Effect of the Mixed Inoculation of Lactic Acid Bacteria and Non-Saccharomyces on the Quality and Flavor Enhancement of Fermented Mango Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. MJ Fermentation
2.2.1. Physicochemical Analysis
2.2.2. TPC and Antioxidant Activity Assays
2.2.3. Carotenoids Degradation Rate Determination
2.2.4. Aroma Component Analysis
2.3. Data Analysis
3. Results and Discussion
3.1. Changes in pH, Soluble Solid Content, and Organic Acid Content
3.2. Changes in Sugar Content
3.3. Changes in Carotenoid Degradation Rate
3.4. Changes in TPC and Antioxidant Activity
3.5. Aroma Component Analysis
Aroma Compound | LRI | Odour Threshold (μg/L) | Fragrance Description | CAS | OAV | Aroma substance Content μg/L | ||||
---|---|---|---|---|---|---|---|---|---|---|
CK | RG + LP | RG + LC | MP + LP | MP + LC | ||||||
Alcohol | ||||||||||
1-Hexanol | 860 | 600 [54] | Resin, flower, green | 111-27-3 | >0.1 | 62.43 ± 9.81 a | 46.92 ± 3.13 b | 17.63 ± 3.51 c | 7.79 ± 0.24 d | 2.81 ± 0.25 d |
Citronellol | 1765 | 40 [56] | Green lemon | 106-22-9 | <0.1 | 2.05 ± 0.32 a | 2.13 ± 0.25 a | 1.81 ± 0.22 a | ND | ND |
1-Heptanol | 943 | 425 [54] | Fruity, herbaceous | 111-70-6 | <0.1 | 38.94 ± 4.91 a | 29.92 ± 3.00 ab | 23.42 ± 5.99 bc | 18.18 ± 1.89 cd | 6.18 ± 0.18 d |
3-Ethyl-3-pentanol | 1347 | Nf | Nf | 597-49-9 | Nf | ND | ND | ND | 12.77 ± 0.62 a | 6.40 ± 0.65 b |
1-Octanol | 1059 | 200 [54] | Honey, green, fatty | 111-87-5 | >0.1 | 28.44 ± 2.52 bc | 179.05 ± 27.38 a | 38.14 ± 3.50 b | 8.01 ± 0.44 d | 19.10 ± 4.76 bc |
Phenylethyl Alcohol | 1136 | 1100 [56] | Floral1, rose, honey | 1960-12-8 | >0.1 | 242.64 ± 11.27 c | 247.30 ± 9.36 c | 88.37 ± 9.11 d | 1636.20 ± 55.54 a | 1515.37 ± 85.81 b |
α-Phellandren-8-ol | 1572 | 4.6 [41] | Fresh, phenolic, woody | 1686-20-0 | >1 | 47.16 ± 0.05 a | 38.26 ± 2.23 b | 3.26 ± 0.17 d | 18.75 ± 0.61 c | 17.77 ± 2.58 c |
2,6-Nonadien-1-ol | 1152 | 4.5 [47] | Cucumber | 7786-44-9 | >1 | ND | 30.66 ± 5.43 a | 24.46 ± 2.98 a | ND | ND |
(Z)-6-Nonenol | 1168 | 130 [54] | Melon, wax, green, and fat | 35854-86-5 | >0.1 | 37.25 ± 3.56 a | 30.82 ± 3.73 b | 24.30 ± 3.74 c | ND | ND |
2-Heptanol, 6-methyl- | 1356 | Nf | Waxy, fatty, and citrus | 4730-22-7 | Nf | 4.86 ± 0.15 a | 0.88 ± 0.15 bc | 0.19 ± 0.03 c | 5.93 ± 0.44 a | 1.15 ± 0.12 b |
Decanol | 1208 | 40 [41] | Cucumber | 1120-06-5 | >0.1 | ND | 3.62 ± 0.16 b | ND | 0.55 ± 0.00 c | 5.34 ± 0.36 a |
Acids | ||||||||||
Hydrocinnamic acid | 1304 | 5000 [57] | Balsamic | 501-52-0 | <0.1 | 12.90 ± 1.92 b | 88.26 ± 1.90 ab | 23.63 ± 2.61 b | 102.13 ± 7.61 a | 27.72 ± 2.52 b |
Butanoic acid | 775 | 24 [57] | Sweaty, rancid, yogurt | 65-85-0 | >0.1 | ND | ND | ND | 21.11 ± 0.94 a | 0.06 ± 0.00 b |
Phenylacetic acid | 1248 | 2650 [16] | Sweet honey flavor c | 103-82-2 | <0.1 | 47.56 ± 6.58 c | 51.36 ± 5.90 c | 43.61 ± 3.62 c | 638.70 ± 38.41 a | 474.16 ± 3.98 b |
