Isolation and Cultivation of Penicillium citrinum for Biological Control of Spodoptera litura and Plutella xylostella
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection, Isolation, Identification, and Phylogenetic Analysis of Penicillium sp.
2.2. Spore Suspension Preparation
2.3. Pathogenicity of P. citrinum to Diamondback Moth and Oriental Leafworm Moth
2.4. Influence of Different Substrates on Spore Production of P. citrinum
2.5. Statistical Analysis
3. Results
3.1. Isolation and Identification of P. citrinum
3.2. Pathogenicity of P. citrinum to S. litura and Pl. xylostella
3.3. Influence of Different Substrates on Sporulation of P. citrinum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Wu, K.; Jiang, Y.; Guo, Y.; Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 2012, 487, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Renuka, S.; Vani, H.C.; Alex, E. Entomopathogenic fungi as a potential management tool for the control of urban malaria vector, Anopheles stephensi (Diptera: Culicidae). J. Fungi 2023, 9, 223. [Google Scholar] [CrossRef] [PubMed]
- Jaronski, S.T. Mass production of entomopathogenic fungi—State of the art. In Mass Production of Beneficial Organisms, 2nd ed.; Morales-Ramos, J.A., Rojas, M.G., Shapiro-Ilan, D.I., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 317–357. [Google Scholar]
- Shah, P.; Pell, J. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 2003, 61, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Assadi, B.H.; Chouikhi, S.; Ettaib, R.; M’hamdi, N.B.; Belkadhi, M.S. Effect of the native strain of the predator Nesidiocoris tenuis Reuter and the entomopathogenic fungi Beauveria bassiana and Lecanicillium muscarium against Bemisia tabaci (Genn.) under greenhouse conditions in Tunisia. Egypt. J. Biol. Pest Control. 2021, 31, 47. [Google Scholar] [CrossRef]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef]
- Deans, C.; Krischik, V. The current state and future potential of microbial control of scarab pests. Appl. Sci. 2023, 13, 766. [Google Scholar] [CrossRef]
- Lian, T.; Qin, C.; Jie, Y.; Xu, J.; Zhao, D.; Qiu, H.; Hua, Y.; Lai, G. Biological characteristics of six strains of entomophytic fungi and their pathogenicity against Curculio chinensis (Coleoptera: Curculionidae). J. Environ. Entomol. 2019, 41, 642–649. [Google Scholar]
- Hoarau, C.; Campbell, H.; Prince, G.; Chandler, D.; Pope, T. Biological control agents against the cabbage stem flea beetle in oilseed rape crops. Biol. Control. 2022, 167, 104844. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Lopes, R.B.; Delalibera, Í., Jr.; Fernandes, É.K.K.; Luz, C.; Faria, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 2019, 165, 46–53. [Google Scholar] [CrossRef]
