Effect of Preservation Temperature and Time on Fermentation Characteristics, Bacterial Diversity and Community Composition of Rumen Fluid Collected from High-Grain Feeding Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rumen Fluid Preparation
2.2. Preservation Treatment
2.3. Parameter Determination
2.4. Statistical Analyses
3. Results
3.1. NH3-N, pH Value, and MCP
3.2. VFA Concentration
3.3. VFA Proportion
3.4. Alpha-Diversity Metrics
3.5. Bacterial Relative Abundance at Levels of Phylum and Genus
Item | Preservation Time 1 | SEM 3 | p-Value 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D0 | D7 | D14 | D30 | D60 | D120 | D240 | Time | Temperature | Interaction | |||
Ammonia nitrogen, mg/dL | −80 °C | 13.64 | 12.56 | 12.47 | 13.94 | 15.00 | 14.18 | 13.91 | 0.61 | <0.001 | 0.940 | 0.024 |
−20 °C | 13.64 | 13.38 | 11.88 | 12.67 | 14.41 | 13.60 | 14.95 | |||||
Average | 13.64 b | 12.97 bc | 12.17 c | 13.30 b | 14.70 a | 13.89 b | 14.48 a | |||||
Significance 2 | 0.052 | <0.001 | 0.258 | 0.001 | 0.626 | 0.041 | ||||||
pH value | −80 °C | 6.85 | 6.88 | 6.94 | 6.89 | 6.83 | 6.83 | 6.76 | 0.12 | 0.098 | 0.712 | 0.003 |
−20 °C | 6.85 | 6.90 | 6.90 | 6.81 | 6.97 | 7.14 | 7.03 | |||||
Average | 6.85 | 6.89 | 6.92 | 6.85 | 6.90 | 6.98 | 6.89 | |||||
Significance | 0.036 | 0.085 | 0.933 | 0.016 | 0.063 | 0.211 | ||||||
Microbial crude protein, mg/L | −80 °C | 541.28 | 500.58 | 452.57 | 439.41 | 703.97 | 367.57 | 383.88 | 42.91 | <0.001 | 0.753 | 0.072 |
−20 °C | 541.28 | 508.79 | 469.16 | 445.19 | 603.70 | 280.96 | 345.52 | |||||
Average | 541.28 b | 504.69 bc | 460.86 c | 442.30 c | 653.83 a | 324.26 c | 364.70 c | |||||
Significance | 0.005 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 |
Item | Preservation Time | SEM | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D0 | D7 | D14 | D30 | D60 | D120 | D240 | Time | Temperature | Interaction | |||
Acetate | −80 °C | 29.97 | 28.29 | 28.11 | 31.67 | 33.61 | 33.60 | 28.33 | ||||
−20 °C | 29.97 | 29.62 | 29.78 | 28.79 | 37.81 | 29.47 | 30.38 | 2.91 | 0.002 | 0.957 | 0.079 | |
Average | 29.97 b | 28.95 b | 28.95 b | 30.23 b | 35.71 a | 31.53 b | 29.36 b | |||||
Significance | 0.384 | 0.263 | 0.743 | 0.002 | 0.063 | 0.696 | ||||||
Propionate | −80 °C | 8.52 | 8.30 | 8.08 | 8.86 | 10.07 | 10.23 | 8.30 | 2.06 | 0.027 | 0.987 | 0.275 |
−20 °C | 8.52 | 8.40 | 8.45 | 7.29 | 11.12 | 9.05 | 9.07 | |||||
Average | 8.52 b | 8.35 b | 8.27 b | 8.08 b | 10.59 a | 9.64 b | 8.69 b | |||||
Significance | 0.564 | 0.210 | 0.267 | 0.047 | 0.106 | 0.652 | ||||||
Iso-butyrate | −80 °C | 0.41 | 0.40 | 0.40 | 0.39 | 0.45 | 0.30 | 0.27 | ||||
−20 °C | 0.41 | 0.41 | 0.42 | 0.33 | 0.43 | 0.26 | 0.31 | 0.02 | 0.001 | 0.846 | 0.450 | |
