Isolation, Identification, and Characterization of an Acid-Tolerant Pichia kudriavzevii and Exploration of Its Acetic Acid Tolerance Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation, Purification, and Identification of the Yeast Strain
2.2. Screening of Acid-Tolerant Yeast Strains
2.3. Molecular Biological Identification of the Yeast Strain
2.4. Determination of Growth Curve of Acid-Tolerant Yeast
2.5. Determination of Enzyme Activities
2.6. RNA Sample Preparation, Extraction, and Sequencing
2.7. RNA-Seq Analysis
2.8. Statistical Analysis
3. Results
3.1. Isolation, Purification, and Morphological Characterization of the Yeast Strains
3.2. Screening of Acid-Tolerance Potential of the Yeast Strains
3.3. Molecular Identification of Acid-Tolerant Yeast Strain Y2
3.4. Analysis of Acetic Acid Resistance of Acid-Tolerant Yeast
3.5. Enzyme Activities under Acid Stress
3.6. Transcriptome Analysis of Acid-Tolerant Yeast under Acetic Acid Stress
3.7. Identification of Differentially Expressed Genes
3.8. GO Enrichment Analysis of DEGs
3.9. KEGG Enrichment Analysis of DEGs under Acetic Acid Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, J.; Sun, Y.; Huang, X.; Ye, L.; Chen, Y.; Chen, X.; Zheng, X.; Han, B.Z. Unraveling the microbial compositions, metabolic functions, and antibacterial properties of Huangshui, a byproduct of Baijiu fermentation. Food Res. Int. 2022, 157, 111320. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Cao, X.; Cheng, J.; Li, L.; Zhang, T.; Wu, Q.; Xiang, P.; Shen, C.; Li, Q. Chinese Baijiu: The Perfect Works of Microorganisms. Front. Microbiol. 2022, 13, 919044. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, B. Effect of Fermentation Processing on the Flavor of Baijiu. J. Agric. Food Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.W.; Han, B.Z. Baijiu (白酒), Chinese liquor: History, classification and manufacture. J. Ethn. Foods 2016, 3, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Zou, W.; Zhao, C.; Luo, H. Diversity and Function of Microbial Community in Chinese Strong-Flavor Baijiu Ecosystem: A Review. Front. Microbiol. 2018, 9, 671. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wu, Q.; Nie, Y.; Wu, J.; Xu, Y. Construction of Synthetic Microbiota for Reproducible Flavor Compound Metabolism in Chinese Light-Aroma-Type Liquor Produced by Solid-State Fermentation. Appl. Environ. Microbiol. 2019, 85, 3090. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Sun, B.; Fan, G.; Teng, C.; Xiong, K.; Zhu, Y.; Li, J.; Li, X. The brewing process and microbial diversity of strong flavour Chinese spirits: A review. J. Inst. Brew. 2017, 123, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Zhang, K.; Zou, W.; Hou, Y. Three main flavour types of Chinese Baijiu: Characteristics, research, and perspectives. J. Inst. Brew. 2021, 127, 317–326. [Google Scholar] [CrossRef]
- Song, Z.W.; Du, H.; Zhang, M.H.; Nie, Y.; Xu, Y. Schizosaccharomyces pombe Can Reduce Acetic Acid Produced by Baijiu Spontaneous Fermentation Microbiota. Microorganisms 2019, 7, 606. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Zhao, D.; Zhou, R.; Tan, Y.; Wang, T.; Zheng, J. Distribution and function of dominant yeast species in the fermentation of strong-flavor baijiu. World J. Microbiol. Biotechnol. 2021, 37, 26. [Google Scholar] [CrossRef]