Octanoic acid | 1173 | 3000 [54] | Rancid, cheese, fatty, sweat | 124-07-2 | <0.1 | 193.37 ± 31.21 a | 161.19 ± 22.28 b | 18.07 ± 3.67 c | 0.37 ± 0.07 d | 18.95 ± 5.40 c |
Decanoic acid | 1372 | 10000 [54] | Fatty, rancid | 334-48-5 | <0.1 | ND | 10.64 ± 3.32 a | ND | ND | 8.94 ± 0.18 b |
Esters | ||||||||||
Methyl syringate | 895 | Nf | Nf | 2198-23-4 | Nf | ND | 55.20 ± 3.98 a | 9.54 ± 0.36 b | ND | ND |
Ethyl decanoate | 1381 | 200 [16] | Fruity, wine-like, pear | 110-38-3 | <0.1 | 11.65 ± 1.60 c | 9.13 ± 1.16 cd | 18.87 ± 3.03 b | 5.61 ± 0.39 d | 25.98 ± 2.53 a |
Diethyl phthalate | 1765 | Nf | Nf | 84-66-2 | Nf | ND | 18.40 ± 1.72 b | 0.25 ± 0.01 c | 23.59 ± 3.69 a | 19.71 ± 2.14 b |
Ketones | ||||||||||
Methyl vinyl ketone | 693 | Nf | Nf | 78-94-4 | Nf | ND | ND | ND | 17.32 ± 2.28 a | 0.24 ± 0.04 b |
Methylheptenone | 969 | 50.00 [47] | Citrus, musty, grassy | 110-93-0 | >0.1 | ND | 47.87 ± 5.20 a | 30.67 ± 2.49 b | ND | ND |
5-dimethyl-4-hydroxy-3(2 H)-furanone | 1063 | 5 [16] | Candy cotton | 4077-47-8 | >1 | 10.40 ± 0.37 b | 16.57 ± 1.87 a | ND | ND | ND |
2-Nonanone | 1423 | 41 [58] | Fruity | 821-55-6 | >1 | ND | 80.75 ± 7.58 a | 19.51 ± 2.99 b | ND | ND |
2-Heptanone | 1180 | 140 [59] | Cinnamon, sweet | 110-43-0 | <0.1 | ND | 6.33 ± 1.24 a | ND | 1.91 ± 0.13 b | ND |
β-Damascenone | 1821 | 0.002 [56] | Tobacco, apple, flora | 23726-93-4 | >1 | ND | 62.54 ± 4.04 a | 33.26 ± 6.00 b | 23.37 ± 2.52 c | 7.62 ± 0.61 d |
Geranyl acetone | 1854 | 60 [56] | Magnolia, green, fruit | 3879-26-3 | >0.1 | 5.63 ± 0.65 b | 10.23 ± 1.10 a | 9.91 ± 1.06 a | ND | ND |
β-Ionone | 1461 | 0.007 [56] | Balsamic, rose, violet | 79-77-6 | >1 | 45.25 ± 2.00 b | 55.60 ± 2.58 a | 57.87 ± 5.80 a | 25.21 ± 2.53 c | ND |
dihydro-β-ionone | 1476 | 11 | Woody, floral | 31499-72-6 | >0.1 | ND | 0.45 ± 0.03 c | 1.94 ± 0.82 a | ND | 1.22 ± 0.15 b |
Aldehydes | ||||||||||
Benzaldehyde | 1523 | 350 [56] | Caramel, fruity, green | 100-52-7 | <0.1 | 7.47 ± 0.10 b | 0.87 ± 0.07 c | 28.31 ± 0.72 a | ND | ND |
Nonanal | 1395 | 50 [56] | Rose-orange | 124-19-6 | >1 | 50.73 ± 5.55 c | 131.56 ± 10.98 a | 87.11 ± 4.69 b | 6.00 ± 0.22 d | 78.39 ± 8.98 b |
Decanal | 1202 | 6 [54] | Fruity, citrus, orange | 112-31-2 | >1 | 5.89 ± 0.94 c | 11.87 ± 1.30 b | ND | ND | 13.59 ± 2.06 a |
2,4-dimethylbenzaldehyde | 1522 | Nf | Sweet, chemical | 15764-16-6 | Nf | 271.55 ± 16.40 d | 1767.29 ± 235.61 b | 2222.02 ± 177.03 a | 351.46 ± 24.71 d | 609.34 ± 31.53 c |
Alkenes | ||||||||||
3-Carene | 948 | 50 [47] | Sweet, rosin | 13466-78-9 | >1 | 2533.56 ± 299.82 a | 1429.15 ± 73.20 d | 1514.35 ± 40.96 cd | 1768.46 ± 108.07 bc | 350.72 ± 11.72 e |
D-Limonene | 108 | 10 [56] | Citrus-like, sweet | 5989-27-5 | >1 | 156.13 ± 22.27 a | 35.06 ± 3.55 c | 111.24 ± 28.64 b | 31.30 ± 2.64 c | 91.64 ± 6.50 b |
