Moisture-Induced Effects on Lignocellulosic and Humification Fractions in Aerobically Composted Straw and Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Test Materials
Parameter | Corn Straw | Cow Manure | Mixture |
---|---|---|---|
Moisture content (%) | 6.33 ± 0.22 | 50.90 ± 0.81 | 28.62 ± 0.52 |
pH | 7.23 ± 0.91 | 7.71 ± 0.32 | 7.79 ± 0.09 |
Electrical conductivity (mS/cm) | 3.02 ± 0.10 | 2.90 ± 0.04 | 3.04 ± 0.13 |
Particle size (mm) | 120.0 ± 6.21 | 20.0 ± 2.21 | 98.0 ± 9.71 |
Cellulose content (mg/g) | 270 ± 15.12 | 125 ± 8.4 | 178 ± 8.25 |
Hemicellulose content (mg/g) | 350 ± 11.42 | 170 ± 6.91 | 248 ± 15.12 |
Lignin content (mg/g) | 125 ± 6.12 | 80 ± 8.18 | 95 ± 10.35 |
Cow manure/corn straw ratio (kg) | ms 3.8 | mm 15.0 | ≈15:4 |
2.2. Composting Vessels and Processes
2.3. Experimental Design and Sampling Protocol
2.4. Statistical Analyses
3. Results
3.1. Variation in Temperature, Matrix pH, and EC
3.2. Changes in Humic Substance, Humic Acid, and Percentage Humic Acid
3.3. Variation in Fulvic Acid and Degree of Polymerization
3.4. Variations in Humification Index and Humification Rate
3.5. Changes in Cellulose, Hemicellulose, and Lignin Content
3.6. Variations in Moisture Content
3.7. Redundancy Analysis (RDA) of Compost Physicochemical Indices as Affected by Moisture
4. Discussion
4.1. Temperature, Matrix pH, and EC Variations
4.2. Variations in Humification Parameters
4.3. Changes in Lignocellulose Fractions
4.4. Moisture Content
4.5. Mechanistic Action of Water on Substrate Decomposition
- Hydrolysis: Hydrolysis is the process by which water breaks down complex organic compounds into simpler compounds through the addition of water molecules. The process of hydrolysis is critical in the release of energy and nutrients from complex organic molecules.
- Leaching: Leaching is the process by which water dissolves and transports minerals and other nutrients from the substrate into the surrounding environment. This process is important for plant growth due to the release of nutrients into the soil.
- Microbial action: Microorganisms such as bacteria, fungi, actinomycetes, and protozoa play an important role in the decomposition of organic matter in water. These microorganisms feed on the organic matter and break it down into simpler compounds through metabolic processes. This process is essential for the release of energy and nutrients from the substrate.
- Oxidation–reduction reactions: Water also act as a solvent for various redox reactions, and are critical for the breakdown of complex organic compounds. As a chemical reaction (redox reaction) occurs, electrons are transported from one molecule to the other, facilitating the release of energy and nutrients from the substrate.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, H.; Ye, X.; Li, J.; Lu, J.; Fan, Q.; Yu, N.; Zhang, Y.; Dang, X.; Zhang, Y. Effects of straw return in deep soils with urea addition on the soil organic carbon fractions in a semi-arid temperate cornfield. PLoS ONE 2016, 11, e0153214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, B.; An, X.; An, W.; Xiao, X.; Li, H.; Xia, X.; Zhang, Q. Effect of bioaugmentation on lignocellulose degradation and antibiotic resistance genes removal during biogas residues composting. Bioresour. Technol. 2021, 340, 125742. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hou, L.-X.; Xi, B.-D.; Hou, L.-A.; He, X.-S. Contribution of redox-active properties of compost-derived humic substances in hematite bioreduction. Chin. Chem. Lett. 2022, 33, 2731–2735. [Google Scholar] [CrossRef]
- Nigussie, A.; Dume, B.; Ahmed, M.; Mamuye, M.; Ambaw, G.; Berhiun, G.; Biresaw, A.; Aticho, A. Effect of microbial inoculation on nutrient turnover and lignocellulose degradation during composting: A meta-analysis. Waste Manag. 2021, 125, 220–234. [Google Scholar] [CrossRef]
