrossRef]
- Costa, A.C.; Alves, T.L.M.; Henriques, A.W.S.; Maciel Filho, R.; Lima, E.L. An Adaptive Optimal Control Scheme Based on Hybrid Neural Modelling. Comput. Chem. Eng. 1998, 22, S859–S862. [Google Scholar] [CrossRef]
- Costa, A.C.; Henriques, A.S.W.; Alves, T.L.M.; Maciel Filho, R.; Lima, E.L. Hybrid Neural Model for the Optimization of Fed-Batch Fermentations. Braz. J. Chem. Eng. 1999, 16, 53–63. [Google Scholar] [CrossRef]
- Harada, L.H.P.; Da Costa, A.C.; Maciel Filho, R. Hybrid Neural Modeling of Bioprocesses Using Functional Link Networks. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2002, 98–100, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Meleiro, L.A.C.; Maciel Filho, R. State and Parameter Estimation Based on a Nonlinear Filter Applied to an Industrial Process Control of Ethanol Production. Braz. J. Chem. Eng. 2000, 17, 991–1001. [Google Scholar] [CrossRef]
- Henriques, A.W.D.; Da Costa, A.C.C.; Alves, T.L.M.L.M.; Lima, E.L.L.; Da Silva Henriques, A.W.; Da Costa, A.C.C.; Alves, T.L.M.L.M.; Lima, E.L.L.; Henriques, A.W.D.; Da Costa, A.C.C.; et al. A Hybrid Neural Model of Ethanol Production by Zymomonas Mobilis. Appl. Biochem. Biotechnol. 1999, 77–79, 277–291. [Google Scholar] [CrossRef]
- Oliveira, R.; Simutis, R.; De Azevedo, S.F.; Lübbert, A. Hybnet, an Advanced Tool for Process Optimization and Control. IFAC Proc. 1998, 331, 289–294. [Google Scholar] [CrossRef]
- Simutis, R.; Oliveira, R.; Manikowski, M.; De Azevedo, S.F.; Lübbert, A. How to Increase the Performance of Models for Process Optimization and Control. J. Biotechnol. 1997, 59, 73–89. [Google Scholar] [CrossRef]
- Da Silva Pereira, A.; Pinheiro, Á.D.T.; Rocha, M.V.P.; Gonçalves, L.R.B.; Cartaxo, S.J.M. Hybrid Neural Network Modeling and Particle Swarm Optimization for Improved Ethanol Production from Cashew Apple Juice. Bioprocess Biosyst. Eng. 2021, 44, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.R.; Dias, J.M.L.; Von Stosch, M.; Clemente, J.; Cunha, A.E.; Oliveira, R. Fast Development of Pichia Pastoris GS115 Mut+ Cultures Employing Batch-to-Batch Control and Hybrid Semi-Parametric Modeling. Bioprocess Biosyst. Eng. 2014, 37, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.P.; Clemente, J.J.; Cunha, A.E.; Carrondo, M.J.T.; Oliveira, R. Bioprocess Iterative Batch-to-Batch Optimization Based on Hybrid Parametric/Nonparametric Models. Biotechnol. Prog. 2006, 22, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Von Stosch, M.; Willis, M.J. Intensified Design of Experiments for Upstream Bioreactors. Eng. Life Sci. 2017, 17, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Von Stosch, M.; Hamelink, J.-M.; Oliveira, R. Toward Intensifying Design of Experiments in Upstream Bioprocess Development: An Industrial Escherichia Coli Feasibility Study. Biotechnol. Prog. 2016, 32, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Bayer, B.; von Stosch, M.; Striedner, G.; Duerkop, M. Comparison of Modeling Methods for DoE-Based Holistic Upstream Process Characterization. Biotechnol. J. 2020, 15, e1900551. [Google Scholar] [CrossRef] [PubMed]
