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Abstract: Entomopathogenic fungi are the only insect pathogens able to infect their host by adhesion
to the surface and penetration through the cuticle. Although the possibility of fungal infection per os
was described almost a century ago, there is an information gap of several decades regarding this topic,
which was poorly explored due to the continuous elucidation of cuticular infection processes that lead
to insect death by mycosis. Recently, with the advent of next-generation sequencing technologies, the
genomes of the main entomopathogenic fungi became available, and many fungal genes potentially
useful for oral infection were described. Among the entomopathogenic Hypocreales that have been
sequenced, Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Cordycipitaceae) is the main candidate to
explore this pathway since it has a major number of shared genes with other non-fungal pathogens
that infect orally, such as Bacillus thuringiensis Berliner (Bacillales: Bacillaceae). This finding gives B.
bassiana a potential advantage over other entomopathogenic fungi: the possibility to infect through
both routes, oral and cuticular. In this review, we explore all known entry gates for entomopathogenic
fungi, with emphasis on the infection per os. We also set out the fungal infection process in a
more integral approach, as a need to exploit its full potential for insect control, considering all of its
virulence factors and the conditions needed to improve its virulence against insect that might offer
some resistance to the common infection through the cuticle.
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1. Introduction

Over the last 400 million years, fungi and insects have coexisted, developing interactions in
different ways [1,2]. Among them, pathogenicity is a characteristic that has evolved in the major fungal
families; becoming the most abundant natural pathogens found in arthropod populations, mostly
the hypocrealean Beauveria bassiana s.l. and Metarhizium anisopliae s.l. [3,4]. The main characteristic
of entomopathogenic fungi, unlike other insect pathogens such as bacteria or viruses, is the ability
to infect their hosts by penetrating through the cuticle without the need to be ingested. Thus, they
have a great potential for controlling sucking insects, which are either agriculture pests (e.g., aphids,
leafhoppers, stink bugs, thrips) or disease vectors (e.g., mosquitoes, kissing bugs, tse tse flies). This
unique attribute, however, usually represents an obstacle to develop efficient mycoinsecticides due to
the slow action (speed of kill) related to their life cycle. Commonly, the first step in the fungal infection
process is the conidial adhesion to the insect cuticle by nonspecific interactions, followed by conidial
germination and, in many but not all instances, the formation of appressoria (turgor pressure cells) that
breach the cuticle [5]. Once inside the hemocoel, fungal cells acquire yeast-like forms called hyphal
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bodies that invade the host throughout a sequential process, ending in insect mummification. These
cells can also secrete small toxic molecules (secondary metabolites) that serve as immunosuppressive
compounds, facilitating fungal infection [5].

Infection by ingestion is a rare route for entomopathogenic fungi, but quite common for other
pathogens such as protozoa, bacteria, and viruses, which display a series of virulence factors that
allow them to be ingested and thus infect from the oral cavity and/or intestinal tract [6]. A distinction
ought to be made in these cases: oral infection is commonly used to define colonization and mycosis
through ingestion, but not making a difference whether the infection process occurs in the buccal
cavity or the intestinal tract [6]. At the molecular level, little information is available regarding the oral
infection progress by fungi although the whole genome sequencing of B. bassiana [7] and Metarhizium
spp. [8,9] has allowed the identification of some candidate genes. More recently, some metabolic
pathways supposedly involved in oral infections by the entomopathogenic fungus B. bassiana became
available in the context of insect-pathogen coevolutionary studies [10]. Thus, the ability to infect
through both cuticular and oral routes (Figure 1) would make B. bassiana (among fungal pathogens) a
harder challenge to the insect’s immune system, thereby a good candidate to optimize sustainable
and ecofriendly alternatives to chemical pesticides. In the following sections, we present information
about all known routes of entry for hypocrealean entomopathogenic fungi, with emphasis in the least
explored, per os, insect infection route.
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Figure 1. Alternative routes of entry to a host for an entomopathogenic fungus. The fungal genes
involved in conidial penetration through the cuticle are shown in blue (1); the fungal genes proposed to
participate in oral infection are shown in green (2); and the fungal genes expressed into the hemolymph
are shown in red (3).