Average | 0.41 a | 0.40 a | 0.41 a | 0.36 ab | 0.44 a | 0.28 b | 0.29 b | |||||
Significance | 0.780 | 0.995 | 0.014 | 0.408 | <0.001 | <0.001 | ||||||
Butyrate | −80 °C | 7.07 | 6.34 | 6.51 | 6.81 | 9.33 | 8.91 | 7.36 | ||||
−20 °C | 7.07 | 6.67 | 6.74 | 5.65 | 9.91 | 7.79 | 7.86 | 0.88 | <0.001 | 0.959 | 0.127 | |
Average | 7.07 b | 6.50 b | 6.62 b | 6.23 b | 9.62 a | 8.35 a | 7.61 ab | |||||
Significance | 0.177 | 0.198 | 0.022 | <0.001 | 0.001 | 0.108 | ||||||
Isovalerate | −80 °C | 0.81 | 0.76 | 0.77 | 0.76 | 0.58 | 0.64 | 0.50 | ||||
−20 °C | 0.81 | 0.80 | 0.80 | 0.61 | 0.60 | 0.54 | 0.55 | 0.07 | <0.001 | 0.902 | 0.043 | |
Average | 0.81 a | 0.78 a | 0.79 a | 0.69 ab | 0.59 bc | 0.59 bc | 0.52 c | |||||
Significance | 0.446 | 0.510 | 0.009 | <0.001 | <0.001 | <0.001 | ||||||
Valerate | −80 °C | 0.56 | 0.53 | 0.53 | 0.55 | 0.75 | 0.83 | 0.65 | ||||
−20 °C | 0.56 | 0.54 | 0.55 | 0.46 | 0.81 | 0.68 | 0.68 | 0.08 | <0.001 | 0.916 | 0.101 | |
Average | 0.56 c | 0.54 c | 0.54 c | 0.51 c | 0.78 a | 0.75 a | 0.66 ab | |||||
Significance | 0.394 | 0.422 | 0.056 | <0.001 | 0.002 | <0.001 | ||||||
Total volatile fatty acids | −80 °C | 47.33 | 44.62 | 44.41 | 49.04 | 54.79 | 54.50 | 45.41 | ||||
−20 °C | 47.33 | 46.44 | 46.73 | 43.13 | 60.68 | 47.80 | 48.84 | 5.11 | <0.001 | 0.991 | 0.060 | |
Average | 47.33 b | 45.53 b | 45.57 b | 46.09 b | 57.73 a | 51.15 ab | 47.13 b | |||||
Significance | 0.348 | 0.243 | 0.399 | 0.002 | 0.034 | 0.924 | ||||||
Branched-chain volatile fatty acids | −80 °C | 1.77 | 1.69 | 1.71 | 1.70 | 1.77 | 1.77 | 1.42 | ||||
−20 °C | 1.77 | 1.75 | 1.76 | 1.40 | 1.84 | 1.48 | 1.54 | 0.15 | <0.001 | 0.896 | 0.018 | |
Average | 1.77 a | 1.72 a | 1.74 a | 1.55 ab | 1.81 a | 1.63 ab | 1.48 b | |||||
Significance | 0.471 | 0.542 | 0.014 | 0.725 | 0.038 | <0.001 |
Item | Preservation Time | SEM | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D0 | D7 | D14 | D30 | D60 | D120 | D240 | Time | Temperature | Interaction | |||
Acetate | −80 °C | 64.10 | 64.66 | 64.21 | 65.58 | 62.97 | 62.91 | 63.83 | ||||
−20 °C | 64.10 | 64.70 | 64.63 | 67.31 | 63.47 | 63.10 | 63.60 | 1.99 | <0.001 | 0.926 | 0.405 | |
Average | 64.10 b | 64.68 b | 64.42 b | 66.45 a | 63.22 bc | 63.01 c | 63.71 bc | |||||
Significance | 0.038 | 0.150 | <0.001 | 0.029 | 0.002 | 0.551 | ||||||
Propionate | −80 °C | 17.38 | 17.35 | 17.23 | 17.05 | 16.77 | 17.52 | 17.24 | ||||
−20 °C | 17.38 | 17.08 | 17.11 | 16.46 | 17.27 | 17.49 | 17.33 | 2.32 | 0.240 | 0.989 | 0.462 | |
Average | 17.38 | 17.22 | 17.17 | 16.75 | 17.02 | 17.51 | 17.28 | |||||
Significance | 0.095 | 0.008 | 0.008 | 0.174 | 0.617 | 0.776 | ||||||
Acetate to propionate ratio | −80 °C | 4.23 | 4.25 | 4.25 | 4.40 | 4.41 | 4.19 | 4.34 | ||||