- Morabito, B.; Pohlodek, J.; Matschek, J.; Savchenko, A.; Carius, L.; Findeisen, R. Towards Risk-Aware Machine Learning Supported Model Predictive Control and Open-Loop Optimization for Repetitive Processes. IFAC Pap. 2021, 54, 321–328. [Google Scholar] [CrossRef]
- Novak, M.; Koller, M.; Braunegg, G.; Horvat, P. Mathematical Modelling as a Tool for Optimized PHA Production. Chem. Biochem. Eng. Q. 2015, 29, 183–220. [Google Scholar] [CrossRef]
- Patnaik, P.R. Design Considerations in Hybrid Neural Optimization of Fed-Batch Fermentation for PHB Production by Ralstonia Eutropha. Food Bioprocess Technol. 2010, 3, 213–225. [Google Scholar] [CrossRef]
- Peres, J.; Oliveira, R.; Serafim, L.S.; Lemos, P.; Reis, M.A.; Feyo de Azevedo, S. Hybrid Modelling of a PHA Production Process Using Modular Neural Networks. Comput. Aided Chem. Eng. 2004, 18, 733–738. [Google Scholar] [CrossRef]
- Peres, J.; Oliveira, R.; de Azevedo, S.F. Bioprocess Hybrid Parametric/Nonparametric Modelling Based on the Concept of Mixture of Experts. Biochem. Eng. J. 2008, 39, 190–206. [Google Scholar] [CrossRef]
- Patnaik, P.R. Neural and Hybrid Optimizations of the Fed-Batch Synthesis of Poly-β-Hydroxybutyrate by Ralstonia Eutropha in a Nonideal Bioreactor. Bioremediat. J. 2008, 12, 117–130. [Google Scholar] [CrossRef]
- Luna, M.F.; Ochsner, A.M.; Amstutz, V.; von Blarer, D.; Sokolov, M.; Arosio, P.; Zinn, M. Modeling of Continuous PHA Production by a Hybrid Approach Based on First Principles and Machine Learning. Processes 2021, 9, 1560. [Google Scholar] [CrossRef]
- Bayer, B.; Striedner, G.; Duerkop, M. Hybrid Modeling and Intensified DoE: An Approach to Accelerate Upstream Process Characterization. Biotechnol. J. 2020, 15, 2000121. [Google Scholar] [CrossRef] [PubMed]
- Krippl, M.; Dürauer, A.; Duerkop, M. Hybrid Modeling of Cross-Flow Filtration: Predicting the Flux Evolution and Duration of Ultrafiltration Processes. Sep. Purif. Technol. 2020, 248, 117064. [Google Scholar] [CrossRef]
- Narayanan, H.; Behle, L.; Luna, M.F.; Sokolov, M.; Guillén-Gosálbez, G.; Morbidelli, M.; Butté, A. Hybrid-EKF: Hybrid Model Coupled with Extended Kalman Filter for Real-Time Monitoring and Control of Mammalian Cell Culture. Biotechnol. Bioeng. 2020, 117, 2703–2714. [Google Scholar] [CrossRef] [PubMed]
- Pirrung, S.M.; van der Wielen, L.A.M.; van Beckhoven, R.F.W.C.; van de Sandt, E.J.A.X.; Eppink, M.H.M.; Ottens, M. Optimization of Biopharmaceutical Downstream Processes Supported by Mechanistic Models and Artificial Neural Networks. Biotechnol. Prog. 2017, 33, 696–707. [Google Scholar] [CrossRef]
- Von Stosch, M.; Davy, S.; Francois, K.; Galvanauskas, V.; Hamelink, J.-M.; Luebbert, A.; Mayer, M.; Oliveira, R.; O’Kennedy, R.; Rice, P.; et al. Hybrid Modeling for Quality by Design and PAT-Benefits and Challenges of Applications in Biopharmaceutical Industry. Biotechnol. J. 2014, 9, 719–726. [Google Scholar] [CrossRef]
- Von Stosch, M.; Hamelink, J.-M.; Oliveira, R. Hybrid Modeling as a QbD/PAT Tool in Process Development: An Industrial E. coli Case Study. Bioprocess Biosyst. Eng. 2016, 39, 773–784. [Google Scholar] [CrossRef]