- Muñiz-Paredes, F.; Miranda-Hernández, F.; Loera, O. Production of conidia by entomopathogenic fungi: From inoculants to final quality tests. World J. Microbiol. Biotechnol. 2017, 33, 57. [Google Scholar] [CrossRef]
- Sala, A.; Barrena, R.; Artola, A.; Sánchez, A. Current developments in the production of fungal biological control agents by solid-state fermentation using organic solid waste. Crit. Rev. Environ. Sci. Technol. 2019, 49, 655–694. [Google Scholar] [CrossRef]
- Pham, T.A.; Kim, J.J.; Kim, K. Optimization of solid-state fermentation for improved conidia production of Beauveria bassiana as a mycoinsecticide. Mycobiology 2010, 38, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Nascimento Silva, J.; Mascarin, G.M.; dos Santos Gomes, I.C.; Tinôco, R.S.; Quintela, E.D.; dos Reis Castilho, L.; Maria Guimaraes Freire, D. New cost-effective bioconversion process of palm kernel cake into bioinsecticides based on Beauveria bassiana and Isaria javanica. Appl. Microbiol. Biotechnol. 2018, 102, 2595–2606. [Google Scholar] [CrossRef]
- Ginni, G.; Kavitha, S.; Kannah, Y.; Bhatia, S.K.; Kumar, A.; Rajkumar, M.; Gopalakrishnan, K.; Arivalagan, P.; Nguyen, T.L.C.; Rajesh, B. Valorization of agricultural residues: Different biorefinery routes. J. Environ. Chem. Eng. 2021, 9, 105435. [Google Scholar]
- Chatterjee, S.; Mohan, S.V. Fungal biorefinery for sustainable resource recovery from waste. Bioresour. Technol. 2022, 345, 126443. [Google Scholar] [CrossRef]
- Shipp, J.; Zhang, Y.; Hunt, D.; Ferguson, G. Influence of humidity and greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) for control of greenhouse arthropod pests. Environ. Entomol. 2003, 32, 1154–1163. [Google Scholar] [CrossRef] [Green Version]
- Fitriana, Y.; Suharjo, R.; Swibawa, I.G.; Semenguk, B.; Pasaribu, L.T.; Hartaman, M.; Rwandini, R.A.; Indriyati, I.; Purnomo, P.; Solikhin, S. Aspergillus oryzae and Beauveria bassiana as entomopathogenic fungi of Spodoptera litura Fabricius (Lepidoptera: Noctuidae) infesting corn in Lampung, Indonesia. Egypt. J. Biol. Pest Control 2021, 31, 127. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Tran, T.V.A.; Nguyen, Q.L.; Nguyen, N.N.; Nguyen, M.K.; Nguyen, N.T.T.; Su, C.H.; Lin, K.H. Newly isolated Paecilomyces lilacinus and Paecilomyces javanicus as novel biocontrol agents for Plutella xylostella and Spodoptera litura. Not. Bot. Horti Agrobo. 2017, 45, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.d.S.; Sarquis, M.I.d.M.; Ferreira-Keppler, R.L.; Hamada, N.; Alencar, Y.B. Filamentous fungi associated with mosquito larvae (Diptera: Culicidae) in municipalities of the Brazilian Amazon. Neotrop. Entomol. 2009, 38, 352–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maketon, M.; Amnuaykanjanasin, A.; Kaysorngup, A. A rapid knockdown effect of Penicillium citrinum for control of the mosquito Culex quinquefasciatus in Thailand. World J. Microbiol. Biotechnol. 