−20 °C | 4.23 | 4.34 | 4.32 | 4.62 | 4.32 | 4.22 | 4.30 | 0.43 | 0.025 | 0.965 | 0.690 | |
Average | 4.23 b | 4.30 b | 4.29 b | 4.51 a | 4.36 b | 4.21 b | 4.32 b | |||||
Significance | 0.080 | 0.021 | <0.001 | 0.014 | 0.651 | 0.506 | ||||||
Iso-butyrate | −80 °C | 0.95 | 0.98 | 0.99 | 0.86 | 0.86 | 0.62 | 0.62 | ||||
−20 °C | 0.95 | 0.96 | 0.97 | 0.83 | 0.79 | 0.60 | 0.66 | 0.08 | <0.001 | 0.919 | 0.785 | |
Average | 0.95 a | 0.97 a | 0.98 a | 0.84 b | 0.82 b | 0.61 c | 0.64 bc | |||||
Significance | 0.164 | 0.012 | <0.001 | 0.016 | <0.001 | 0.001 | ||||||
Butyrate | −80 °C | 14.60 | 14.07 | 14.55 | 13.77 | 16.93 | 16.21 | 15.75 | ||||
−20 °C | 14.60 | 14.29 | 14.32 | 12.85 | 16.06 | 16.19 | 15.84 | 0.77 | <0.001 | 0.876 | 0.260 | |
Average | 14.60 b | 14.18 b | 14.44 b | 13.31 c | 16.50 a | 16.20 a | 15.79 a | |||||
Significance | 0.101 | 0.373 | <0.001 | <0.001 | <0.001 | 0.001 | ||||||
Isovalerate | −80 °C | 1.79 | 1.76 | 1.82 | 1.62 | 1.11 | 1.23 | 1.13 | ||||
−20 °C | 1.79 | 1.79 | 1.79 | 1.48 | 1.05 | 1.18 | 1.16 | 0.12 | <0.001 | 0.913 | 0.471 | |
Average | 1.79 a | 1.78 a | 1.80 a | 1.55 b | 1.08 d | 1.21 c | 1.15 cd | |||||
Significance | 0.409 | 0.51 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
Valerate | −80 °C | 1.18 | 1.18 | 1.21 | 1.12 | 1.36 | 1.50 | 1.44 | ||||
−20 °C | 1.18 | 1.17 | 1.18 | 1.07 | 1.36 | 1.44 | 1.41 | 0.07 | <0.001 | 0.842 | 0.742 | |
Average | 1.18 b | 1.17 b | 1.19 b | 1.09 c | 1.36 a | 1.47 a | 1.43 a | |||||
Significance | 0.843 | 0.438 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
Branched-chain volatile fatty acids | −80 °C | 3.92 | 3.92 | 4.01 | 3.60 | 3.32 | 3.35 | 3.19 | ||||
−20 °C | 3.92 | 3.92 | 3.94 | 3.38 | 3.20 | 3.22 | 3.23 | 0.24 | <0.001 | 0.884 | 0.500 | |
Average | 3.92 a | 3.92 a | 3.97 a | 3.49 b | 3.26 b | 3.29 b | 3.21 b | |||||
Significance | 0.973 | 0.125 | <0.001 | <0.001 | <0.001 | <0.001 |
Item | Preservation Time | SEM | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D0 | D7 | D14 | D30 | D60 | D120 | D240 | Time | Temperature | Interaction | |||
Chao1 | −80 °C | 356.33 | 290.36 | 492.88 | 267.29 | 333.21 | 499.73 | 385.86 | ||||
−20 °C | 356.33 | 234.75 | 412.76 | 558.25 | 453.96 | 513.78 | 480.02 | 74.72 | 0.055 | 0.182 | 0.338 | |
Average | 356.33 | 262.5 | 452.82 | 412.77 | 393.58 | 506.76 | 432.94 | |||||
Significance | 0.863 | 0.847 | 0.987 | 0.999 | 0.187 | 0.863 | ||||||
Observed species | −80 °C | 353.67 | 288.67 | 479.33 | 266.67 | 332.33 | 483.82 | 380.28 | ||||
−20 °C | 353.67 | 234.33 | 408.00 | 520.00 | 446.67 | 495.32 | 455.48 | 69.82 | 0.059 | 0.221 | 0.412 | |
Average | 353.67 | 261.50 | 443.67 | 393.33 | 389.50 | 489.57 | 417.88 | |||||
Significance | 0.833 | 0.848 | 0.997 | 0.998 | 0.219 | 0.913 | ||||||