- Dors, M.; Simutis, R.; Lübbert, A. Advanced Supervision of Mammalian Cell Cultures Using Hybrid Process Models. IFAC Proc. Vol. 1995, 28, 72–77. [Google Scholar] [CrossRef]
- Fu, P.-C.; Barford, J.P. A Hybrid Neural Network—First Principles Approach for Modelling of Cell Metabolism. Comput. Chem. Eng. 1996, 20, 951–958. [Google Scholar] [CrossRef]
- Teixeira, A.; Cunha, A.E.; Clemente, J.J.; Moreira, J.L.; Cruz, H.J.; Alves, P.M.; Carrondo, M.J.T.; Oliveira, R. Modelling and Optimization of a Recombinant BHK-21 Cultivation Process Using Hybrid Grey-Box Systems. J. Biotechnol. 2005, 118, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Maton, M.; Bogaerts, P.; Vande Wouwer, A. Hybrid Dynamic Models of Bioprocesses Based on Elementary Flux Modes and Multilayer Perceptrons. Processes 2022, 10, 2084. [Google Scholar] [CrossRef]
- Aehle, M.; Simutis, R.; Lübbert, A. Comparison of Viable Cell Concentration Estimation Methods for a Mammalian Cell Cultivation Process. Cytotechnology 2010, 62, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, H.; Luna, M.F.; von Stosch, M.; Cruz Bournazou, M.N.; Polotti, G.; Morbidelli, M.; Butté, A.; Sokolov, M. Bioprocessing in the Digital Age: The Role of Process Models. Biotechnol. J. 2020, 15, e1900172. [Google Scholar] [CrossRef] [PubMed]
- Kotidis, P.; Kontoravdi, C. Harnessing the Potential of Artificial Neural Networks for Predicting Protein Glycosylation. Metab. Eng. Commun. 2020, 10, e00131. [Google Scholar] [CrossRef] [PubMed]
- Bayer, B.; Duerkop, M.; Striedner, G.; Sissolak, B. Model Transferability and Reduced Experimental Burden in Cell Culture Process Development Facilitated by Hybrid Modeling and Intensified Design of Experiments. Front. Bioeng. Biotechnol. 2021, 9, 740215. [Google Scholar] [CrossRef]
- Zhao, H.; Hao, O.J.; McAvoy, T.J.; Chang, C.-H. Modeling Nutrient Dynamics in Sequencing Batch Reactor. J. Environ. Eng. 1997, 123, 311–318. [Google Scholar] [CrossRef]
- Anderson, J.S.; McAvoy, T.J.; Hao, O.J. Use of Hybrid Models in Wastewater Systems. Ind. Eng. Chem. Res. 2000, 39, 1694–1704. [Google Scholar] [CrossRef]
- Fang, J.; Dai, L.-K. Prediction Method for Wastewater COD Based on Hybrid Neural Network Model. Zhongguo Jishui Paishui/China Water Wastewater 2003, 19, 6. [Google Scholar]
- Azwar; Hussain, M.A.; Ramachandran, K.B. The Study of Neural Network-Based Controller for Controlling Dissolved Oxygen Concentration in a Sequencing Batch Reactor. Bioprocess Biosyst. Eng. 2006, 28, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Peres, J.; Freitas, F.; Reis, M.; Feyo de Azevedo, S.; Oliveira, R. Hybrid Modular Mechanistic/ANN Modelling of a Wastewater Phosphorus Removal Process. Comput. Aided Chem. Eng. 2006, 21, 1717–1722. [Google Scholar]
- Xiao, J.; Liu, C.; Ju, B.; Xu, H.; Sun, D.; Dang, Y. Estimation of In-Situ Biogas Upgrading in Microbial Electrolysis Cells via Direct Electron Transfer: Two-Stage Machine Learning Modeling Based on a NARX-BP Hybrid Neural Network. Bioresour. Technol. 2021, 330, 124965. [Google Scholar] [CrossRef] [PubMed]
- Van Can, H.J.L.; Te Braake, H.A.B.; Bijman, A.; Hellinga, C.; Luyben, K.C.A.M.; Heijnen, J.J. An Efficient Model Development Strategy for Bioprocesses Based on Neural Networks in Macroscopic Balances: Part II. Biotechnol. Bioeng. 1999, 62, 666–680. [Google Scholar] [CrossRef]