- Lin, L.C.; Bai, R.; Gao, Y.; Mu, J.Z.; Lu, J.; Li, C.W.; Zhang, C.Y. Screening of a robust high-tolerance Pichia kudriavzevii strain and its application in Baijiu fermentation. Food Ferment. Ind. 2023, 49, 60–67. [Google Scholar] [CrossRef]
- Di Martino, C.; Testa, B.; Letizia, F.; Iorizzo, M.; Lombardi, S.J.; Ianiro, M.; Di Renzo, M.; Strollo, D.; Coppola, R. Effect of exogenous proline on the ethanolic tolerance and malolactic performance of Oenococcus oeni. J. Food Sci. Technol. 2020, 57, 3973–3979. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Bae, J.H.; Ko, H.J.; Lee, S.H.; Sung, B.H.; Han, J.I.; Sohn, J.H. Low-pH production of d-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7. Biotechnol. Bioeng. 2018, 115, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Canonico, L.; Oro, L.; Comitini, F. Footprint of nonconventional yeasts and their contribution in alcoholic fermentations. Biotechnol. Prog. Beverage Consum. 2020, 19, 435–465. [Google Scholar] [CrossRef]
- Du, H.; Song, Z.; Zhang, M.; Nie, Y.; Xu, Y. The deletion of Schizosaccharomyces pombe decreased the production of flavor-related metabolites during traditional Baijiu fermentation. Food Res. Int. 2021, 140, 109872. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Ko, H.J.; Jeong, H.; Lee, S.H.; Ko, H.J.; Bae, J.H.; Sung, B.H.; Han, J.I.; Sohn, J.H. Draft Genome Sequence of a Multistress-Tolerant Yeast, Pichia kudriavzevii NG7. Genome Announc. 2018, 6, e01515-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J.C.; Gerds, M.L.; Hammes, W.P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A.; et al. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol. 2012, 154, 87–97. [Google Scholar] [CrossRef]
- Du, H.; Song, Z.; Xu, Y. Ethyl Carbamate Formation Regulated by Lactic Acid Bacteria and Nonconventional Yeasts in Solid-State Fermentation of Chinese Moutai-Flavor Liquor. J. Agric. Food Chem. 2018, 66, 387–392. [Google Scholar] [CrossRef]
- Zhang, H.; Du, H.; Xu, Y. Volatile Organic Compound-Mediated Antifungal Activity of Pichia spp. and Its Effect on the Metabolic Profiles of Fermentation Communities. Appl. Environ. Microbiol. 2021, 87, 2992. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. Microbiological and biochemical performances of six yeast species as potential starter cultures for wet fermentation of coffee beans. LWT 2021, 137, 110430. [Google Scholar] [CrossRef]
- Chagas Junior, G.C.A.; Ferreira, N.R.; Andrade, E.H.A.; Nascimento, L.D.D.; Siqueira, F.C.; Lopes, A.S. Profile of Volatile Compounds of On-Farm Fermented and Dried Cocoa Beans Inoculated with Saccharomyces cerevisiae KY794742 and Pichia kudriavzevii KY794725. Molecules 2021, 26, 344. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.R.; Sneha, H.P.; Prakash, I.; Khan, M.; HN, P.K.; Om, H.; Basavaraj, K.; Murthy, P.S. Microbial ecology and functional coffee fermentation dynamics with Pichia kudriavzevii. Food Microbiol. 2022, 105, 104012. [Google Scholar] [CrossRef]