PD whole tree | −80 °C | 32.75 | 31.02 | 38.01 | 27.00 | 31.06 | 39.31 | 33.27 | ||||
−20 °C | 32.75 | 26.72 | 34.26 | 37.37 | 37.67 | 39.48 | 36.87 | 3.59 | 0.107 | 0.356 | 0.501 | |
Average | 32.75 | 28.87 | 36.13 | 32.19 | 34.37 | 39.40 | 35.07 | |||||
Significance | 0.928 | 0.961 | 1.000 | 0.999 | 0.270 | 0.984 | ||||||
Shannon index | −80 °C | 6.22 | 6.44 | 6.62 | 5.85 | 6.63 | 6.39 | 6.34 | ||||
−20 °C | 6.22 | 6.29 | 6.35 | 5.98 | 6.74 | 6.51 | 6.37 | 0.294 | 0.376 | 0.987 | 0.994 | |
Average | 6.22 | 6.36 | 6.49 | 5.92 | 6.69 | 6.45 | 6.35 | |||||
Significance | 0.999 | 0.97 | 0.938 | 0.689 | 0.958 | 0.998 | ||||||
Simpson index | −80 °C | 0.96 | 0.97 | 0.97 | 0.95 | 0.97 | 0.96 | 0.97 | ||||
−20 °C | 0.96 | 0.98 | 0.97 | 0.95 | 0.98 | 0.97 | 0.97 | 0.009 | 0.265 | 0.960 | 0.998 | |
Average | 0.96 | 0.98 | 0.97 | 0.95 | 0.98 | 0.96 | 0.97 | |||||
Significance | 0.832 | 0.987 | 0.832 | 0.832 | 1.000 | 0.999 |
Phylum Name | Preservation Time | SEM | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D0 | D7 | D14 | D30 | D60 | D120 | D240 | Time | Temperature | Interaction | |||
Bacteroidota | −80 °C | 61.80 | 54.98 | 62.47 | 77.52 | 62.39 | 61.96 | 53.50 | ||||
−20 °C | 61.80 | 56.08 | 64.24 | 75.30 | 54.10 | 54.75 | 44.32 | 5.91 | 0.002 | 0.290 | 0.912 | |
Average | 61.80 ab | 55.53 b | 63.36 ab | 76.41 a | 58.25 ab | 58.35 ab | 48.91 b | |||||
Significance | 0.933 | 1.000 | 0.185 | 0.996 | 0.991 | 0.122 | ||||||
Firmicutes | −80 °C | 33.13 | 41.23 | 34.32 | 19.95 | 33.70 | 35.06 | 42.21 | ||||
−20 °C | 33.13 | 40.63 | 34.08 | 22.47 | 42.30 | 42.37 | 51.89 | 5.39 | 0.001 | 0.189 | 0.880 | |
Average | 33.13 ab | 40.93 a | 34.20 ab | 21.21 b | 38.00 ab | 38.72 a | 47.05 a | |||||
Significance | 0.766 | 1.000 | 0.299 | 0.969 | 0.857 | 0.038 | ||||||
Proteobacteria | −80 °C | 3.77 | 2.23 | 2.19 | 1.94 | 2.69 | 1.58 | 1.86 | ||||
−20 °C | 3.77 | 1.88 | 0.74 | 1.30 | 1.32 | 1.21 | 1.33 | 1.11 | 0.175 | 0.271 | 0.994 | |
Average | 3.77 | 2.06 | 1.47 | 1.62 | 2.01 | 1.39 | 1.59 | |||||
Significance | 0.714 | 0.379 | 0.463 | 0.687 | 0.14 | 0.218 |
Genus Name | Preservation Time | SEM | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D0 | D7 | D14 | D30 | D60 | D120 | D240 | Time | Temperature | Interaction | |||
Prevotella | −80 °C | 47.05 | 37.34 | 49.82 | 63.33 | 47.84 | 46.28 | 38.74 | ||||
−20 °C | 47.05 | 35.14 | 51.75 | 61.25 | 38.22 | 38.04 | 29.31 | 6.29 | 0.002 | 0.221 | 0.926 | |
Average | 47.05 ab | 36.24 b | 50.70 ab | 62.29 a | 43.03 ab | 42.16 b | 34.03 b | |||||
Significance | 0.597 | 0.997 | 0.204 | 0.995 | 0.96 | 0.163 | ||||||
Rikenellaceae RC9 gut group | −80 °C | 4.91 | 6.23 | 5.52 | 5.17 | 5.29 | 4.82 | 6.69 | ||||