- Van Can, H.J.L.; Te Braake, H.A.B.; Dubbclman, S.; Hellinga, C.; Luyben, K.C.A.; Heijnen, J.J. Understanding and Applying the Extrapolation Properties of Serial Gray-Box Models. AIChE J. 1998, 44, 1071–1089. [Google Scholar] [CrossRef]
- Silva, J.A.; Costa Neto, E.H.; Adriano, W.S.; Ferreira, A.L.O.; Gonçalves, L.R.B. Use of Neural Networks in the Mathematical Modelling of the Enzymic Synthesis of Amoxicillin Catalysed by Penicillin G Acylase Immobilized in Chitosan. World J. Microbiol. Biotechnol. 2008, 24, 1761–1767. [Google Scholar] [CrossRef]
- Santos, J.L.C.; Hidalgo, A.M.; Oliveira, R.; Velizarov, S.; Crespo, J.G. Analysis of Solvent Flux through Nanofiltration Membranes by Mechanistic, Chemometric and Hybrid Modelling. J. Memb. Sci. 2007, 300, 191–204. [Google Scholar] [CrossRef]
- Rajabzadeh, A.R.; Ruzich, N.; Zendehboudi, S.; Rahbari, M. Biomass Leachate Treatment and Nutrient Recovery Using Reverse Osmosis: Experimental Study and Hybrid Artificial Neural Network Modeling. Energy Fuels 2012, 26, 7155–7163. [Google Scholar] [CrossRef]
- Nagrath, D.; Messac, A.; Bequette, B.W.; Cramer, S.M. A Hybrid Model Framework for the Optimization of Preparative Chromatographic Processes. Biotechnol. Prog. 2004, 20, 162–178. [Google Scholar] [CrossRef]
- Wang, G.; Briskot, T.; Hahn, T.; Baumann, P.; Hubbuch, J. Root Cause Investigation of Deviations in Protein Chromatography Based on Mechanistic Models and Artificial Neural Networks. J. Chromatogr. A 2017, 1515, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, H.; Seidler, T.; Luna, M.F.; Sokolov, M.; Morbidelli, M.; Butté, A. Hybrid Models for the Simulation and Prediction of Chromatographic Processes for Protein Capture. J. Chromatogr. A 2021, 1650, 462248. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; Ramos, J.R.C.; Costa, R.S.; Rossell, S.; Dumas, P.; Oliveira, R. Hybrid Deep Modeling of a CHO-K1 Fed-Batch Process: Combining First-Principles with Deep Neural Networks. Front. Bioeng. Biotechnol. 2023, 11, 1237963. [Google Scholar] [CrossRef] [PubMed]
- Bhadriraju, B.; Bangi, M.S.F.; Narasingam, A.; Kwon, J.S.-I. Operable Adaptive Sparse Identification of Systems: Application to Chemical Processes. AIChE J. 2020, 66, e16980. [Google Scholar] [CrossRef]
- Bangi, M.S.F.; Kwon, J.S.-I. Deep Hybrid Model-Based Predictive Control with Guarantees on Domain of Applicability. AIChE J. 2023, 69, e18012. [Google Scholar] [CrossRef]
- Shah, P.; Choi, H.-K.; Kwon, J.S.-I. Achieving Optimal Paper Properties: A Layered Multiscale KMC and LSTM-ANN-Based Control Approach for Kraft Pulping. Processes 2023, 11, 809. [Google Scholar] [CrossRef]
- Shah, P.; Sheriff, M.Z.; Bangi, M.S.F.; Kravaris, C.; Kwon, J.S.-I.; Botre, C.; Hirota, J. Multi-Rate Observer Design and Optimal Control to Maximize Productivity of an Industry-Scale Fermentation Process. AIChE J. 2023, 69, e17946. [Google Scholar] [CrossRef]
- Kitano, H. Systems Biology: A Brief Overview. Science 2002, 295, 1662–1664. [Google Scholar] [CrossRef]