2014, 30, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.; Gams, W. The taxonomic situation in the hyphomycete genera Penicillium, Aspergillus and Fusarium. Antonie Leeuwenhoek 1984, 50, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Houbraken, J.; de Vries, R.P.; Samson, R.A. Modern taxonomy of biotechnologically important Aspergillus and Penicillium sp. Adv. Appl. Microbiol. 2014, 86, 199–249. [Google Scholar] [PubMed]
- Altre, J.; Vandenberg, J.; Cantone, F. Pathogenicity of Paecilomyces fumosoroseus isolates to diamondback moth, Plutella xylostella: Correlation with spore size, germination speed, and attachment to cuticle. J. Invertebr. Pathol. 1999, 73, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, H.; Vishal, V.; Lal, S. Studies on the morphology, phylogeny, and bioremediation potential of Penicillium citrinum and Paecilomyces variotii (Eurotiales) from oil-contaminated areas. Arch. Microbiol. 2023, 205, 50. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Debnath, P.; Ghosh, S.K.; Medda, P.K. Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 2020, 33, 1–10. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.; Hu, Q.; Weng, Q. Entomopathogenic fungi in the soils of China and their bioactivity against striped flea beetles Phyllotreta striolata. Diversity 2022, 14, 464. [Google Scholar] [CrossRef]
- Driver, F.; Milner, R.J.; Trueman, J.W. A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol. Res. 2000, 104, 134–150. [Google Scholar] [CrossRef]
- Schoch, C.L.; Robbertse, B.; Robert, V.; Vu, D.; Cardinali, G.; Irinyi, L.; Meyer, W.; Nilsson, R.H.; Hughes, K.; Miller, A.N.; et al. Finding needles in haystacks: Linking scientific names, reference specimens and molecular data for Fungi. Database 2014, 2014, bau061. [Google Scholar] [CrossRef]
- Flandroy, L.; Poutahidis, T.; Berg, G.; Clarke, G.; Dao, M.C.; Decaestecker, E.; Furman, E.; Haahtela, T.; Massart, S.; Plovier, H.; et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 2018, 627, 1018–1038. [Google Scholar] [CrossRef]
- Thomas, M.B.; Blanford, S.; Lomer, C.J. Reduction of feeding by the variegated grasshopper, Zonocerus variegatus, following infection by the fungal pathogen. Metarhizium flavoviride. Biocontrol Sci. Technol. 1997, 7, 327–334. [Google Scholar] [CrossRef]
- Opisa, S.; Du Plessis, H.; Akutse, K.; Fiaboe, K.; Ekesi, S. Effects of entomopathogenic fungi and Bacillus thuringiensis-based biopesticides on Spoladea recurvalis (Lepidoptera: Crambidae). J. Appl. Entomol. 2018, 142, 617–626. [Google Scholar] [CrossRef]
- Anand, R.; Tiwary, B.N. Pathogenicity of entomopathogenic fungi to eggs and larvae of Spodoptera litura, the common cutworm. Biocontrol Sci. Technol. 2009, 19, 919–929. [Google Scholar] [CrossRef]