−20 °C | 4.91 | 8.28 | 5.90 | 5.66 | 6.90 | 6.34 | 7.56 | 2.75 | 0.959 | 0.512 | 1.000 | |
Average | 4.91 | 7.26 | 5.71 | 5.41 | 6.09 | 5.58 | 7.13 | |||||
Significance | 0.977 | 1.000 | 1.000 | 0.999 | 1.000 | 0.953 | ||||||
Christensenellaceae R-7 group | −80 °C | 7.04 | 11.73 | 2.18 | 0.72 | 2.55 | 4.41 | 5.00 | ||||
−20 °C | 7.04 | 8.53 | 2.10 | 1.26 | 5.89 | 6.05 | 7.43 | 2.67 | 0.064 | 0.647 | 0.944 | |
Average | 7.04 ab | 10.13 a | 2.14 ab | 0.99 b | 4.22 ab | 5.23 ab | 6.21 ab | |||||
Significance | 0.903 | 0.522 | 0.273 | 0.935 | 0.980 | 1.000 | ||||||
Selenomonas | −80 °C | 4.08 | 1.99 | 5.94 | 3.72 | 6.46 | 6.30 | 5.45 | ||||
−20 °C | 4.08 | 2.39 | 5.51 | 3.99 | 5.75 | 5.30 | 4.28 | 1.58 | 0.254 | 0.660 | 0.997 | |
Average | 4.08 | 2.19 | 5.73 | 3.86 | 6.11 | 5.80 | 4.87 | |||||
Significance | 0.887 | 0.938 | 1.000 | 0.852 | 0.828 | 0.996 | ||||||
Succiniclasticum | −80 °C | 2.67 | 3.50 | 4.34 | 3.66 | 4.05 | 4.05 | 4.60 | ||||
−20 °C | 2.67 | 2.92 | 4.63 | 2.24 | 2.91 | 3.81 | 1.80 | 1.16 | 0.733 | 0.185 | 0.767 | |
Average | 2.67 | 3.21 | 4.49 | 2.95 | 3.48 | 3.93 | 3.20 | |||||
Significance | 0.999 | 0.692 | 1.000 | 0.991 | 0.827 | 0.998 | ||||||
Ruminococcus | −80 °C | 2.44 | 3.54 | 1.90 | 1.08 | 1.29 | 1.20 | 5.72 | ||||
−20 °C | 2.44 | 3.18 | 1.83 | 1.31 | 2.22 | 2.04 | 8.27 | 1.96 | 0.019 | 0.582 | 0.985 | |
Average | 2.44 b | 3.36 b | 1.87 b | 1.19 b | 1.76 b | 1.62 b | 7.00 a | |||||
Significance | 0.999 | 1.000 | 0.995 | 1.000 | 0.998 | 0.080 |
3.6. Beta-Diversity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paz, H.A.; Anderson, C.L.; Muller, M.J.; Kononoff, P.J.; Fernando, S.C. Rumen bacterial community composition in Holstein and Jersey cows is different under same dietary condition and is not affected by sampling method. Front. Microbiol. 2016, 7, 1206. [Google Scholar] [CrossRef] [PubMed]
- Fabro, C.; Sarnataro, C.; Spanghero, M. Impacts of rumen fluid, refrigerated or reconstituted from a refrigerated pellet, on gas production measured at 24 h of fermentation. Anim. Feed Sci. Technol. 2020, 268, 114585. [Google Scholar] [CrossRef]
- Tunkala, B.Z.; DiGiacomo, K.; Alvarez Hess, P.S.; Dunshea, F.R.; Leury, B.J. Rumen fluid preservation for in vitro gas production systems. Anim. Feed Sci. Technol. 2022, 292, 115405. [Google Scholar] [CrossRef]
- Spanghero, M.; Chiaravalli, M.; Colombini, S.; Fabro, C.; Froldi, F.; Mason, F.; Moschini, M.; Sarnataro, C.; Schiavon, S.; Tagliapietra, F. Rumen inoculum collected from cows at slaughter or from a continuous fermenter and preserved in warm, refrigerated, chilled or freeze-dried environments for in vitro tests. Animals 2019, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Prates, A.; de Oliveira, J.A.; Abecia, L.; Fondevila, M. Effects of preservation procedures of rumen inoculum on in vitro microbial diversity and fermentation. Anim. Feed Sci. Technol. 2010, 155, 186–193. [Google Scholar] [CrossRef]