2. Cuticular Infection Route

The first contact that an entomopathogenic fungus makes with its host is achieved by nonspecific
hydrophobic and electrostatic interactions between conidia and the insect cuticle; some species even
produce a mucus substance that helps fungal adhesion [11]. As was reviewed by Butt et al. [12],
the main actors at this point are proteins such as adhesin-like (Mad1, Mad2) and hydrophobins or
hydrophobin-like proteins (Hyd1, Hyd2, Hyd3, SsgA, Cwp10) [12] (Figure 1). Then, cuticle degradation
starts at the most external layer (named epicuticle), which is mainly composed of very long chain
hydrocarbons [13]. A suite of cytochrome P450 genes (CYP) involved in insect hydrocarbon degradation
was described long ago for B. bassiana [14], and some of these genes were functionally characterized
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in B. bassiana (CYP52X1) [15] and M. robertsii (CYP52X2) [16]. Immediately after passing through
the epicuticle, the procuticle, composed by chitin and proteins, must be also crossed to reach
the hemolymph. Entomopathogenic fungi have evolved a variety of degradative chitinases and
proteases—chitinases Chit1, Chit2, Chit3, Chit4, and subtilisin, trypsin, and cysteine proteases (Pr1, Pr2,
Pr4) [12]—that act in combination with mechanical pressing to rupture and pass through the different
procuticular layers [17,18]. Furthermore, fungal chitin deacetylases catalyze partial deacetylation of
chitin, producing chitosan, a glucosamine polymer that is then hydrolyzed by chitosanases [19,20].
Both enzyme families contribute cooperatively to chitin degradation and facilitate cuticle penetration
by fungi. There are also stress-related genes—heat shock protein family and mitogen-activated protein
kinase—that aid the fungi in the invasion process and prevent from damage from the insects´ immune
system [12].

Once the cuticle is breached, the pathogen reaches the hemolymph, where it needs to adapt to
the new environment while it continues to fight against insect immune system [5] (Figure 1). The
fungal development inside the insect cavity usually occurs as hyphal bodies, which have a high ratio
of surface area-to-volume, improving nutrient absorption. In order to overcome host defenses, but
also to tolerate the high osmotic pressure inside the hemocoel, fungi express some genes acting as
osmosensors (Mos1) or encoding for a defensive coating protein (Mcl1), which help hyphal bodies to
resist the hard environment found in the hemolymph. Furthermore, antioxidant systems are triggered
to mitigate reactive oxygen and nitrogen species (ROS and RNS) released by the host [5,12,21]. Efficient
nutrient absorption gives entomopathogenic fungi the possibility for the rapid and massive increase of
fungal biomass inside the host, by expressing some genes involved in nutrient uptake such as Nrr1,
Crr1, Mest1, Atm1, and Gat, among others [12]. Secondary metabolites have the leading role in this
scenario, since this group of compounds is crucial for entomopathogenic fungi survival and their
interaction with other organisms [22]. Beauveria bassiana produces secondary metabolites acting as
immunosuppressants, facilitating infection, such as beauvericin (Bea), bassianolide (Bsl), oosporein
(Op), tenellin (Ten), bassiantin, and beauverolides [5], whereas Metarhizium spp. produce mainly
destruxins (Dtx) [5,12] (Figure 1). Secondary metabolites pose antibacterial and antifungal properties,
preventing the growth of opportunistic saprophytic bacteria and fungi [23].

3. Alternative Infection Routes for Entomopathogenic Fungi

Insect infection by microbial ingestion is the rule when the pathogen is a virus, bacteria, or
protozoa; however, it has also been proposed that entomopathogenic fungi can use oral and respiratory
routes as an alternative to the cuticle penetration for entrance to the host [6,10,24–26]. These alternatives
can signify an opportunity to increase effectiveness against fungal-resistant arthropods that embed
their cuticle with antifungal compounds [27–29]. The first reports on alternative infection routes
for entomopathogenic fungi were published decades ago [30–32]. After several years without novel
information, in the last decade, several cues about the molecular mechanisms underlying these infection
routes started to be studied. This was possible by the advent of next-generation technologies, which
produced vast genomic and transcriptomic information from both fungus and arthropods [7,33,34].

3.1. Oral Infection Route in Terrestrial Insects

Studies on the possibilities of oral/intestinal infection by entomopathogenic fungi have been
of interest for many years, and yet, there is much to elucidate on how these routes work. Almost
100 years ago, Peirson [32] hypothesized that B. bassiana could invade the oral cavity of pine weevils.
From the mid-1940s to the mid-1980s, a discontinued series of research started to gaze into the
alternative ways that a fungal pathogen had to colonize its host; the presence of M. anisopliae hyphae
around the implantation of the mandibles and esophagus of Ephestia kuhniella Zeller (Lepidoptera:
Pyralidae) [35,36] and recovery of non-germinated spores of M. anisopliae from the gut of Oryctes larvae
were documented [37]. Veen [31] fed second instar larvae of the desert locust Schistocerca gregaria
Forskål (Orthoptera: Acrididae) with M. anisopliae-infected leaves to test oral infection, disinfecting the
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insect heads to prevent cuticular infection. This research showed that fungal hyphae were present only
in the maxillary palps and head, but not in other parts of the body [31].