- Deng, N.; Du, H.; Xu, Y. Cooperative Response of Pichia kudriavzevii and Saccharomyces cerevisiae to Lactic Acid Stress in Baijiu Fermentation. J. Agric. Food Chem. 2020, 68, 4903–4911. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Ahn, T.Y.; Sohn, J.H. Analysis of microbial diversity in makgeolli fermentation using PCR-DGGE. J. Life Sci. 2012, 22, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Ruyters, S.; Mukherjee, V.; Verstrepen, K.J.; Thevelein, J.M.; Willems, K.A.; Lievens, B. Assessing the potential of wild yeasts for bioethanol production. J. Ind. Microbiol. Biotechnol. 2015, 42, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Wu, F.; He, D.; Xu, R.; Feng, H.; Chen, T.; Liu, G.; Wang, W. Seasonal Variation of Airborne Fungi of the Tiantishan Grottoes and Western Xia Museum, Wuwei, China. Sci. Cold Arid. Reg. 2020, 13, 522–532. [Google Scholar] [CrossRef]
- Díaz-Nava, L.; Aguilar-Uscanga, M.; Ortiz-Muñiz, B.; Montes-García, N.; Domínguez, J.; Gómez-Rodríguez, J. Acetic acid-tolerant native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice for ethanol production. Sugar Tech 2022, 24, 576–584. [Google Scholar] [CrossRef]
- Wilson, D.F.; Harrison, D.K.; Vinogradov, S.A. Oxygen, pH, and mitochondrial oxidative phosphorylation. J. Appl. Physiol. 2012, 113, 1838–1845. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, K.F.; Pan, L.; Chen, X.S. Global gene transcriptome analysis of the acid stress response of Streptomyces albulus M-Z18. Food Ferment. Ind. 2022, 48, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Cai, W.; Zeng, J.; Liu, N.; Wan, Y.; Fu, G. Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit. Rev. Food Sci. Nutr. 2022, 1–16. [Google Scholar] [CrossRef]
- Snoek, T.; Verstrepen, K.J.; Voordeckers, K. How do yeast cells become tolerant to high ethanol concentrations? Curr. Genet. 2016, 62, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Liu, Z.L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2010, 87, 829–845. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, P.; Schnellmann, R.G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 2017, 13, 629–646. [Google Scholar] [CrossRef]
- Choi, I.; Son, H.; Baek, J.H. Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses. Life 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xie, C.-Y.; Yang, B.-X.; Gou, M.; Xia, Z.-Y.; Sun, Z.-Y.; Tang, Y.-Q. The response mechanisms of industrial Saccharomyces cerevisiae to acetic acid and formic acid during mixed glucose and xylose fermentation. Process. Biochem. 2020, 91, 319–329. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, P.H.; Zhou, C.; Dong, M.M. Effect of Different Concentration Exogenous Sodium Acetate on Metabolism and the Key Enzyme Activity in the Acetate-Tolerant Escherichia coli DA19. J. Microbiol. 2016, 36, 15–20. [Google Scholar] [CrossRef]
- Trček, J.; Mira, N.P.; Jarboe, L.R. Adaptation and tolerance of bacteria against acetic acid. Appl. Microbiol. Biotechnol. 2015, 99, 6215–6229. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, R.; Chang, Y.; Zheng, Y.; Wang, M. Effects of TCA cycle metabolism on the acetic acid fermentation of Acetobacter pasteurianus. Food Sci. 2017, 38, 82–86. [Google Scholar] [CrossRef]
- Mullins, E.A.; Francois, J.A.; Kappock, T.J. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J. Bacteriol. 2008, 190, 4933–4940. [Google Scholar] [CrossRef] [Green Version]
- Fukaya, M.; Takemura, H.; Tayama, K.; Okumura, H.; Kawamura, Y.; Horinouchi, S.; Beppu, T. The aarC gene responsible for acetic acid assimilation confers acetic acid resistance on Acetobacter aceti. J. Ferment. Bioeng. 1993, 76, 270–275. [Google Scholar] [CrossRef]