Terpinene | 998 | 1000 [56] | weak citrus-like, fuel-like, dill, terpenic | 29050-33-7 | >0.1 | 105.65 ± 20.12 a | 78.17 ± 2.42 b | 43.52 ± 3.91 c | 34.34 ± 5.63 c | 9.70 ± 0.32 d |
Linalool | 1097 | 3 [54] | Citrus, floral. Sweet, grape-like | 78-70-6 | >1 | 221.28 ± 19.89 b | 272.73 ± 22.56 a | 142.35 ± 25.04 c | 191.91 ± 10.10 b | 278.23 ± 29.11 a |
Germacrene D | 1493 | Nf | Nf | 23986-74-5 | Nf | 0.22 ± 0.01 b | ND | ND | 5.82 ± 0.46 a | ND |
Caryophyllene | 1494 | 64 [48] | Woody, green, spicy, terpenic | 87-44-5 | >1 | 130.06 ± 18.00 b | 59.24 ± 1.75 d | 91.95 ± 5.29 c | 396.95 ± 16.61 a | 84.87 ± 4.58 c |
Humulene | 1645 | 120 [48] | Green, herbaceous | 6753-98-6 | >1 | 86.39 ± 9.16 b | 43.48 ± 10.52 d | 19.83 ± 2.47 e | 236.55 ± 28.44 a | 62.68 ± 6.95 c |
Others | ||||||||||
Phenol, 3,5-bis(1,1-dimethylethyl)- | 2315 | 200 [58] | Stone carbonate | 1138-52-9 | >0.1 | 22.30 ± 1.64 cd | 83.39 ± 15.92 b | 28.61 ± 2.02 c | 1.15 ± 0.03 d | 160.03 ± 8.51 a |
3.6. Principal Component Analysis (PCA)
3.7. Norisoprenoid Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tharanathan, R.N.; Yashoda, H.M.; Prabha, T.N. Mango (Mangifera indica L.) “The king of fruits”—An overview. Food Rev. Int. 2006, 22, 95–123. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, P.; Lao, F.; Liu, J.; Liao, X.; Wu, J. Characterization of the major aroma-active compounds in keitt mango juice: Comparison among fresh, pasteurization and high hydrostatic pressure processing juices. Food Chem. 2019, 289, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.V.; Min, J.H.; Wee, Y.J. Production of probiotic mango juice by fermentation of lactic acid bacteria. Microbiol. Biotechnol. Lett. 2015, 43, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Coulibaly, W.H.; Bouatenin, J.P.; Kouamé, A.K.; Camara, F.; Djè, K.M. Use of non-Saccharomyces yeast strains as starter cultures to enhance fermented mango juice production. Sci. Afr. 2020, 7, e00226. [Google Scholar] [CrossRef]
- Ciani, M.; Comitini, F.; Mannazzu, I.; Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res. 2010, 10, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.L.; Jiao, L.X.; Li, Y.H.; Fan, M.T. Degradation of β-carotene to volatile compounds in an aqueous model system to simulate the production of sea buckthorn wine. Int. J. Food Prop. 2012, 15, 1381–1393. [Google Scholar] [CrossRef]
- Sadineni, V.; Kondapalli, N.; Obulam, V.S.R. Effect of co-fermentation with Saccharomyces cerevisiae and Torulaspora delbrueckii or Metschnikowia pulcherrima on the aroma and sensory properties of mango wine. Ann. Microbiol. 2012, 62, 1353–1360. [Google Scholar] [CrossRef]
- Hu, L.; Liu, R.; Wang, X.; Zhang, X. The sensory quality improvement of citrus wine through co-fermentations with selected Non-Saccharomyces yeast strains and Saccharomyces cerevisiae. Microorganisms 2020, 8, 323. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Chen, W.; Chen, H.; Chen, W.; Zhong, Q. Comparative evaluation of the antioxidant capacities and organic acid and volatile contents of mango slurries fermented with six different probiotic microorganisms. J. Food Sci. 2018, 83, 3059–3068. [Google Scholar] [CrossRef]