- Zampieri, G.; Vijayakumar, S.; Yaneske, E.; Angione, C. Machine and Deep Learning Meet Genome-Scale Metabolic Modeling. PLoS Comput. Biol. 2019, 15, e1007084. [Google Scholar] [CrossRef]
- Rana, P.; Berry, C.; Ghosh, P.; Fong, S.S. Recent Advances on Constraint-Based Models by Integrating Machine Learning. Curr. Opin. Biotechnol. 2020, 64, 85–91. [Google Scholar] [CrossRef]
- Bai, L.; You, Q.; Zhang, C.; Sun, J.; Liu, L.; Lu, H.; Chen, Q. Advances and Applications of Machine Learning and Intelligent Optimization Algorithms in Genome-Scale Metabolic Network Models. Syst. Microbiol. Biomanufacturing 2023, 3, 193–206. [Google Scholar] [CrossRef]
- Ramos, J.R.C.; Oliveira, G.P.; Dumas, P.; Oliveira, R. Genome-Scale Modeling of Chinese Hamster Ovary Cells by Hybrid Semi-Parametric Flux Balance Analysis. Bioprocess Biosyst. Eng. 2022, 45, 1889–1904. [Google Scholar] [CrossRef] [PubMed]
- Faure, L.; Mollet, B.; Liebermeister, W.; Faulon, J.-L. A Neural-Mechanistic Hybrid Approach Improving the Predictive Power of Genome-Scale Metabolic Models. Nat. Commun. 2023, 14, 4669. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Jayaraman, A.; Kwon, J.S.I. Identification of Cell-to-Cell Heterogeneity through Systems Engineering Approaches. AIChE J. 2020, 66, e16925. [Google Scholar] [CrossRef]
- Lee, D.; Jayaraman, A.; Kwon, J.S. Development of a Hybrid Model for a Partially Known Intracellular Signaling Pathway through Correction Term Estimation and Neural Network Modeling. PLoS Comput. Biol. 2020, 16, e1008472. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Jagtap, A.D.; Karniadakis, G.E. Physics-Informed Neural Networks for High-Speed Flows. Comput. Methods Appl. Mech. Eng. 2020, 360, 112789. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-Informed Machine Learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Mahanty, B. Hybrid Modeling in Bioprocess Dynamics: Structural Variabilities, Implementation Strategies, and Practical Challenges. Biotechnol. Bioeng. 2023, 120, 2072–2091. [Google Scholar] [CrossRef]
- Hao, Z.; Liu, S.; Zhang, Y.; Ying, C.; Feng, Y.; Su, H.; Zhu, J. Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications. arXiv 2022, arXiv:2211.08064. [Google Scholar]
- Cui, T.; Bertalan, T.S.; Ndahiro, N.; Khare, P.; Betenbaugh, M.; Maranas, C.; Kevrekidis, I.G. Data-Driven and Physics Informed Modelling of Chinese Hamster Ovary Cell Bioreactors. arXiv 2023, arXiv:2305.03257. [Google Scholar]
- Rogers, A.W.; Cardenas, I.O.S.; Del Rio-Chanona, E.A.; Zhang, D. Investigating Physics-Informed Neural Networks for Bioprocess Hybrid Model Construction. Comput. Aided Chem. Eng. 2023, 52, 83–88. [Google Scholar] [CrossRef]
- Lagergren, J.H.; Nardini, J.T.; Baker, R.E.; Simpson, M.J.; Flores, K.B. Biologically-Informed Neural Networks Guide Mechanistic Modeling from Sparse Experimental Data. PLoS Comput. Biol. 2020, 16, e1008462. [Google Scholar] [CrossRef]
- Mandenius, C.-F.; Gustavsson, R. Mini-Review: Soft Sensors as Means for PAT in the Manufacture of Bio-Therapeutics. J. Chem. Technol. Biotechnol. 2015, 90, 215–227. [Google Scholar] [CrossRef]