A very thorough study to evaluate the oral infection of pine weevil, Hylobius pales Herbst
(Coleoptera: Curculionidae), was reported by Schabel [6]. The insects were force-fed with M. anisopliae
conidia, then conidia viability was determined, and histological analyses of the insect gut were carried
out. High mortality was achieved, and hyphae growth was observed in all portions of the digestive
tube; however, no clear evidence of germination in the gut was observed, suggesting that fungal
conidia invade through the beetle mouthparts [6]. Furthermore, S. gregaria fed with M. anisopliae
conidia produced similar results, reinforcing the hypothesis that rather than penetrating the gut, which
is protected by its microbiota, fungal conidia adhere to, germinate on, and penetrate through the
buccal apparatus to kill the insects [38,39]. The Colorado potato beetle, Leptinotarsa decemlineata Say
(Coleoptera: Chrysomelidae), was also fed with fungal conidia, but in this case, B. bassiana was used,
as reported by Allee et al. [40]; germinated conidia were found in the gut with little to no impact of the
gut microflora, although the authors also reported that hyphae penetrated from the outside from fungi
that had germinated in the integument due to frass contamination [40]. In contrast, fungus-infected
Bombyx mori exhibited midgut cells dissolved by fungal metabolites and hyphae growing from the
midgut out [41]. A more recent study on Sitophilus granarius Linnaeus (Coleoptera: Curculionidae) fed
with a mixture of conidia and diatomaceous earth, where insects cuticles were disinfected to prevent
cuticular breaching, showed that ingested conidia of B. bassiana and M. anisopliae were able to infect
the digestive tube and kill the beetle [25]. Nevertheless, this study lacked histological information to
support the proposed hypothesis strongly.

This suite of studies on terrestrial insects showed that the mechanisms that ingested spores use
to kill the host are not very clear. In some cases, it appears that fungal spores would adhere to parts
of the buccal cavity more than the digestive tract, since no germination of conidia has been detected
in the gut. Further information and careful experimental design are needed to shed some light on
physiological and molecular changes when entomopathogenic fungal spores are ingested.

3.2. Oral Infection Routes in Aquatic Insects: The Particular Case of Mosquito Larvae

Mosquito larvae, which grow in an aquatic environment, seem to offer some choices for infection
by entomopathogenic fungi adapted to terrestrial hosts. However, the species have not evolved to
interact, and although fungi retain pre-formed pathogenic determinants that mediate host mortality,
they do not recognize and colonize their host as true aquatic fungal pathogens do [5]. The conidia of
M. anisopliae float in water since they have a hydrophobic surface. Thus, when the larvae open their
perispiracular valves for air intake, conidia reach the surface of the insect and attach at the syphon tip;
then, hyphae grow into the trachea and can kill the insect by suffocation [30]. If the same conidia are
offered with a non-ionic detergent that deposits the spores at the bottom of the container, larvae can
eat them. Conidia may be found in the gut and kill the insect by toxin secretion, but do not invade the
rest of the host [30].

Dietary stress is thought to have a big impact in this last route of entry since conidia represent
indigestible material for larvae and occupy the digestive tract, limiting the host’s access to ingested
nutrients [42]. Reports on entomopathogenic fungi killing mosquito larvae agree that the ingestion of
conidia takes place, but how the infection proceeds after the entry point differs depending on the host
and the pathogen. Culex spp. and Anopheles spp. do not harm conidial viability upon passage through
the digestive tract [43], but M. anisopliae conidia within the gut of S. gregaria showed fungitoxicity
dependent on the gut flora [39]. For Aedes aegypti Linnaeus (Diptera: Culicidae), the two primary
infection sites were the head and the anal region when fed with B. bassiana conidia; nevertheless, the
most preferred site for fungal development was the larval gut [44]. Regarding mechanisms involved in
conidial ingestion by mosquito larvae, Butt et al. [45] demonstrated that although ingested conidia fail
to germinate and are expelled in fecal pellets, insect mortality appears to be linked to autolysis triggered
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by caspases; i.e., enzymes with protease activity involved in apoptotic processes. The pathway is
regulated by Hsp70 and inhibited, in infected larvae, by protease inhibitors.

A very peculiar entomopathogenic fungus, Culicinomyces spp., that infects aquatic larvae of culicid
dipterans has the ability to adhere and to colonize the insect by adhesion to the anal papillae and not to
the cuticle [46,47]. To a lesser extent, this fungal species can also invade the host through the intestinal
cavity, but curiously, it does not attach to the cuticle [46]. Rodrigues et al. [48] reported the insecticidal
activity of several isolates belonging to the species Culicinomyces clavisporus Couch, Romney & Rao
(Hypocreales: Cordycipitaceae), and Culicinomyces bisporalis Sigler, Frances & Panter (Hypocreales:
Cordycipitaceae), on larvae, eggs, and adults of A. aegypti, including transstadial transmission. They
also found that after repeated serial repassages through A. aegypti larvae, C. clavisporus killed faster
and with a lower dose, although it was not clear whether the repassages improved the virulence or
might have restored some of the original insecticidal activity [49].