- Lewinsohn, E.; Sitrit, Y.; Bar, E.; Azulay, Y.; Ibdah, M.; Meir, A.; Yosef, E.; Zamir, D.; Tadmor, Y. Not just colors-carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci. Technol. 2005, 16, 407–415. [Google Scholar] [CrossRef]
- Geng, J.; Zhao, L.; Zhang, H. Formation mechanism of isoprene compounds degraded from carotenoids during fermentation of goji wine. Food Qual. Saf. 2021, 5, fyaa033. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Bąbelewski, P. Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. J. Funct. Foods 2018, 48, 632–642. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Xi, W.; An, W.; Niu, L.; Cao, Y.; Wang, H.; Wang, Y.; Yin, Y. Changes in sugars and organic acids in wolfberry (Lycium barbarum L.) fruit during development and maturation. Food Chem. 2015, 173, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Georgelis, N.; Fencil, K.; Richael, C.M. Validation of a rapid and sensitive HPLC/MS method for measuring sucrose, fructose and glucose in plant tissues. Food Chem. 2018, 262, 191–198. [Google Scholar] [CrossRef]
- Martins, E.; Ramos, A.M.; Vanzela, E.; Stringheta, P.C.; Pinto, C.L.D.O.; Martins, J.M. Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Res. Int. 2013, 51, 764–770. [Google Scholar] [CrossRef]
- Herrero-Martin, C.G. Fermented orange juice: Source of higher carotenoid and flavanone contents. J. Agric. Food Chem. 2013, 61, 8773–8782. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Vadivel, V.; Stuetz, W.; Scherbaum, V.; Biesalski, H.K. Total free phenolic content and health relevant functionality of Indian wild legume grains: Effect of indigenous processing methods. J. Food Compos. Anal. 2011, 24, 935–943. [Google Scholar] [CrossRef]
- Jin, X.; Chen, W.; Chen, H.; Chen, W.; Zhong, Q. Combination of Lactobacillus plantarum and Saccharomyces cerevisiae DV10 as starter culture to produce mango slurry: Microbiological, chemical parameters and antioxidant activity. Molecules 2019, 24, 4349. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez-Santos, L.; Martínez-Girón, J.; Arias-Jaramillo, M.E. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 2017, 233, 96–100. [Google Scholar] [CrossRef]
- Babcock, T.; Borden, J.H.; Gries, R.; Carroll, C.; Lafontaine, J.P.; Moore, M.; Gries, G. Inter-kingdom signaling-symbiotic yeasts produce semiochemicals that attract their yellowjacket hosts. Entomol. Exp. Appl. 2019, 167, 220–230. [Google Scholar] [CrossRef]
- Englezos, V.; Cachón, D.C.; Rantsiou, K.; Blanco, P.; Petrozziello, M.; Pollon, M.; Giacosa, S.; Río Segade, S.; Rolle, L.; Cocolin, L. Effect of mixed species alcoholic fermentation on growth and malolactic activity of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2019, 103, 7687–7702. [Google Scholar] [CrossRef]