- Teixeira, A.P.; Oliveira, R.; Alves, P.M.; Carrondo, M.J.T. Advances in On-Line Monitoring and Control of Mammalian Cell Cultures: Supporting the PAT Initiative. Biotechnol. Adv. 2009, 27, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Von Stosch, M.; Oliveria, R.; Peres, J.; De Azevedo, S.F. Hybrid Modeling Framework for Process Analytical Technology: Application to Bordetella Pertussis Cultures. Biotechnol. Prog. 2012, 28, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Gargalo, C.L.; Udugama, I.; Pontius, K.; Lopez, P.C.; Nielsen, R.F.; Hasanzadeh, A.; Mansouri, S.S.; Bayer, C.; Junicke, H.; Gernaey, K.V. Towards Smart Biomanufacturing: A Perspective on Recent Developments in Industrial Measurement and Monitoring Technologies for Bio-Based Production Processes. J. Ind. Microbiol. Biotechnol. 2020, 47, 947–964. [Google Scholar] [CrossRef] [PubMed]
- Von Stosch, M.; Schenkendorf, R.; Geldhof, G.; Varsakelis, C.; Mariti, M.; Dessoy, S.; Vandercammen, A.; Pysik, A.; Sanders, M. Working within the Design Space: Do Our Static Process Characterization Methods Suffice? Pharmaceutics 2020, 12, 562. [Google Scholar] [CrossRef]
- Sansana, J.; Joswiak, M.N.; Castillo, I.; Wang, Z.; Rendall, R.; Chiang, L.H.; Reis, M.S. Recent Trends on Hybrid Modeling for Industry 4.0. Comput. Chem. Eng. 2021, 151, 107365. [Google Scholar] [CrossRef]
- Wang, D.; Thunéll, S.; Lindberg, U.; Jiang, L.L.; Trygg, J.; Tysklind, M.; Souihi, N.; Thunell, S.; Lindberg, U.; Jiang, L.L.; et al. A Machine Learning Framework to Improve Effluent Quality Control in Wastewater Treatment Plants. Sci. Total Environ. 2021, 784, 147138. [Google Scholar] [CrossRef]
- Zhang, D.; Savage, T.R.T.R.; Cho, B.A.B.A. Combining Model Structure Identification and Hybrid Modelling for Photo-Production Process Predictive Simulation and Optimisation. Biotechnol. Bioeng. 2020, 117, 3356–3367. [Google Scholar] [CrossRef]
- Miniati, F.; Gregori, G. Learning Transport Processes with Machine Intelligence. Sci. Rep. 2022, 12, 11709. [Google Scholar] [CrossRef]
- Sitapure, N.; Kwon, J.S. Introducing Hybrid Modeling with Time-Series-Transformers: A Comparative Study of Series and Parallel Approach in Batch Crystallization. arXiv 2023, arXiv:2308.05749. [Google Scholar]
- Sitapure, N.; Kwon, J.S.-I. Exploring the Potential of Time-Series Transformers for Process Modeling and Control in Chemical Systems: An Inevitable Paradigm Shift? Chem. Eng. Res. Des. 2023, 194, 461–477. [Google Scholar] [CrossRef]
- Sitapure, N.; Kwon, J.S.-I. CrystalGPT: Enhancing System-to-System Transferability in Crystallization Prediction and Control Using Time-Series-Transformers. Comput. Chem. Eng. 2023, 177, 108339. [Google Scholar] [CrossRef]
- Narayanan, H.; Luna, M.; Sokolov, M.; Arosio, P.; Butté, A.; Morbidelli, M. Hybrid Models Based on Machine Learning and an Increasing Degree of Process Knowledge: Application to Capture Chromatographic Step. Ind. Eng. Chem. Res. 2021, 60, 10466–10478. [Google Scholar] [CrossRef]
- Subraveti, S.G.; Li, Z.; Prasad, V.; Rajendran, A. Can a Computer “Learn” Nonlinear Chromatography?: Experimental Validation of Physics-Based Deep Neural Networks for the Simulation of Chromatographic Processes. Ind. Eng. Chem. Res. 2023, 62, 5929–5944. [Google Scholar] [CrossRef]