- Foo, K.; Sathiya Seelan, J.S.; Dawood, M.M. Microfungi associated with Pteroptyx bearni (Coleoptera: Lampyridae) eggs and larvae from Kawang River, Sabah (northern Borneo). Insects 2017, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Herlinda, S.; Efendi, R.A.; Suharjo, R.; Hasbi, H.; Setiawan, A.; Elfita, E.; Verawaty, M. New emerging entomopathogenic fungi isolated from soil in South Sumatra (Indonesia) and their filtrate and conidial insecticidal activity againts Spodoptera litura. Biodivers. J. Biol. Divers. 2020, 21, 5102–5113. [Google Scholar]
- Soliman, N.; Al-amin, S.M.; Mesbah, A.E.; Ibrahim, A.M.; Mahmoud, A.M. Pathogenicity of three entomopathogenic fungi against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann)(Diptera: Tephritidae). Egypt. J. Biol. Pest Control 2020, 30, 49. [Google Scholar] [CrossRef]
- Ramanujam, B.; Poornesha, B.; Shylesha, A.N. Effect of entomopathogenic fungi against invasive pest Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) in maize. Egypt. J. Biol. Pest Control 2020, 30, 100. [Google Scholar]
- Idrees, A.; Qadir, Z.A.; Akutse, K.S.; Afzal, A.; Hussain, M.; Islam, W.; Waqas, M.S.; Bamisile, B.S.; Li, J. Effectiveness of entomopathogenic fungi on immature stages and feeding performance of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Insects 2021, 12, 1044. [Google Scholar] [CrossRef] [PubMed]
- Baksh, A.; Khan, A. Pathogenicity of Paecilomyces tenuipes to diamond back moth, Plutella xylostella at three temperatures in Trinidad. Int. J. Agric. Biol. 2012, 14, 261–265. [Google Scholar]
- Han, J.H.; Jin, B.R.; Kim, J.J.; Lee, S.Y. Virulence of entomopathogenic fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the microbial control of Spodoptera exigua. Mycobiology 2014, 42, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, M.; Joshi, N. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Brazilian J. Microbiol. 2017, 48, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Mohamed, H.; El-Naggar, S.; Swelim, M.; Elkhawaga, O. Isolation and selection of entomopathogenic fungi as biocontrol agent against the greater wax moth, Galleria mellonella L.(Lepidoptera: Pyralidae). Egypt. J. Biol. Pest Control. 2016, 26, 249. [Google Scholar]
- Mannino, M.C.; Huarte-Bonnet, C.; Davyt-Colo, B.; Pedrini, N. Is the insect cuticle the only entry gate for fungal infection? Insights into alternative modes of action of entomopathogenic fungi. J. Fungi 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Pedrini, N. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biol. 2018, 122, 538–545. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Ligoxygakis, P.; Xia, Y.X. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust. Int. J. Biol. Macromol. 