- Duarte, W.F.; Dias, D.R.; Pereira, G.V.D.M.; Gervásio, I.M.; Schwan, R.F. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J. Ind. Microbiol. Biotechnol. 2009, 36, 557–569. [Google Scholar] [CrossRef]
- Bauer, F.F.; Rossouw, D. Organic acid metabolism and the impact of fermentation practices on wine acidity: A review. S. Afr. J. Enol. Vitic. 2018, 39, 1–15. [Google Scholar] [CrossRef]
- Tkacz, K.; Chmielewska, J.; Turkiewicz, I.P.; Nowicka, P.; Wojdyło, A. Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem. 2020, 332, 127382. [Google Scholar] [CrossRef] [PubMed]
- Shubhada, N.; Rudresh, D.L.; Jagadeesh, S.L.; Prakash, D.P.; Raghavendra, S. Fermentation of pomegranate juice by lactic acid bacteria. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 4160–4173. [Google Scholar] [CrossRef]
- Liu, S.; Han, Y.; Zhou, Z. Lactic acid bacteria in traditional fermented Chinese foods. Food Res. Int. 2011, 44, 643–651. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Henschke, P.A. Acetic acid bacteria spoilage of bottled red wine—A review. Int. J. Food Microbiol. 2008, 125, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Escribano, R.; González-Arenzana, L.; Portu, J.; Garijo, P.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A.R. Wine aromatic compound production and fermentative behaviour within different non-Saccharomyces species and clones. J. Appl. Microbiol. 2018, 124, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Mashitoa, F.M.; Akinola, S.A.; Manhevi, V.E.; Garcia, C.; Sivakumar, D. Influence of Fermentation of Pasteurised Papaya Puree with Different Lactic Acid Bacterial Strains on Quality and Bioaccessibility of Phenolic Compounds during In Vitro Digestion. Foods 2021, 10, 962. [Google Scholar] [CrossRef]
- Muntean, E. Hplc Assessment of Carotenoids’stability During Lactic Acid Fermentation of Zucchini. J. Agroaliment. Process. Technol. 2007, 1, 191–198. [Google Scholar]
- Liu, Q.H.; Shao, T.; Bai, Y.F. The effect of fibrolytic enzyme, Lactobacillus plantarum and two food antioxidants on the fermentation quality, alpha-tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures. Anim. Feed Sci. Technol. 2016, 221, 1–11. [Google Scholar] [CrossRef]
- Multari, S.; Carafa, I.; Barp, L.; Caruso, M.; Licciardello, C.; Larcher, R.; Tuohy, K.; Martens, S. Effects of Lactobacillus spp. on the phytochemical composition of juices from two varieties of Citrus sinensis L. Osbeck: ‘Tarocco’ and ‘Washington navel’. LWT 2020, 125, 109205. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Muoz, R.; Rivas, B.; Felipe, F.; Reverón, I.; Landete, J.M. Biotransformation of phenolics by Lactobacillus plantarum in fermented foods. In Fermented Foods in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2017; pp. 63–83. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Wei, Z.; Yin, B.; Jiang, Y. Enhancement of functional characteristics of blueberry juice fermented by Lactobacillus plantarum. LWT 2021, 139, 110590. [Google Scholar] [CrossRef]