4. What Is Known at the Molecular Level? Candidates and Shared Pathways

The acquisition of massive data through genomics and transcriptomics, mostly in the last decade,
uncovered much valuable information for starting to understand the complex molecular mechanisms
underlying these host-pathogen relationships. Pathogens that traditionally invade the host through
ingestion such as the entomopathogenic bacterium, Bacillus thuringiensis, include in their genomes
a battery of virulence factors that allow them to invade the insect and kill it from the gut [50]. By
mining into the available genomes of entomopathogenic fungi, some of them exhibit a repertoire of
homologous genes that would allow fungi to possess oral toxicity [7–9] (Table 1). B. bassiana has at
least 13 heat-labile bacteria-like enterotoxins compared to six in M. robertsii and one or none in the
rest of the entomopathogenic fungi; additionally, B. bassiana also has eight Cry-like delta enterotoxins
and three bacteria-like zeta toxins proteins, whereas other entomopathogenic fungi have one or none,
suggesting that B. bassiana would have a greater oral toxicity than other entomopathogenic fungi [7].

Table 1. Entomopathogenic fungal genes potentially involved in oral infection, according to Xiao et al. (2012).

Gene Family Description Number of Genes

Beauveria bassiana Metarhizium robertsii

Heat labile bacterial-like
toxins

Bacterial heat labile enterotoxin
IIB, A chain (enzymatic) and IIA A 13 6

Cry-like delta
enterotoxins

Bacterial delta endotoxin,
N-terminal 8 0

Zeta toxins, bacterial-like Bacterial toxin 3 0

By genetic manipulation, the vegetative insecticidal protein Vip3A from B. thuringiensis was
integrated into the B. bassiana genome to target the larvae of the oriental leafworm moth Spodoptera
litura Fabricius (Lepidoptera: Noctuidae) through conidial ingestion; the authors observed that the
engineered strain was significantly more virulent than the wild type, but virulence was not modified
when infection occurred via the cuticular route [51]. In a coevolution experiment context, the feeding
of B. bassiana to red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) resulted in
infections, but showed no differences in the activation of the prophenol oxidase pathway, which is
activated when the fungal pathogen penetrates through the insect cuticle [10]. Evidence of the oral
infection pathway in T. castaneum may be the reason why it was difficult to explain evolved and
acquired resistance to B. bassiana since it would be able to infect through both cuticular and oral
routes [10]. It was suggested that T. castaneum cross-resistance coevolved between B. thuringiensis and
B. bassiana [24]. Thus, since the B. bassiana genome contains Cry-like toxins similar to those found in B.
thuringiensis, both pathogens may share mechanisms of infection such as oral toxicity [24].
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5. Conclusions and Perspectives

Biocontrol of insect pest and vectors has been a safe and eco-friendly alternative to chemical
insecticides around the world [3]. Entomopathogenic fungi are part of integrated pest control programs
and vector management, and their more widely-studied ability to attach and to penetrate through the
cuticle is their most attractive feature for use in controlling sucking insects. Nevertheless, the efficacy
and effectiveness of the many available commercial products are still considered poor compared to
chemicals [52]. For this reason, there is a need to explore the versatility existing in the infection routes
of entomopathogenic fungi in order to improve the kill rates these pathogens display. As early as
1921 [32], the possibilities of oral infection by different entomopathogenic fungi started to be evaluated
with diverse results. Fungi can infect and colonize at least to some extent when fed to the insects, but
this is highly dependent on the specific fungal species and the host.

Most past studies lacked an optimal experimental design in order to eliminate the possibilities of
contamination and infection by cuticle attachment; but successful experiments have demonstrated
that even if ingested, Metarhizium spp. is not able to germinate in the host gut. Many factors may
influence per os infection, among which conidia must be viable and germinate in the gut conditions
(i.e., unfavorable pH, presence of digestive enzymes, and microbial gut flora) and must also have
sufficient contact time with the gut wall to allow germination and penetration [40]. Host death after
conidia ingestion was mostly attributed to infection through the mouthparts or exposed cuticle in the
anus region and rapid invasion of the head and tracheae rather than the gut, although there were
some cases where fungal toxins or starvation seemed to kill the insect from the gut without actually
invading the hemocoel. Nevertheless, B. bassiana has potential over other fungi to display greater
oral toxicity based on the several genes involved in virulence by oral infection that it shares with
bacterial pathogens [24]. This topic promises further advances and novel insights that will allow a
better understanding of oral infection by entomopathogenic fungi, particularly B. bassiana, which
seems to be the most suitable candidate to act through both cuticular and oral infection routes.
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