- Bourlès, E.; de Lannoy, G.; Scutellà, B.; Fonseca, F.; Trelea, I.C.; Passot, S. Scale-up of Freeze-Drying Cycles, the Use of Process Analytical Technology (PAT), and Statistical Analysis; Humana Press: New York, NY, USA, 2019; pp. 215–240. [Google Scholar]
- Smyth, P.; de Lannoy, G.; Von Stosch, M.; Pysik, A.; Khan, A. Machine Learning in Research and Development of New Vaccines Products: Opportunities and Challenges. In Proceedings of the ESANN 2019—Proceedings, 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2019; pp. 215–220. [Google Scholar]
Year | Authors | Title | Source Title | Citations | Reference |
---|---|---|---|---|---|
1992 | Psichogios and Ungar | A hybrid neural network-first principles approach to process modeling | AIChE Journal | 637 | [12] |
1994 | Thompson and Kramer | Modeling chemical processes using prior knowledge and neural networks | AIChE Journal | 435 | [13] |
2014 | von Stosch et al. | Hybrid semi-parametric modeling in process systems engineering: Past, present and future | Computers and Chemical Engineering | 234 | [40] |
1995 | Côté et al. | Dynamic modelling of the activated sludge process: Improving prediction using neural networks | Water Research | 151 | [21] |
1994 | Schubert et al. | Bioprocess optimization and control: Application of hybrid modelling | Journal of Biotechnology | 147 | [15] |
2004 | Oliveira | Combining first principles modelling and artificial neural networks: A general framework | Computers and Chemical Engineering | 126 | [18] |
2002 | Lee et al. | Hybrid neural network modeling of a full-scale industrial wastewater treatment process | Biotechnology and Bioengineering | 118 | [41] |
2001 | Guo et al. | Simulation of biomass gasification with a hybrid neural network model | Bioresource Technology | 97 | [42] |
2007 | Wu and Shi | Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model | Letters in Applied Microbiology | 93 | [43] |
2007 | A. P. Teixeira et al. | Hybrid elementary flux analysis/nonparametric modeling: Application for bioprocess control | BMC Bioinformatics | 75 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agharafeie, R.; Ramos, J.R.C.; Mendes, J.M.; Oliveira, R. From Shallow to Deep Bioprocess Hybrid Modeling: Advances and Future Perspectives. Fermentation 2023, 9, 922. https://doi.org/10.3390/fermentation9100922
Agharafeie R, Ramos JRC, Mendes JM, Oliveira R. From Shallow to Deep Bioprocess Hybrid Modeling: Advances and Future Perspectives. Fermentation. 2023; 9(10):922. https://doi.org/10.3390/fermentation9100922
Chicago/Turabian StyleAgharafeie, Roshanak, João Rodrigues Correia Ramos, Jorge M. Mendes, and Rui Oliveira. 2023. "From Shallow to Deep Bioprocess Hybrid Modeling: Advances and Future Perspectives" Fermentation 9, no. 10: 922. https://doi.org/10.3390/fermentation9100922
APA StyleAgharafeie, R., Ramos, J. R. C., Mendes, J. M., & Oliveira, R. (2023). From Shallow to Deep Bioprocess Hybrid Modeling: Advances and Future Perspectives. Fermentation, 9(10), 922. https://doi.org/10.3390/fermentation9100922