- Minnaar, P.P.; Du Plessis, H.W.; Jolly, N.P.; Rijst, M.; Toit, M. Non-Saccharomyces yeast and lactic acid bacteria in Co-inoculated fermentations with two Saccharomyces cerevisiae yeast strains: A strategy to improve the phenolic content of Syrah wine. Food Chem. X 2019, 4, 100070. [Google Scholar] [CrossRef]
- Lee, P.R.; Chong, S.M.; Yu, B.; Curran, P.; Liu, S.Q. Effects of sequentially inoculated Williopsis saturnus and Saccharomyces cerevisiae on volatile profiles of papaya wine. Food Res. Int. 2012, 45, 177–183. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, W.; Yu, W.; Zhao, L.; Song, S.; Xu, W.; Zhang, C.; Ma, C.; Wang, L.; Wang, S. Study on the volatile composition of table grapes of three aroma types. LWT 2019, 115, 108450. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, M.; Wang, Y.; Zhou, Y.; Sun, X. Influence of fermentation with different lactic acid bacteria and in vitro digestion on the change of phenolic compounds in fermented kiwifruit pulps. Int. J. Food Sci. Technol. 2021, 57, 2670–2679. [Google Scholar] [CrossRef]
- Kadyan, S.; Rashmi, H.M.; Pradhan, D.; Kumari, D.; Chaudhari, A.; Deshwal, G.K. Effect of lactic acid bacteria and yeast fermentation on antimicrobial, antioxidative and metabolomic profile of naturally carbonated probiotic whey drink. LWT 2021, 142, 111059. [Google Scholar] [CrossRef]
- Guluarte, C.; Reyes-Becerril, M.; Gonzalez-Silvera, D.; Cuesta, A.; Angulo, C.; Esteban, M.N. Probiotic properties and fatty acid composition of the yeast Kluyveromyces lactis M3. In vivo immunomodulatory activities in gilthead seabream (Sparus aurata). Fish Shellfish Immun. 2019, 94, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Chantasuban, T.; Santomauro, F.; Gore-Lloyd, D.; Parsons, S.; Henk, D.; Scott, R.J.; Chuck, C. Elevated production of the aromatic fragrance molecule, 2-phenylethanol, using Metschnikowia pulcherrima through both de novo and ex novo conversion in batch and continuous modes. J. Chem. Technol. Biotechnol. 2018, 93, 2118–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nykänen, L. Formation and occurrence of flavor compounds in wine and distilled alcoholic beverages. Am. J. Enol. Vitic. 1986, 37, 84–96. [Google Scholar] [CrossRef]
- Javier, R.; Ignacio, B.; Beata, B.; Eva, N.; Domingo, M.; Fernando, C.; Dori, R.; Antonio, S.; Santiago, B. Analytical impact of Metschnikowia pulcherrima in the volatile profile of Verdejo white wines. Appl. Microbiol. Biotechnol. 2018, 102, 8501–8509. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; An, K.; Su, S.; Yu, Y.; Xu, Y. Aromatic characterization of mangoes (Mangifera indica L.) using solid phase extraction coupled with gas chromatography–mass spectrometry and olfactometry and sensory analyses. Foods 2020, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Oliver-Simancas, R.; Muoz, R.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Alaón, M.E. Mango by-products as a natural source of valuable odor-active compounds. J. Sci. Food Agric. 2020, 100, 4688–4695. [Google Scholar] [CrossRef]