- Ghanney, P.; Qiu, H.; Anning, D.K.; Yang, H.; Wang, Y.; Kugbe, J.X. Moisture-induced pattern of gases and physicochemical indices in corn straw and cow manure composting. Appl. Sci. 2021, 11, 8493. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.; Huang, H.; Sun, E.; Butterly, C.; Xu, Y.; He, H.; Zhang, J.; Chang, Z. Spectroscopic evidence for hyperthermophilic pretreatment intensifying humification during pig manure and rice straw composting. Bioresour. Technol. 2019, 294, 122131. [Google Scholar] [CrossRef]
- Bai, L.; Deng, Y.; Li, J.; Ji, M.; Ruan, W. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting. Bioresour. Technol. 2020, 307, 122941. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, Y.; Liu, J.; Ren, X.; Zhang, Z.; Wang, Q. Effects of microplastics on humification and fungal community during cow manure composting. Sci. Total Environ. 2021, 803, 150029. [Google Scholar] [CrossRef]
- Zhang, K.; Si, M.; Liu, D.; Zhuo, S.; Liu, M.; Liu, H.; Yan, X.; Shi, Y. A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass. Biotechnol. Biofuels 2018, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Niu, Q.; Meng, Q.; Yang, H.; Wang, Y.; Li, X.; Li, G.; Li, Q. Humification process and mechanisms investigated by Fenton-like reaction and laccase functional expression during composting. Bioresour. Technol. 2021, 341, 125906. [Google Scholar] [CrossRef]
- Pang, W.; Hou, D.; Chen, J.; Nowar, E.E.; Li, Z.; Hu, R.; Tomberlin, J.K.; Yu, Z.; Li, Q.; Wang, S. Reducing greenhouse gas emissions and enhancing carbon and nitrogen conversion in food wastes by the black soldier fly. J. Environ. Manag. 2020, 260, 110066. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Patel, A.K.; Pant, D.; Banu, J.R.; Rao, C.V.; Kim, Y.-G.; Yang, Y.-H. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 2020, 300, 122724. [Google Scholar] [CrossRef]
- Mehmood, K.; Chang, S.; Yu, S.; Wang, L.; Li, P.; Li, Z.; Liu, W.; Rosenfeld, D.; Seinfeld, J.H. Spatial and temporal distributions of air pollutant emissions from open crop straw and biomass burnings in China from 2002 to 2016. Environ. Chem. Lett. 2017, 16, 301–309. [Google Scholar] [CrossRef]
- Wang, B.; Shen, X.; Chen, S.; Bai, Y.; Yang, G.; Zhu, J.; Shu, J.; Xue, Z. Distribution characteristics, resource utilization and popularizing demonstration of crop straw in southwest China: A comprehensive evaluation. Ecol. Indic. 2018, 93, 998–1004. [Google Scholar] [CrossRef]
- Yuan, W.; Huang, R.-J.; Yang, L.; Guo, J.; Chen, Z.; Duan, J.; Wang, T.; Ni, H.; Han, Y.; Li, Y. Characterization of the light-absorbing properties, chromophore composition and sources of brown carbon aerosol in Xi’an, northwestern China. Atmos. Meas. Atmos. Chem. Phys. 2020, 20, 5129–5144. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Hao, L. Contributions of open crop straw burning emissions to PM2.5 concentrations in China. Environ. Res. Lett. 2016, 11, 014014. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, G.; Li, Y.; Wang, Q.; Dang, P.; Qin, X.; Zou, Y.; Chen, Y.; Siddique, K.H. Straw incorporation with ridge–furrow plastic film mulch alters soil fungal community and increases maize yield in a semiarid region of China. Appl. Soil Ecol. 2021, 167, 104038. [Google Scholar] [CrossRef]
- Kim, E.; Lee, D.-H.; Won, S.; Ahn, H. Evaluation of optimum moisture content for composting of beef manure and bedding material mixtures using oxygen uptake measurement. Asian-Australas. J. Anim. Sci. 2015, 29, 753–758. [Google Scholar] [CrossRef] [Green Version]
- Makan, A.; Assobhei, O.; Mountadar, M. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. Atmos. Environ. 2013, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Song, Z.; Zhang, L.; Shen, Z.; Hough, R.; Zhang, Z.; An, L.; Fu, Q.; Zhao, Y.; Jia, Z. Spatial and temporal variations of open straw burning based on fire spots in northeast China from 2013 to 2017. Atmos. Environ. 2020, 244, 117962. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Cai, H.; Awasthi, M.K.; Zhang, Z.; Wang, J.J.; Ali, A.; Amanullah, M. Improving pig manure composting efficiency employing Ca-bentonite. Ecol. Eng. 2016, 87, 157–161. [Google Scholar] [CrossRef]