2020, 165, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Shahriari, M.; Zibaee, A.; Khodaparast, S.A.; Fazeli-Dinan, M. Screening and virulence of the entomopathogenic fungi associated with Chilo suppressalis walker. J. Fungi 2021, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Rizal, L.M.; Furlong, M.J.; Walter, G.H. Responses of diamondback moth to diverse entomopathogenic fungi collected from non-agricultural habitats–Effects of dose, temperature and starvation. Fungal Biol. 2022, 126, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Wolski, E.; Rigo, E.; Di Luccio, M.; Oliveira, J.; De Oliveira, D.; Treichel, H. Production and partial characterization of lipases from a newly isolated Penicillium sp. using experimental design. Lett. Appl. Microbiol. 2009, 49, 60–66. [Google Scholar] [CrossRef]
- Ballardo, C.; Abraham, J.; Barrena, R.; Artola, A.; Gea, T.; Sánchez, A. Valorization of soy waste through SSF for the production of compost enriched with Bacillus thuringiensis with biopesticide properties. J. Environ. Manag. 2016, 169, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Awan, U.A.; Meng, L.; Xia, S.; Raza, M.F.; Zhang, Z.; Zhang, H. Isolation, fermentation, and formulation of entomopathogenic fungi virulent against adults of Diaphorina citri. Pest Manag. Sci. 2021, 77, 4040–4053. [Google Scholar] [CrossRef]
- Mar, T.T.; Suwannarach, N.; Lumyong, S. Isolation of entomopathogenic fungi from Northern Thailand and their production in cereal grains. World J. Microbiol. Biotechnol. 2012, 28, 3281–3291. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.P.; Thawani, V. Mass Production of Paecilomyces Fumosoroseus from agricultural products and waste material. Paripex Indian J. Res. 2016, 5, 271–273. [Google Scholar]
- Sain, S.K.; Monga, D.; Hiremani, N.S.; Nagrale, D.T.; Kranthi, S.; Kumar, R.; Kranthi, K.R.; Tuteja, O.P.; Waghmare, V.N. Evaluation of bioefficacy potential of entomopathogenic fungi against the whitefly (Bemisia tabaci Genn.) on cotton under polyhouse and field conditions. J. Invertebr. Pathol. 2021, 183, 107618. [Google Scholar] [CrossRef] [PubMed]
Isolate | Corrected Mortality (%) | ||||||
---|---|---|---|---|---|---|---|
1 Day | 2 Day | 3 Day | 4 Day | 5 Day | 6 Day | 7 Day | |
P.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 6.67 ± 3.33 | 24.81 ± 2.59 | 51.85 ± 1.85 | 67.59 ± 5.09 | 80.56 ± 4.24 |
P.02 | 3.33 ± 3.33 | 10.00 ± 0.00 | 17.41 ± 3.76 | 35.56 ± 2.22 | 58.52 ± 5.96 | 72.69 ± 5.09 | 83.80 ± 4.42 |
P.03 | 0.00 ± 0.00 | 6.67 ± 3.33 | 18.15 ± 4.07 | 39.26 ± 3.23 | 59.35 ± 2.03 | 80.56 ± 4.24 | 84.26 ± 4.63 |
P.04 | 0.00 ± 0.00 | 3.33 ± 3.33 | 6.67 ± 3.33 | 31.85 ± 5.19 | 66.02 ± 7.27 | 84.26 ± 4.63 | 92.13 ± 3.96 |
P.05 | 0.00 ± 0.00 | 6.67 ± 3.33 | 10.74 ± 6.43 | 35.93 ± 4.37 | 59.72 ± 5.01 | 72.69 ± 8.19 | 76.39 ± 7.65 |
P.06 | 0.00 ± 0.00 | 6.67 ± 3.33 | 17.78 ± 3.39 | 46.67 ± 4.63 | 66.76 ± 5.56 | 80.56 ± 4.24 | 80.56 ± 4.24 |