- Wang, X.C.; Li, A.H.; Dizy, M.; Ullah, N.; Sun, W.X.; Tao, Y.S. Evaluation of aroma enhancement for “Ecolly” dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Food Chem. 2017, 228, 550–559. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M. Carotenoid breakdown products the-norisoprenoids-in wine aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef]
- Zabetakis, I.; Gramshaw, J.W.; Robinson, D.S. 2,5-Dimethyl-4-hydroxy-2 H-furan-3-one and its derivatives: Analysis, synthesis and biosynthesis—A review. Food Chem. 1999, 65, 139–151. [Google Scholar] [CrossRef]
- Larsen, M.; Poll, L.; Olsen, C.E. Evaluation of the aroma composition of some strawberry (Fragaria ananassa Duch) cultivars by use of odour threshold values. Z. Lebensm.-Unters. Forsch. 1992, 195, 536–539. [Google Scholar] [CrossRef]
- Roscher, R.; Koch, H.; Herderich, M.; Schreier, P.; Schwab, W. Identification of 2, 5-dimethyl-4-hydroxy-3 [2H]-furanone β-d-glucuronide as the major metabolite of a strawberry flavour constituent in humans. Food Chem. Toxicol. 1997, 35, 777–782. [Google Scholar] [CrossRef]
- Pino, J.A.; Queris, O. Analysis of volatile compounds of mango wine. Food Chem. 2011, 125, 1141–1146. [Google Scholar] [CrossRef]
- Cheng, G.T.; Li, Y.S.; Qi, S.M.; Wang, J.; Zhao, P.; Lou, Q.; Wang, Y.; Zhang, X.; Liang, Y. SlCCD1A Enhances the Aroma Quality of Tomato Fruits by Promoting the Synthesis of Carotenoid-Derived Volatiles. Foods 2021, 10, 2678. [Google Scholar] [CrossRef]
- Wu, Y.; Duan, S.; Zhao, L.; Gao, Z.; Luo, M.; Song, S.; Xu, W.; Zhang, C.; Ma, C.; Wang, S. Aroma characterization based on aromatic series analysis in table grapes. Sci. Rep. 2016, 6, 31116. [Google Scholar] [CrossRef] [Green Version]
- Ong, P.K.C.; Acree, T.E. Gas Chromatography/Olfactory Analysis of Lychee (Litchi chinesis Sonn.). Agric. Food Chem. 1998, 46, 2282–2286. [Google Scholar] [CrossRef]
- Sun, N.; Gao, Z.; Li, S.; Chen, X.; Guo, J. Assessment of chemical constitution and aroma properties of kiwi wines obtained from pure and mixed fermentation with Wickerhamomyces anomalus and Saccharomyces cerevisiae. J. Sci. Food. Agric. 2022, 102, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.N.; Zheng, F.P.; Yu, A.N.; Sun, B.G. Changes of the free and bound volatile compounds in Rubus corchorifolius L.f. fruit during ripening. Food Chem. 2019, 287, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Tomasino, E.; Bolman, S. The potential effect of β-ionone and β-damascenone on sensory perception of pinot noir wine aroma. Molecules 2021, 26, 1288. [Google Scholar] [CrossRef]