- Chen, J.; Hou, D.; Pang, W.; Nowar, E.E.; Tomberlin, J.K.; Hu, R.; Chen, H.; Xie, J.; Zhang, J.; Yu, Z. Effect of moisture content on greenhouse gas and NH3 emissions from pig manure converted by black soldier fly. Sci. Total Environ. 2019, 697, 133840. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wang, Q.; Awasthi, M.K.; Zhao, J.; Wang, J.; Liu, T.; Li, R.; Zhang, Z. Improvement of cleaner composting production by adding Diatomite: From the nitrogen conservation and greenhouse gas emission. Bioresour. Technol. 2019, 286, 121377. [Google Scholar] [CrossRef] [PubMed]
- Van Soest Pv Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Li, Y.; Luo, W.; Li, G.; Wang, K.; Gong, X. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting. Bioresour. Technol. 2017, 250, 53–59. [Google Scholar] [CrossRef]
- Cook, K.; Ritchey, E.; Loughrin, J.; Haley, M.; Sistani, K.; Bolster, C.H. Effect of turning frequency and season on composting materials from swine high-rise facilities. Waste Manag. 2015, 39, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Li, Y.; Han, Y.; Qian, W.; Li, G.; Luo, W. Performance of mature compost to control gaseous emissions in kitchen waste composting. Sci. Total Environ. 2019, 657, 262–269. [Google Scholar] [CrossRef]
- Ogunwande, G.; Osunade, J.; Adekalu, K.; Ogunjimi, L. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency. Bioresour. Technol. 2008, 99, 7495–7503. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lazcano, C.; Domínguez, J. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 2008, 70, 436–444. [Google Scholar] [CrossRef]
- Shin, J.H.; Son, J.E. Changes in electrical conductivity and moisture content of substrate and their subsequent effects on transpiration rate, water use efficiency, and plant growth in the soilless culture of paprika (Capsicum annuum L.). Hortic. Environ. Biotechnol. 2015, 56, 178–185. [Google Scholar] [CrossRef]
- Zhou, H.-B.; Chen, T.-B.; Gao, D.; Zheng, G.-D.; Chen, J.; Pan, T.-H.; Liu, H.-T.; Gu, R.-Y. Simulation of water removal process and optimization of aeration strategy in sewage sludge composting. Bioresour. Technol. 2014, 171, 452–460. [Google Scholar] [CrossRef]
- Dias, B.O.; Silva, C.A.; Higashikawa, F.S.; Roig, A.; Sánchez-Monedero, M.A. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresour. Technol. 2010, 101, 1239–1246. [Google Scholar] [CrossRef]
- Zhu, N.; Gao, J.; Liang, D.; Zhu, Y.; Li, B.; Jin, H. Thermal pretreatment enhances the degradation and humification of lignocellulose by stimulating thermophilic bacteria during dairy manure composting. Bioresour. Technol. 2021, 319, 124149. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Zhang, Z.; Wei, Y.; Wang, H.; Lu, Q.; Li, Y.; Wei, Z. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting. Waste Manag. 2017, 68, 64–73. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, Z.; Li, M.; Li, Q. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. J. Environ. Manag. 2019, 243, 240–249. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Zhao, M.; Rong, H.; Zhang, K. Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting. J. Hazard. Mater. 2018, 344, 163–168. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Y.; Zhao, W.; Yang, T.; Zhang, X.; Xie, X.; Cui, H.; Wei, Z. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting. Bioresour. Technol. 2016, 226, 191–199. [Google Scholar] [CrossRef]
- Raj, D.; Antil, R. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour. Technol. 2011, 102, 2868–2873. [Google Scholar] [CrossRef]