- Hervás, G.; Frutos, P.; Giráldez, F.J.; Mora, M.J.; Fernández, B.; Mantecón, Á.R. Effect of preservation on fermentative activity of rumen fluid inoculum for in vitro gas production techniques. Anim. Feed Sci. Technol. 2005, 123–124, 107–118. [Google Scholar] [CrossRef]
- Garcia, T.J.; Brady, J.A.; Guay, K.A.; Muir, J.P.; Smith, W.B. 190 Reduce reuse reRumen: Preservation method of rumen fluid collected from slaughtered cattle affects in vitro digestibility. J. Anim. Sci. 2019, 97, 66–67. [Google Scholar] [CrossRef]
- Chaudhry, A.S.; Mohamed, R. Fresh or frozen rumen contents from slaughtered cattle to estimate in vitro degradation of two contrasting feeds. Czech J. Anim. Sci. 2012, 57, 265–273. [Google Scholar] [CrossRef]
- Fortina, R.; Glorio Patrucco, S.; Barbera, S.; Tassone, S. Rumen fluid from slaughtered animals: A standardized procedure for sampling, storage and use in digestibility trials. Methods Protoc. 2022, 5, 59. [Google Scholar] [CrossRef]
- Jones, R.J.; Stoltz, M.A.; Meyer, J. The effect of rumen fluid storage time on digestive capacity with five forage/browse samples. Trop. Grasslands 1998, 32, 270–272. [Google Scholar]
- Nocek, J.E.; Hart, S.P.; Polan, C.E. Rumen ammonia concentration as influenced by storage time, freezing and thawing, acid preservative, and method of ammonia determination. J. Dairy Sci. 1987, 70, 601–607. [Google Scholar] [CrossRef]
- Dehority, B.A.; Grubb, J.A. Effect of short-term chilling of rumen contents on viable bacterial numbers. Appl. Environ. Microbiol. 1980, 39, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.C.; Hilgert, A.R.; Guirro, E.C.B.d.P. Influence of food, storage temperature, and time on the extracorporeal viability of ruminal fluid of cattle. Semin. Cienc. Agrar. 2018, 39, 1181–1188. [Google Scholar] [CrossRef]
- Takizawa, S.; Baba, Y.; Tada, C.; Fukuda, Y.; Nakai, Y. Preservation of rumen fluid for the pretreatment of waste paper to improve methane production. Waste Manag. 2019, 87, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Belanche, A.; Palma-Hidalgo, J.M.; Nejjam, I.; Serrano, R.; Jiménez, E.; Martín-García, I.; Yáñez-Ruiz, D.R. In vitro assessment of the factors that determine the activity of the rumen microbiota for further applications as inoculum. J. Sci. Food Agric. 2019, 99, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Fliegerova, K.; Tapio, I.; Bonin, A.; Mrazek, J.; Callegari, M.L.; Bani, P.; Bayat, A.; Vilkki, J.; Kopečný, J.; Shingfield, K.J.; et al. Effect of DNA extraction and sample preservation method on rumen bacterial population. Anaerobe 2014, 29, 80–84. [Google Scholar] [CrossRef]