P.07 | 3.33 ± 3.33 | 10.00 ± 0.00 | 25.19 ± 5.19 | 35.56 ± 6.79 | 59.35 ± 2.03 | 81.02 ± 3.24 | 88.43 ± 0.46 |
P.08 | 0.00 ± 0.00 | 0.00 ± 0.00 | 7.04 ± 3.53 | 25.19 ± 4.12 | 51.85 ± 1.85 | 67.59 ± 5.09 | 80.56 ± 4.24 |
P.09 | 0.00 ± 0.00 | 6.67 ± 3.33 | 21.11 ± 5.48 | 35.56 ± 6.79 | 55.65 ± 5.65 | 76.85 ± 0.93 | 92.13 ± 3.96 |
P.10 | 0.00 ± 0.00 | 3.33 ± 3.33 | 3.33 ± 3.33 | 32.22 ± 1.11 | 55.19 ± 2.89 | 73.15 ± 3.34 | 80.56 ± 4.24 |
p-value | 0.5056 | 0.1427 | 0.0462 * | 0.1375 | 0.2743 | 0.4325 | 0.6211 |
Isolate | Corrected Mortality (%) | ||||||
---|---|---|---|---|---|---|---|
1 Day | 2 Day | 3 Day | 4 Day | 5 Day | 6 Day | 7 Day | |
P.01 | 13.33 ± 3.33 | 46.29 ± 1.85 | 78.52 ± 0.74 | 89.26 ± 0.37 | 92.96 ± 3.53 | 96.30 ± 3.70 | 95.83 ± 4.17 |
P.02 | 6.67 ± 3.33 | 28.52 ± 3.29 | 57.41 ± 4.90 | 82.22 ± 3.39 | 92.13 ± 3.96 | 96.30 ± 3.70 | 100.00 ± 0.00 |
P.03 | 6.67 ± 3.33 | 31.85 ± 5.19 | 57.04 ± 1.48 | 74.82 ± 4.12 | 89.26 ± 6.43 | 92.59 ± 3.70 | 95.83 ± 4.17 |
P.04 | 10.00 ± 0.00 | 38.89 ± 5.56 | 71.11 ± 4.44 | 85.56 ± 3.90 | 88.43 ± 0.46 | 88.43 ± 0.46 | 95.83 ± 4.17 |
P.05 | 0.00 ± 0.00 | 35.55 ± 2.22 | 53.33 ± 4.63 | 74.81 ± 4.12 | 84.72 ± 3.50 | 92.13 ± 3.96 | 95.83 ± 4.17 |
P.06 | 3.33 ± 3.33 | 31.85 ± 5.19 | 71.48 ± 3.29 | 85.93 ± 2.96 | 84.72 ± 3.50 | 100.00 ± 0.00 | - |
P.07 | 6.67 ± 3.33 | 31.85 ± 5.19 | 60.37 ± 4.81 | 88.89 ± 6.42 | 92.13 ± 3.96 | 96.30 ± 3.70 | 95.83 ± 4.17 |
P.08 | 3.33 ± 3.33 | 24.81 ± 2.59 | 49.63 ± 5.19 | 78.52 ± 0.74 | 92.59 ± 3.70 | 92.59 ± 3.70 | 95.83 ± 4.17 |
P.09 | 3.33 ± 3.33 | 39.26 ± 3.23 | 67.78 ± 6.51 | 85.56 ± 3.90 | 88.43 ± 0.46 | 92.13 ± 3.96 | 95.83 ± 4.17 |
P.10 | 0.00 ± 0.00 | 35.55 ± 2.22 | 67.78 ± 1.11 | 78.52 ± 0.74 | 84.26 ± 4.63 | 95.83 ± 4.17 | 95.83 ± 4.17 |
p-value | 0.1101 | 0.0720 | 0.0240 * | 0.1631 | 0.4679 | 0.4874 | 0.9770 |
Isolate | LT50 (CI 95%) | χ2 | p Value | |
---|---|---|---|---|
S. litura | Pl. xylostella | |||
P.01 | 5.0 a (5.0–6.0) | 2.5 b (2.0–3.0) | 25.25 | <0.0001 |
P.02 | 5.0 a (4.0–6.0) | 3.0 b (2.0–4.0) | 15.22 | <0.0001 |
P.03 | 5.0 a (4.0–6.0) | 3.0 b (2.0–4.0) | 9.22 | 0.0024 |
P.04 | 5.0 a (4.0–5.0) | 3.0 b (2.0–3.0) | 12.82 | 0.0003 |
P.05 | 5.0 a (4.0–6.0) | 3.0 b (2.0–4.0) | 10.63 | 0.0011 |
P.06 | 4.5 a (4.0–5.0) | 3.0 b (2.0–3.0) | 13.03 | 0.0003 |
P.07 | 5.0 a (4.0–6.0) | 3.0 b (2.0–4.0) | 11.87 | 0.0006 |
P.08 | 5.0 a (5.0–6.0) | 3.0 b (3.0–4.0) | 15.80 | <0.0001 |
P.09 | 5.0 a (4.0–6.0) | 3.0 b (2.0–3.0) | 11.38 | 0.0007 |
P.10 | 5.0 a (4.0–6.0) | 3.0 b (2.0–3.0) | 15.63 | <0.0001 |
χ2 | 3.06 | 2.76 | ||
p value | 0.9618 | 0.9732 |
Medium | Number of Spores (×108 Spores/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
P.01 | P.02 | P.03 | P.04 | P.05 | P.06 | P.07 | P.08 | P.09 | P.10 | |
M1 | 2.99 ± 0.21 b | 2.04 ± 0.10 c | 1.97 ± 0.40 d | 1.61 ± 0.17 d | 1.86 ± 0.24 c | 1.98 ± 0.27 c | 1.99 ± 0.33 c | 2.34 ± 0.11 bc | 2.32 ± 0.21 cd | 2.84 ± 0.16 bc |