- Kulikowska, D. Kinetics of organic matter removal and humification progress during sewage sludge composting. Waste Manag. 2016, 49, 196–203. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Wang, Q.; Huang, H.; Ren, X.; Lahori, A.H.; Mahar, A.; Ali, A.; Shen, F.; Li, R.; Zhang, Z. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting. Bioresour. Technol. 2016, 216, 172–181. [Google Scholar] [CrossRef]
- Li, R.; Wang, Q.; Zhang, Z.; Zhang, G.; Li, Z.; Wang, L.; Zheng, J. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures. Environ. Technol. 2014, 36, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Du, W.; Ren, X.; Cui, Z.; Zhou, W.; Lv, J. Effect of bean dregs amendment on the organic matter degradation, humification, maturity and stability of pig manure composting. Sci. Total Environ. 2019, 708, 134623. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zeng, G.-M.; Yang, Z.-H.; Shi, W.-J.; Huang, C.; Fan, C.-Z.; Xu, Z.-Y. Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste. Bioresour. Technol. 2009, 100, 4807–4813. [Google Scholar] [CrossRef] [PubMed]
- Jurado, M.; Suárez-Estrella, F.; López, M.; Vargas-García, M.; López-González, J.; Moreno, J. Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresour. Technol. 2015, 186, 15–24. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, J.; Han, L.; Huang, G. Characterization of lignocellulosic compositions’ degradation during chicken manure composting with added biochar by phospholipid fatty acid (PLFA) and correlation analysis. Sci. Total Environ. 2017, 586, 1003–1011. [Google Scholar] [CrossRef]
- Meng, X.; Liu, B.; Zhang, H.; Wu, J.; Yuan, X.; Cui, Z. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment. Bioresour. Technol. 2018, 276, 281–287. [Google Scholar] [CrossRef]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, Z.; Zhao, M.; Chen, X.; Wu, J.; Kang, K.; Wu, Y. Influence of malonic acid and manganese dioxide on humic substance formation and inhibition of CO2 release during composting. Bioresour. Technol. 2020, 318, 124075. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Wen, Q.; Zheng, J. Effect of aeration rate on composting of penicillin mycelial dreg. J. Environ. Sci. 2015, 37, 172–178. [Google Scholar] [CrossRef]
Traits | % Explained | Pseudo-F | p-Value |
---|---|---|---|
pH | 46.5 | 6.1 | 0.036 * |
FA | 74.2 | 20.1 | 0.002 ** |
Percentage humic acid (PHA) | 48.3 | 6.5 | 0.044 * |
Cellulose | 42.8 | 5.2 | 0.030 * |
Hemicellulose | 53.8 | 8.1 | 0.014 * |
Lignin | 49.4 | 6.8 | 0.008 ** |
Humic acid (HA) | 43.0 | 5.3 | 0.056 NS |
Humification index (HI) | 37.4 | 4.2 | 0.096 NS |
Humic substance (HS) | 31.5 | 3.2 | 0.148 NS |
Humification rate (HR) | 20.0 | 1.7 | 0.240 NS |
Degree of polymerization (DP) | 12.3 | 1.0 | 0.412 NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanney, P.; Yeboah, S.; Anning, D.K.; Yang, H.; Wang, Y.; Qiu, H. Moisture-Induced Effects on Lignocellulosic and Humification Fractions in Aerobically Composted Straw and Manure. Fermentation 2023, 9, 551. https://doi.org/10.3390/fermentation9060551
Ghanney P, Yeboah S, Anning DK, Yang H, Wang Y, Qiu H. Moisture-Induced Effects on Lignocellulosic and Humification Fractions in Aerobically Composted Straw and Manure. Fermentation. 2023; 9(6):551. https://doi.org/10.3390/fermentation9060551
Chicago/Turabian StyleGhanney, Philip, Stephen Yeboah, Dominic Kwadwo Anning, Huizhen Yang, Youling Wang, and Huizhen Qiu. 2023. "Moisture-Induced Effects on Lignocellulosic and Humification Fractions in Aerobically Composted Straw and Manure" Fermentation 9, no. 6: 551. https://doi.org/10.3390/fermentation9060551
APA StyleGhanney, P., Yeboah, S., Anning, D. K., Yang, H., Wang, Y., & Qiu, H. (2023). Moisture-Induced Effects on Lignocellulosic and Humification Fractions in Aerobically Composted Straw and Manure. Fermentation, 9(6), 551. https://doi.org/10.3390/fermentation9060551