- Mulder, T.; Vandaele, L.; Peiren, N.; Haegeman, A.; Ruttink, T.; De Campeneere, S.; Van De Wiele, T.; Goossens, K. Cow responses and evolution of the rumen bacterial and methanogen community following a complete rumen content transfer. J. Agr. Sci. 2018, 156, 1047–1058. [Google Scholar] [CrossRef]
- Tunkala, B.Z.; DiGiacomo, K.; Alvarez Hess, P.S.; Dunshea, F.R.; Leury, B.J. Impact of rumen fluid storage on in vitro feed fermentation characteristics. Fermentation 2023, 9, 392. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Makkar, H.P.; Sharma, O.P.; Dawra, R.K.; Negi, S.S. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 1982, 65, 2170–2173. [Google Scholar] [CrossRef]
- Qiu, Q.; Gao, C.; Aziz ur Rahman, M.; Cao, B.; Su, H. Digestive ability, physiological characteristics, and rumen bacterial community of Holstein finishing steers in response to three nutrient density diets as fattening phases advanced. Microorganisms 2020, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Long, T.; Li, Y.; Ouyang, K.; Qiu, Q. Diet shift may trigger LuxS/AI-2 quorum sensing in rumen bacteria. Bioengineering 2022, 9, 379. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Wei, X.; Zhang, L.; Li, Y.; Qu, M.; Ouyang, K. Effect of dietary inclusion of tea residue and tea leaves on ruminal fermentation characteristics and methane production. Anim. Biotechnol. 2021, in press. [Google Scholar] [CrossRef]
- Baetz Albert, L.; Faidley Terry, D.; Allison Milton, J. Automated enzymatic method for the determination of ammonia: Application to rumen fluid, gut fluid, and plasma. Appl. Environ. Microbiol. 1979, 38, 212–215. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Zhao, Y.Y.; Xue, S.L.; Wang, W.; Wang, Y.J.; Cao, Z.J.; Yang, H.J.; Li, S.L. Feeding value assessment of substituting cassava (Manihot esculenta) residue for concentrate of dairy cows using an in vitro gas test. Animals 2021, 11, 307. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Q.; Sun, S.; Sun, H.; Wang, Y.; Shen, X.; Zhang, L. Exploring AI-2-mediated interspecies communications within rumen microbial communities. Microbiome 2022, 10, 167. [Google Scholar] [CrossRef]
- Won, M.Y.; Oyama, L.B.; Courtney, S.J.; Creevey, C.J.; Huws, S.A. Can rumen bacteria communicate to each other? Microbiome 2020, 8, 23. [Google Scholar] [CrossRef]