M2 | 2.82 ± 0.66 b | 4.30 ± 0.28 b | 2.86 ± 0.34 c | 2.16 ± 0.20 c | 2.15 ± 0.35 b | 2.00 ± 0.27 bc | 2.19 ± 0.31 bc | 2.11 ± 0.10 c | 2.07 ± 0.20 d | 2.02 ± 0.09 d |
M3 | 2.89 ± 0.10 b | 2.60 ± 0.10 c | 3.17 ± 0.43 bc | 3.66 ± 0.41 b | 2.94 ± 0.31 b | 2.15 ± 0.18 b | 2.56 ± 0.22 b | 3.17 ± 0.30 a | 2.93 ± 0.26 bc | 3.26 ± 0.20 b |
M4 | 4.96 ± 0.77 a | 7.07 ± 0.43 a | 2.96 ± 0.15 c | 4.28 ± 0.57 a | 2.26 ± 0.25 b | 3.16 ± 0.23 a | 2.17 ± 0.14 bc | 2.82 ± 0.20 b | 3.95 ± 0.37 a | 4.33 ± 0.30 a |
M5 | 4.87 ± 0.66 a | 4.70 ± 0.41 b | 4.38 ± 0.18 b | 4.04 ± 0.34 a | 2.78 ± 0.14 b | 2.88 ± 0.13 b | 1.92 ± 0.11 c | 2.57 ± 0.27 bc | 3.46 ± 0.18 ab | 3.38 ± 0.12 b |
M6 | 2.58 ± 0.31 b | 2.19 ± 0.10 c | 4.32 ± 0.97 b | 3.20 ± 0.27 b | 3.66 ± 0.20 a | 2.74 ± 0.17 b | 3.10 ± 0.28 a | 2.96 ± 0.27 b | 3.04 ± 0.17 b | 3.62 ± 0.23 b |
M7 | 4.92 ± 0.75 a | 2.67 ± 0.20 c | 5.48 ± 0.49 a | 3.05 ± 0.33 b | 2.49 ± 0.12 b | 2.96 ± 0.14 b | 2.49 ± 0.13 b | 3.44 ± 0.32 a | 2.89 ± 0.21 bc | 2.54 ± 0.13 c |
M8 | 2.07 ± 0.44 b | 1.49 ± 0.12 d | 1.53 ± 0.21 d | 3.12 ± 0.19 b | 2.74 ± 0.10 b | 2.32 ± 0.28 b | 2.94 ± 0.14 b | 2.06 ± 0.26 c | 3.03 ± 0.18 b | 2.80 ± 0.17 bc |
M9 | 2.27 ± 0.25 b | 2.47 ± 0.23 c | 2.35 ± 0.11 c | 2.62 ± 0.16 c | 3.15 ± 0.11 a | 2.61 ± 0.10 b | 2.77 ± 0.13 b | 2.76 ± 0.25 b | 3.40 ± 0.10 ab | 2.18 ± 0.21 cd |
M10 | 3.70 ± 0.12 b | 4.63 ± 0.35 b | 2.73 ± 0.35 c | 2.94 ± 0.20 bc | 3.44 ± 0.15 a | 2.84 ± 0.16 b | 2.63 ± 0.12 b | 2.93 ± 0.25 b | 3.07 ± 0.15 b | 2.71 ± 0.18 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.C.; Lin, K.-H.; Nguyen, T.P.; Le, H.S.; Ngo, K.N.; Pham, D.C.; Tran, T.N.; Su, C.-H.; Barrow, C.J. Isolation and Cultivation of Penicillium citrinum for Biological Control of Spodoptera litura and Plutella xylostella. Fermentation 2023, 9, 438. https://doi.org/10.3390/fermentation9050438
Nguyen HC, Lin K-H, Nguyen TP, Le HS, Ngo KN, Pham DC, Tran TN, Su C-H, Barrow CJ. Isolation and Cultivation of Penicillium citrinum for Biological Control of Spodoptera litura and Plutella xylostella. Fermentation. 2023; 9(5):438. https://doi.org/10.3390/fermentation9050438
Chicago/Turabian StyleNguyen, Hoang Chinh, Kuan-Hung Lin, Thanh Phong Nguyen, Hong Son Le, Kim Ngan Ngo, Dinh Chuong Pham, Tuyet Nhung Tran, Chia-Hung Su, and Colin J. Barrow. 2023. "Isolation and Cultivation of Penicillium citrinum for Biological Control of Spodoptera litura and Plutella xylostella" Fermentation 9, no. 5: 438. https://doi.org/10.3390/fermentation9050438
APA StyleNguyen, H. C., Lin, K. -H., Nguyen, T. P., Le, H. S., Ngo, K. N., Pham, D. C., Tran, T. N., Su, C. -H., & Barrow, C. J. (2023). Isolation and Cultivation of Penicillium citrinum for Biological Control of Spodoptera litura and Plutella xylostella. Fermentation, 9(5), 438. https://doi.org/10.3390/fermentation9050438