Enzyme | GeneID | FoldChange | |
---|---|---|---|
AH vs. C | AL vs. C | ||
NADH dehydrogenase | 8198923 | 1.53 | 1.12 |
8200953 | 1.67 | 1.16 | |
8199077 | 1.78 | 1.55 | |
8199820 | 2.02 | 1.37 | |
8197883 | 1.77 | 1.55 | |
8201285 | 1.83 | 1.57 | |
8196676 | 1.74 | 1.13 | |
8201053 | 1.76 | 1.12 | |
8196876 | 1.78 | 1.44 | |
Succinate dehydrogenase | 8197074 | 1.75 | 1.36 |
8200628 | 2.14 | 1.37 | |
8200068 | 1.93 | 1.28 | |
Cytochrome c reductase | 8198393 | 1.63 | 1.26 |
8199742 | 1.66 | 1.34 | |
8199133 | 1.87 | 1.18 | |
8196720 | 1.64 | 1.10 | |
8197763 | 1.31 | 1.18 | |
8201463 | 1.89 | 1.51 | |
8198335 | 1.90 | 1.60 | |
Cytochrome c oxidase | 8198106 | 1.42 | 1.18 |
8200705 | 1.38 | 1.02 | |
8198951 | 1.36 | 1.07 | |
8198671 | 1.30 | 1.01 | |
F-type ATPase (eukaryotes) | 8199781 | 1.54 | 1.08 |
8197033 | 1.74 | 1.29 | |
8196694 | 1.80 | 1.24 | |
8196711 | 1.70 | 1.17 | |
8199345 | 1.94 | 1.34 | |
8198918 | 1.85 | 1.65 | |
8198369 | 1.58 | 1.38 | |
8199436 | 1.20 | 1.00 |
Enzyme | GeneID | FoldChange | |
---|---|---|---|
AH vs. C | AL vs. C | ||
Phosphoenolpyruvate carboxykinase | 8197501 | 4.22 | 3.56 |
Dihydrolipoamide dehydrogenase | 8199153 | 1.70 | 1.26 |
Pyruvate carboxylase | 8198982 | 2.05 | 2.12 |
Malate dehydrogenase | 8198787 | 2.97 | 2.75 |
8201217 | −1.40 | −1.51 | |
Citrate synthase | 8197246 | 2.99 | 2.74 |
Aconitate hydratase | 8197413 | 1.98 | 1.69 |
Fumarate hydratase | 8199846 | 1.35 | 1.38 |
Isocitrate dehydrogenase | 8198516 | 3.03 | 2.08 |
8200845 | 2.71 | 1.89 | |
Succinate dehydrogenase | 8197074 | 2.14 | 1.37 |
8198288 | 1.93 | 1.28 | |
8199556 | 1.75 | 1.36 | |
Succinyl-CoA synthetase | 8199113 | 1.96 | 1.30 |
8200321 | 1.71 | 1.41 | |
2-oxoglutarate dehydrogenase | 8196826 | 2.21 | 1.79 |
8198485 | 2.18 | 1.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Zhang, P.; Zhou, X.; Zheng, J.; Ma, Y.; Liu, C.; Wu, T.; Li, H.; Wang, X.; Wang, H.; et al. Isolation, Identification, and Characterization of an Acid-Tolerant Pichia kudriavzevii and Exploration of Its Acetic Acid Tolerance Mechanism. Fermentation 2023, 9, 540. https://doi.org/10.3390/fermentation9060540
Wang N, Zhang P, Zhou X, Zheng J, Ma Y, Liu C, Wu T, Li H, Wang X, Wang H, et al. Isolation, Identification, and Characterization of an Acid-Tolerant Pichia kudriavzevii and Exploration of Its Acetic Acid Tolerance Mechanism. Fermentation. 2023; 9(6):540. https://doi.org/10.3390/fermentation9060540
Chicago/Turabian StyleWang, Ning, Puyu Zhang, Xiaoli Zhou, Jia Zheng, Yi Ma, Chenguang Liu, Tao Wu, Hong Li, Xiaoqin Wang, Hong Wang, and et al. 2023. "Isolation, Identification, and Characterization of an Acid-Tolerant Pichia kudriavzevii and Exploration of Its Acetic Acid Tolerance Mechanism" Fermentation 9, no. 6: 540. https://doi.org/10.3390/fermentation9060540
APA StyleWang, N., Zhang, P., Zhou, X., Zheng, J., Ma, Y., Liu, C., Wu, T., Li, H., Wang, X., Wang, H., Zhao, X., Mehmood, M. A., & Zhu, H. (2023). Isolation, Identification, and Characterization of an Acid-Tolerant Pichia kudriavzevii and Exploration of Its Acetic Acid Tolerance Mechanism. Fermentation, 9(6), 540. https://doi.org/10.3390/fermentation9060540