- Kaiser, R. Carotenoid-Derived Aroma Compounds in Flower Scents; ACS Publications: Washington, DC, USA, 2002. [Google Scholar] [CrossRef]
- Hu, K.; Zhu, X.L.; Mu, H.; Ma, Y.; Ullah, N.; Tao, Y.S. A novel extracellular glycosidase activity from Rhodotorula mucilaginosa: Its application potential in wine aroma enhancement. Lett. Appl. Microbiol. 2016, 62, 169–176. [Google Scholar] [CrossRef]
- Martínez, C.; Gertosio, C.; Labbe, A.; Pérez, R.; Ganga, M.A. Production of Rhodotorula glutinis: A yeast that secretes alpha-L-arabinofuranosidase. Electron. J. Biotechnol. 2006, 9, 407–413. [Google Scholar] [CrossRef] [Green Version]
Index | CK | LP + RG | LP + MP | LC + RG | LC + MP |
---|---|---|---|---|---|
pH | 4.79 ± 0.03 a | 3.26 ± 0.01 c | 3.19 ± 0.01 d | 3.33 ± 0.01 b | 3.36 ± 0.01 b |
°Brix | 18.37 ± 0.06 a | 14.67 ± 0.06 b | 13.83 ± 0.06 d | 14.80 ± 0.10 b | 14.17 ± 0.05 c |
Organic acid (g/L) | |||||
Lactic acid | - | 7.77 ± 0.52 a | 6.10 ± 1.23 b | 5.28 ± 0.44 c | 4.20 ± 0.3 d |
Malic acid | 5.97 ± 0.22 a | 1.81 ± 0.12 c | 2.21 ± 0.05 c | 5.30 ± 0.44 b | 5.31 ± 0.42 b |
Citric Acid | 3.74 ± 0.07 a | 1.45 ± 0.14 c | 0.69 ± 0.02 d | 2.01 ± 0.09 b | 1.38 ± 0.05 c |
Acetic acid | 1.81 ± 0.07 a | 0.24 ± 0.01 e | 0.59 ± 0.02 d | 1.36 ± 0.04 b | 1.27 ± 0.05 c |
Tartaric acid | 1.50 ± 0.05 b | 1.09 ± 0.04 c | 2.04 ± 0.32 a | 0.66 ± 0.05 d | 1.82 ± 0.05 a |
Oxalic acid | 0.56 ± 0.01 a | 0.18 ± 0.05 c | 0.31 ± 0.02 b | 0.12 ± 0.03 d | 0.19 ± 0.04 c |
α-Ketoglutaric acid | 0.39 ± 0.01 a | 0.30 ± 0.01 c | 0.15 ± 0.02 d | 0.32 ± 0.01 b | 0.13 ± 0.01 d |
Total | 13.97 | 12.84 | 12.09 | 15.05 | 14.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Q.; Chen, R.; Zhang, M.; Chen, W.; Chen, H.; Chen, W. Effect of the Mixed Inoculation of Lactic Acid Bacteria and Non-Saccharomyces on the Quality and Flavor Enhancement of Fermented Mango Juice. Fermentation 2023, 9, 563. https://doi.org/10.3390/fermentation9060563
Zhong Q, Chen R, Zhang M, Chen W, Chen H, Chen W. Effect of the Mixed Inoculation of Lactic Acid Bacteria and Non-Saccharomyces on the Quality and Flavor Enhancement of Fermented Mango Juice. Fermentation. 2023; 9(6):563. https://doi.org/10.3390/fermentation9060563
Chicago/Turabian StyleZhong, Qiuping, Ruixin Chen, Ming Zhang, Wenxue Chen, Haiming Chen, and Weijun Chen. 2023. "Effect of the Mixed Inoculation of Lactic Acid Bacteria and Non-Saccharomyces on the Quality and Flavor Enhancement of Fermented Mango Juice" Fermentation 9, no. 6: 563. https://doi.org/10.3390/fermentation9060563
APA StyleZhong, Q., Chen, R., Zhang, M., Chen, W., Chen, H., & Chen, W. (2023). Effect of the Mixed Inoculation of Lactic Acid Bacteria and Non-Saccharomyces on the Quality and Flavor Enhancement of Fermented Mango Juice. Fermentation, 9(6), 563. https://doi.org/10.3390/fermentation9060563