- Resende, J.A.; Godon, J.-J.; Bonnafous, A.; Arcuri, P.B.; Silva, V.L.; Otenio, M.H.; Diniz, C.G. Seasonal variation on microbial community and methane production during anaerobic digestion of cattle manure in Brazil. Microb. Ecol. 2016, 71, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Purushe, J.; Fouts, D.E.; Morrison, M.; White, B.A.; Mackie, R.I.; Coutinho, P.M.; Henrissat, B.; Nelson, K.E. Comparative genome analysis of prevotella ruminicola and prevotella bryantii: Insights into their environmental niche. Microb. Ecol. 2010, 60, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Gao, C.; Su, H.; Cao, B. Rumen fermentation characteristics require more time to stabilize when diet shifts. Animals 2021, 11, 2192. [Google Scholar] [CrossRef] [PubMed]
- Weimer, P.J.; Cox, M.S.; Vieira de Paula, T.; Lin, M.; Hall, M.B.; Suen, G. Transient changes in milk production efficiency and bacterial community composition resulting from near-total exchange of ruminal contents between high- and low-efficiency Holstein cows. J. Dairy Sci. 2017, 100, 7165–7182. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, I.R.; Yin, G.; Borovok, I.; Miller, M.E.B.; Yeoman, C.J.; Dassa, B.; Yu, Z.; Mizrahi, I.; Flint, H.J.; Bayer, E.A.; et al. Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome. FFEMS Microbiol. Lett. 2015, 362, 1–10. [Google Scholar] [CrossRef]
- Dijkstra, J. Production and absorption of volatile fatty acids in the rumen. Livest. Prod. Sci. 1994, 39, 61–69. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Q.; Long, T.; Ouyang, K.; Lei, X.; Qiu, J.; Zhang, J.; Li, Y.; Zhao, X.; Qu, M.; Ouyang, K. Effect of Preservation Temperature and Time on Fermentation Characteristics, Bacterial Diversity and Community Composition of Rumen Fluid Collected from High-Grain Feeding Sheep. Fermentation 2023, 9, 466. https://doi.org/10.3390/fermentation9050466
Qiu Q, Long T, Ouyang K, Lei X, Qiu J, Zhang J, Li Y, Zhao X, Qu M, Ouyang K. Effect of Preservation Temperature and Time on Fermentation Characteristics, Bacterial Diversity and Community Composition of Rumen Fluid Collected from High-Grain Feeding Sheep. Fermentation. 2023; 9(5):466. https://doi.org/10.3390/fermentation9050466
Chicago/Turabian StyleQiu, Qinghua, Tanghui Long, Kehan Ouyang, Xiaowen Lei, Jingyun Qiu, Jian Zhang, Yanjiao Li, Xianghui Zhao, Mingren Qu, and Kehui Ouyang. 2023. "Effect of Preservation Temperature and Time on Fermentation Characteristics, Bacterial Diversity and Community Composition of Rumen Fluid Collected from High-Grain Feeding Sheep" Fermentation 9, no. 5: 466. https://doi.org/10.3390/fermentation9050466
APA StyleQiu, Q., Long, T., Ouyang, K., Lei, X., Qiu, J., Zhang, J., Li, Y., Zhao, X., Qu, M., & Ouyang, K. (2023). Effect of Preservation Temperature and Time on Fermentation Characteristics, Bacterial Diversity and Community Composition of Rumen Fluid Collected from High-Grain Feeding Sheep. Fermentation, 9(5), 466. https://doi.org/10.3390/fermentation9050466